Theory Weaken_Simulation
theory Weaken_Simulation
imports Weaken_Stat_Imp
begin
context weak
begin
definition
"weakenSimulation" :: "'b ⇒ ('a, 'b, 'c) psi ⇒
('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set ⇒
('a, 'b, 'c) psi ⇒ bool" ("_ ⊳ _ ↝⇩w<_> _" [80, 80, 80, 80] 80)
where
"Ψ ⊳ P ↝⇩w<Rel> Q ≡ ∀α Q'. Ψ ⊳ Q ⟼α ≺ Q' ⟶ bn α ♯* Ψ ⟶ bn α ♯* P ⟶ (∃P'. Ψ ⊳ P ⟹α ≺ P' ∧ (Ψ, P', Q') ∈ Rel)"
lemma weakenSimI[case_names cAct]:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
and Q :: "('a, 'b, 'c) psi"
and C :: "'d::fs_name"
assumes rOutput: "⋀α Q'. ⟦Ψ ⊳ Q ⟼α ≺ Q'; bn α ♯* Ψ; bn α ♯* P⟧ ⟹
∃P'. Ψ ⊳ P ⟹α ≺ P' ∧ (Ψ, P', Q') ∈ Rel"
shows "Ψ ⊳ P ↝⇩w<Rel> Q"
using assms
by(auto simp add: weakenSimulation_def)
lemma weakenSimWeakSim:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
and Q :: "('a, 'b, 'c) psi"
assumes "(Ψ, P, Q) ∈ Rel"
and cStatImp: "⋀Ψ' R S. (Ψ, R, S) ∈ Rel ⟹ Ψ ⊳ R ⪅⇩w<Rel> S"
and cSim: "⋀Ψ' R S. (Ψ, R, S) ∈ Rel ⟹ Ψ ⊳ R ↝⇩w<Rel'> S"
and cExt: "⋀Ψ' R S Ψ'. (Ψ, R, S) ∈ Rel' ⟹ (Ψ ⊗ Ψ', R, S) ∈ Rel'"
and cSym: "⋀Ψ' R S. (Ψ, R, S) ∈ Rel ⟹ (Ψ, S, R) ∈ Rel"
shows "Ψ ⊳ P ↝<Rel'> Q"
proof(induct rule: weakSimI2)
case(cAct Ψ' α Q')
from ‹(Ψ, P, Q) ∈ Rel› obtain P''''
where PChain: "Ψ ⊳ P ⟹⇧^⇩τ P''''"
and QImpP'''': "insertAssertion (extractFrame Q) Ψ ↪⇩F insertAssertion (extractFrame P'''') Ψ"
and "(Ψ, P'''', Q) ∈ Rel" using weakenStatImp_def
by(metis cStatImp cSym)
from ‹(Ψ, P'''', Q) ∈ Rel› have "Ψ ⊳ P'''' ↝⇩w<Rel'> Q" by(rule cSim)
moreover from PChain ‹bn α ♯* P› have "bn α ♯* P''''" by(rule tauChainFreshChain)
ultimately obtain P' where P''''Trans: "Ψ ⊳ P'''' ⟹α ≺ P'" and "(Ψ, P', Q') ∈ Rel'"
using ‹Ψ ⊳ Q ⟼α ≺ Q'› ‹bn α ♯* Ψ›
by(unfold weakenSimulation_def, auto)
from P''''Trans ‹α ≠ τ› obtain P''' P'' where P''''Chain: "Ψ ⊳ P'''' ⟹⇧^⇩τ P'''" and P'''Trans: "Ψ ⊳ P''' ⟼α ≺ P''" and P''Chain: "Ψ ⊳ P'' ⟹⇧^⇩τ P'"
by(force simp add: weakenTransition_def)
from P''''Chain QImpP'''' have "insertAssertion (extractFrame Q) Ψ ↪⇩F insertAssertion (extractFrame P''') Ψ"
by(blast intro: statImpTauChainDerivative FrameStatImpTrans)
with PChain P''''Chain have "Ψ : Q ⊳ P ⟹α ≺ P''" using P'''Trans by(rule_tac weakTransitionI) auto
moreover from P''Chain have "Ψ ⊗ Ψ' ⊳ P'' ⟹⇧^⇩τ P'" by(rule weakenTauChain)
moreover from ‹(Ψ, P', Q') ∈ Rel'› have "(Ψ ⊗ Ψ', P', Q') ∈ Rel'" by(rule cExt)
ultimately show ?case by blast
next
case(cTau Q')
from ‹(Ψ, P, Q) ∈ Rel› have "Ψ ⊳ P ↝⇩w<Rel'> Q" by(rule cSim)
