Theory Weak_Congruence
theory Weak_Congruence
imports Weak_Cong_Struct_Cong Bisim_Subst
begin
context env begin
definition weakCongruence :: "('a, 'b, 'c) psi ⇒ ('a, 'b, 'c) psi ⇒ bool" ("_ ≐⇩c _" [70, 70] 65)
where
"P ≐⇩c Q ≡ ∀Ψ σ. wellFormedSubst σ ⟶ Ψ ⊳ P[<σ>] ≐ Q[<σ>]"
lemma weakCongE:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and σ :: "(name list × 'a list) list"
assumes "P ≐⇩c Q"
"wellFormedSubst σ"
shows "Ψ ⊳ P[<σ>] ≐ Q[<σ>]"
using assms
by(auto simp add: weakCongruence_def)
lemma weakCongI[case_names cWeakPsiCong]:
fixes P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "⋀Ψ σ. wellFormedSubst σ ⟹ Ψ ⊳ P[<σ>] ≐ Q[<σ>]"
shows "P ≐⇩c Q"
using assms
by(auto simp add: weakCongruence_def)
lemma weakCongClosed:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and p :: "name prm"
assumes "P ≐⇩c Q"
shows "(p ∙ P) ≐⇩c (p ∙ Q)"
proof(induct rule: weakCongI)
case(cWeakPsiCong Ψ σ)
note ‹P ≐⇩c Q›
moreover from ‹wellFormedSubst σ› have "wellFormedSubst (rev p ∙ σ)" by simp
ultimately have "((rev p) ∙ Ψ) ⊳ P[<(rev p ∙ σ)>] ≐ Q[<(rev p ∙ σ)>]"
by(rule weakCongE)
thus ?case by(drule_tac p=p in weakPsiCongClosed) (simp add: eqvts)
qed
lemma weakCongReflexive:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
shows "P ≐⇩c P"
by(auto intro: weakCongI weakPsiCongReflexive)
lemma weakCongSym:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "P ≐⇩c Q"
shows "Q ≐⇩c P"
using assms
by(auto simp add: weakCongruence_def weakPsiCongSym)
lemma weakCongTransitive:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assumes "Ψ ⊳ P ≐ Q"
and "Ψ ⊳ Q ≐ R"
shows "Ψ ⊳ P ≐ R"
using assms
by(auto intro: weakCongI weakPsiCongTransitive dest: weakCongE)
lemma weakCongWeakBisim:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "P ≐⇩c Q"
shows "Ψ ⊳ P ≈ Q"
using assms
apply(drule_tac σ="[]" in weakCongE)
by(auto dest: weakPsiCongE)
lemma weakCongWeakPsiCong:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "P ≐⇩c Q"
shows "Ψ ⊳ P ≐ Q"
using assms
by(drule_tac weakCongE[where Ψ=Ψ and σ="[]"]) auto
lemma strongBisimWeakCong:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "P ∼⇩s Q"
shows "P ≐⇩c Q"
proof(induct rule: weakCongI)
case(cWeakPsiCong Ψ σ)
from assms ‹wellFormedSubst σ› have "P[<σ>] ∼ Q[<σ>]"
by(rule closeSubstE)
hence "Ψ ⊳ P[<σ>] ∼ Q[<σ>]" by(metis bisimE(3) statEqBisim Identity Commutativity)
thus ?case by(rule strongBisimWeakPsiCong)
qed
lemma structCongWeakCong:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "P ≡⇩s Q"
shows "P ≐⇩c Q"
using assms
by(metis strongBisimWeakCong structCongBisimSubst)
lemma weakCongUnfold:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and σ :: "(name list × 'a list) list"
assumes "P ≐⇩c Q"
and "wellFormedSubst σ"
shows "P[<σ>] ≐⇩c Q[<σ>]"
proof(induct rule: weakCongI)
case(cWeakPsiCong Ψ σ')
with ‹wellFormedSubst σ› ‹wellFormedSubst σ'› have "wellFormedSubst(σ@σ')" by simp
with ‹P ≐⇩c Q› have "Ψ ⊳ P[<(σ@σ')>] ≐ Q[<(σ@σ')>]"
by(rule weakCongE)
thus "Ψ ⊳ P[<σ>][<σ'>] ≐ Q[<σ>][<σ'>]"
by simp
qed
lemma weakCongOutputPres:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and N :: 'a
assumes "P ≐⇩c Q"
shows "M⟨N⟩.P ≐⇩c M⟨N⟩.Q"
using assms
by(fastforce intro: weakCongI weakCongE weakPsiCongOutputPres)
lemma weakCongInputPres:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and xvec :: "name list"
and N :: 'a
assumes "P ≐⇩c Q"
and "distinct xvec"
shows "M⦇λ*xvec N⦈.P ≐⇩c M⦇λ*xvec N⦈.Q"
proof(induct rule: weakCongI)
case(cWeakPsiCong Ψ σ)
obtain p where "(p ∙ xvec) ♯* σ"
and "(p ∙ xvec) ♯* P" and "(p ∙ xvec) ♯* Q" and "(p ∙ xvec) ♯* Ψ" and "(p ∙ xvec) ♯* N"
and S: "set p ⊆ set xvec × set (p ∙ xvec)"
by(rule_tac c="(σ, P, Q, Ψ, N)" in name_list_avoiding) auto
from ‹P ≐⇩c Q› have "(p ∙ P) ≐⇩c (p ∙ Q)"
by(rule weakCongClosed)
{
fix Tvec :: "'a list"
from ‹(p ∙ P) ≐⇩c (p ∙ Q)› ‹wellFormedSubst σ› have "(p ∙ P)[<σ>] ≐⇩c (p ∙ Q)[<σ>]"
by(rule weakCongUnfold)
moreover assume "length xvec = length Tvec" and "distinct xvec"
ultimately have "Ψ ⊳ ((p ∙ P)[<σ>])[(p ∙ xvec)::=Tvec] ≐ ((p ∙ Q)[<σ>])[(p ∙ xvec)::=Tvec]"
by(drule_tac weakCongE[where σ="[((p ∙ xvec), Tvec)]"]) auto
hence "Ψ ⊳ ((p ∙ P)[<σ>])[(p ∙ xvec)::=Tvec] ≈ ((p ∙ Q)[<σ>])[(p ∙ xvec)::=Tvec]"
by(rule weakPsiCongE)
}
with ‹(p ∙ xvec) ♯* σ› ‹distinct xvec›
have "Ψ ⊳ (M⦇λ*(p ∙ xvec) (p ∙ N)⦈.(p ∙ P))[<σ>] ≐ (M⦇λ*(p ∙ xvec) (p ∙ N)⦈.(p ∙ Q))[<σ>]"
by(force intro: weakPsiCongInputPres)
moreover from ‹(p ∙ xvec) ♯* N› ‹(p ∙ xvec) ♯* P› S have "M⦇λ*(p ∙ xvec) (p ∙ N)⦈.(p ∙ P) = M⦇λ*xvec N⦈.P"
apply(simp add: psi.inject) by(rule inputChainAlpha[symmetric]) auto
moreover from ‹(p ∙ xvec) ♯* N› ‹(p ∙ xvec) ♯* Q› S have "M⦇λ*(p ∙ xvec) (p ∙ N)⦈.(p ∙ Q) = M⦇λ*xvec N⦈.Q"
apply(simp add: psi.inject) by(rule inputChainAlpha[symmetric]) auto
ultimately show ?case by force
qed
lemma weakCongCasePresAux:
fixes Ψ :: 'b
and CsP :: "('c × ('a, 'b, 'c) psi) list"
and CsQ :: "('c × ('a, 'b, 'c) psi) list"
assumes C1: "⋀φ P. (φ, P) mem CsP ⟹ ∃Q. (φ, Q) mem CsQ ∧ guarded Q ∧ P ≐⇩c Q"
and C2: "⋀φ Q. (φ, Q) mem CsQ ⟹ ∃P. (φ, P) mem CsP ∧ guarded P ∧ P ≐⇩c Q"
shows "Cases CsP ≐⇩c Cases CsQ"
proof -
{
fix Ψ :: 'b
fix σ :: "(name list × 'a list) list"