then obtain P' where "Ψ ⊳ P ⟹τ ≺ P'" and "(Ψ, P', Q') ∈ Rel'" using ‹Ψ ⊳ Q ⟼τ ≺ Q'›
by(unfold weakenSimulation_def, fastforce)
from ‹Ψ ⊳ P ⟹τ ≺ P'› have "Ψ ⊳ P ⟹⇧^⇩τ P'" by(auto simp add: weakenTransition_def dest: tauActTauChain)
with ‹(Ψ, P', Q') ∈ Rel'› show ?case by blast
qed
lemma weakSimWeakenSim:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
and Q :: "('a, 'b, 'c) psi"
assumes cSim: "Ψ ⊳ P ↝<Rel> Q"
and cStatEq: "⋀Ψ' R S Ψ''. ⟦(Ψ', R, S) ∈ Rel; Ψ' ≃ Ψ''⟧ ⟹ (Ψ'', R, S) ∈ Rel"
shows "Ψ ⊳ P ↝⇩w<Rel> Q"
proof(induct rule: weakenSimI)
case(cAct α Q')
show ?case
proof(cases "α=τ")
case True
from ‹Ψ ⊳ P ↝<Rel> Q› ‹Ψ ⊳ Q ⟼α ≺ Q'› ‹α = τ›
obtain P' where "Ψ ⊳ P ⟹⇧^⇩τ P'" and "(Ψ, P', Q') ∈ Rel"
by(blast dest: weakSimE)
from ‹Ψ ⊳ P ⟹⇧^⇩τ P'› have "Ψ ⊳ P ⟹τ ≺ P'"
by(induct rule: tauChainInduct) (auto simp add: weakenTransition_def)
thus ?thesis using ‹(Ψ, P', Q') ∈ Rel› ‹α = τ› by blast
next
case False
from ‹Ψ ⊳ P ↝<Rel> Q› ‹Ψ ⊳ Q ⟼α ≺ Q'› ‹bn α ♯* Ψ› ‹bn α ♯* P› ‹α ≠ τ›
obtain P'' P' where PTrans: "Ψ : Q ⊳ P ⟹α ≺ P''" and P''Chain: "Ψ ⊗ 𝟭 ⊳ P'' ⟹⇧^⇩τ P'" and "(Ψ ⊗ 𝟭, P', Q') ∈ Rel"
by(blast dest: weakSimE)
from PTrans have "Ψ ⊳ P ⟹α ≺ P''" by(auto simp add: weakTransition_def weakenTransition_def)
moreover from P''Chain have "Ψ ⊳ P'' ⟹⇧^⇩τ P'" by(metis tauChainStatEq Identity)
moreover from ‹(Ψ ⊗ 𝟭, P', Q') ∈ Rel› have "(Ψ, P', Q') ∈ Rel" by(metis cStatEq Identity)
ultimately show ?thesis
proof(induct rule: weakenTransitionCases)
case cBase
from ‹Ψ ⊳ P ⟹⇧^⇩τ P'› have "Ψ ⊳ P ⟹τ ≺ P'"
by(induct rule: tauChainInduct) (auto simp add: weakenTransition_def)
with ‹(Ψ, P', Q') ∈ Rel› show ?case by blast
next
case(cStep P'''' P''')
thus ?case
apply(unfold weakenTransition_def)
by(rule_tac x=P' in exI) fastforce
qed
qed
qed
lemma weakenSimE:
fixes F :: 'b
and P :: "('a, 'b, 'c) psi"
and Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
and Q :: "('a, 'b, 'c) psi"
assumes "Ψ ⊳ P ↝⇩w<Rel> Q"
shows "⋀α Q'. ⟦Ψ ⊳ Q ⟼α ≺ Q'; bn α ♯* Ψ; bn α ♯* P⟧ ⟹
∃P'. Ψ ⊳ P ⟹α ≺ P' ∧ (Ψ, P', Q') ∈ Rel"
using assms
by(auto simp add: weakenSimulation_def)
lemma weakenSimMonotonic:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and A :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
and Q :: "('a, 'b, 'c) psi"
and B :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
assumes "Ψ ⊳ P ↝⇩w<A> Q"
and "A ⊆ B"
shows "Ψ ⊳ P ↝⇩w<B> Q"
using assms
by(simp (no_asm) add: weakenSimulation_def) (blast dest: weakenSimE)
end
end