assume "wellFormedSubst σ"
have "Ψ ⊳ Cases(caseListSeqSubst CsP σ) ≐ Cases(caseListSeqSubst CsQ σ)"
proof(rule weakPsiCongCasePres)
fix φ P
assume "(φ, P) mem (caseListSeqSubst CsP σ)"
then obtain φ' P' where "(φ', P') mem CsP" and "φ = substCond.seqSubst φ' σ" and PeqP': "P = (P'[<σ>])"
by(induct CsP) force+
from ‹(φ', P') mem CsP› obtain Q' where "(φ', Q') mem CsQ" and "guarded Q'" and "P' ≐⇩c Q'" by(blast dest: C1)
from ‹(φ', Q') mem CsQ› ‹φ = substCond.seqSubst φ' σ› obtain Q where "(φ, Q) mem (caseListSeqSubst CsQ σ)" and "Q = Q'[<σ>]"
by(induct CsQ) auto
with PeqP' ‹guarded Q'› ‹P' ≐⇩c Q'› ‹wellFormedSubst σ› show "∃Q. (φ, Q) mem (caseListSeqSubst CsQ σ) ∧ guarded Q ∧ (∀Ψ. Ψ ⊳ P ≐ Q)"
by(blast dest: weakCongE guardedSeqSubst)
next
fix φ Q
assume "(φ, Q) mem (caseListSeqSubst CsQ σ)"
then obtain φ' Q' where "(φ', Q') mem CsQ" and "φ = substCond.seqSubst φ' σ" and QeqQ': "Q = Q'[<σ>]"
by(induct CsQ) force+
from ‹(φ', Q') mem CsQ› obtain P' where "(φ', P') mem CsP" and "guarded P'" and "P' ≐⇩c Q'" by(blast dest: C2)
from ‹(φ', P') mem CsP› ‹φ = substCond.seqSubst φ' σ› obtain P where "(φ, P) mem (caseListSeqSubst CsP σ)" and "P = P'[<σ>]"
by(induct CsP) auto
with QeqQ' ‹guarded P'› ‹P' ≐⇩c Q'› ‹wellFormedSubst σ›
show "∃P. (φ, P) mem (caseListSeqSubst CsP σ) ∧ guarded P ∧ (∀Ψ. Ψ ⊳ P ≐ Q)"
by(blast dest: weakCongE guardedSeqSubst)
qed
}
thus ?thesis
by(rule_tac weakCongI) auto
qed
lemma weakCongParPres:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assumes "P ≐⇩c Q"
shows "P ∥ R ≐⇩c Q ∥ R"
using assms
by(fastforce intro: weakCongI weakCongE weakPsiCongParPres)
lemma weakCongResPres:
fixes P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and x :: name
assumes "P ≐⇩c Q"
shows "⦇νx⦈P ≐⇩c ⦇νx⦈Q"
proof(induct rule: weakCongI)
case(cWeakPsiCong Ψ σ)
obtain y::name where "y ♯ (Ψ::'b)" and "y ♯ P" and "y ♯ Q" and "y ♯ σ"
by(generate_fresh "name") (auto simp add: fresh_prod)
from ‹P ≐⇩c Q› have "([(x, y)] ∙ P) ≐⇩c ([(x, y)] ∙ Q)" by(rule weakCongClosed)
hence "Ψ ⊳ ([(x, y)] ∙ P)[<σ>] ≐ ([(x, y)] ∙ Q)[<σ>]" using ‹wellFormedSubst σ›
by(rule weakCongE)
hence "Ψ ⊳ ⦇νy⦈(([(x, y)] ∙ P)[<σ>]) ≐ ⦇νy⦈(([(x, y)] ∙ Q)[<σ>])" using ‹y ♯ Ψ›
by(rule weakPsiCongResPres)
with ‹y ♯ P› ‹y ♯ Q› ‹y ♯ σ›
show "Ψ ⊳ (⦇νx⦈P)[<σ>] ≐ (⦇νx⦈Q)[<σ>]"
by(simp add: alphaRes)
qed
lemma weakCongBangPres:
fixes P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "P ≐⇩c Q"
and "guarded P"
and "guarded Q"
shows "!P ≐⇩c !Q"
using assms
by(fastforce intro: weakCongI weakCongE weakPsiCongBangPres guardedSeqSubst)
end
end