Theory Weak_Bisim_Subst
theory Weak_Bisim_Subst
imports Weak_Bisim_Struct_Cong Weak_Bisim_Pres Bisim_Subst
begin
context env begin
abbreviation
weakBisimSubstJudge ("_ ⊳ _ ≈⇩s _" [70, 70, 70] 65) where "Ψ ⊳ P ≈⇩s Q ≡ (Ψ, P, Q) ∈ closeSubst weakBisim"
abbreviation
weakBisimSubstNilJudge ("_ ≈⇩s _" [70, 70] 65) where "P ≈⇩s Q ≡ 𝟭 ⊳ P ≈⇩s Q"
lemmas weakBisimSubstClosed[eqvt] = closeSubstClosed[OF weakBisimEqvt]
lemmas weakBisimEqvt[simp] = closeSubstEqvt[OF weakBisimEqvt]
lemma strongBisimSubstWeakBisimSubst:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "Ψ ⊳ P ∼⇩s Q"
shows "Ψ ⊳ P ≈⇩s Q"
using assms
by(metis closeSubstI closeSubstE strongBisimWeakBisim)
lemma weakBisimSubstOutputPres:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and N :: 'a
assumes "Ψ ⊳ P ≈⇩s Q"
shows "Ψ ⊳ M⟨N⟩.P ≈⇩s M⟨N⟩.Q"
using assms
by(fastforce intro: closeSubstI closeSubstE weakBisimOutputPres)
lemma bisimSubstInputPres:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and xvec :: "name list"
and N :: 'a
assumes "Ψ ⊳ P ≈⇩s Q"
and "xvec ♯* Ψ"
and "distinct xvec"
shows "Ψ ⊳ M⦇λ*xvec N⦈.P ≈⇩s M⦇λ*xvec N⦈.Q"
proof(rule_tac closeSubstI)
fix σ :: "(name list × 'a list) list"
assume "wellFormedSubst σ"
obtain p where "(p ∙ xvec) ♯* σ"
and "(p ∙ xvec) ♯* P" and "(p ∙ xvec) ♯* Q" and "(p ∙ xvec) ♯* Ψ" and "(p ∙ xvec) ♯* N"
and S: "set p ⊆ set xvec × set (p ∙ xvec)"
by(rule_tac c="(σ, P, Q, Ψ, N)" in name_list_avoiding) auto
from ‹Ψ ⊳ P ≈⇩s Q› have "(p ∙ Ψ) ⊳ (p ∙ P) ≈⇩s (p ∙ Q)"
by(rule weakBisimSubstClosed)
with ‹xvec ♯* Ψ› ‹(p ∙ xvec) ♯* Ψ› S have "Ψ ⊳ (p ∙ P) ≈⇩s (p ∙ Q)"
by simp
{
fix Tvec' :: "'a list"
assume "length (p ∙ xvec) = length Tvec'"
with ‹wellFormedSubst σ› ‹distinct xvec› have "wellFormedSubst (σ @ [(p ∙ xvec,Tvec')])"
by simp
with ‹Ψ ⊳ (p ∙ P) ≈⇩s (p ∙ Q)› have "Ψ ⊳ (p ∙ P)[<(σ @ [(p ∙ xvec,Tvec')])>] ≈ (p ∙ Q)[<(σ @ [(p ∙ xvec,Tvec')])>]"
by (rule closeSubstE)
then have "Ψ ⊳ ((p ∙ P)[<σ>])[(p ∙ xvec)::=Tvec'] ≈ ((p ∙ Q)[<σ>])[(p ∙ xvec)::=Tvec']"
by (metis seqSubsCons seqSubsNil seqSubsTermAppend)
}
then have "Ψ ⊳ M[<σ>]⦇λ*(p ∙ xvec) (p ∙ N)[<σ>]⦈.((p ∙ P)[<σ>]) ≈ M[<σ>]⦇λ*(p ∙ xvec) (p ∙ N)[<σ>]⦈.((p ∙ Q)[<σ>])"
using weakBisimInputPres by metis
with ‹(p ∙ xvec) ♯* σ› have "Ψ ⊳ (M⦇λ*(p ∙ xvec) (p ∙ N)⦈.(p ∙ P))[<σ>] ≈ (M⦇λ*(p ∙ xvec) (p ∙ N)⦈.(p ∙ Q))[<σ>]"
by (metis seqSubstInputChain seqSubstSimps(3))
moreover from ‹(p ∙ xvec) ♯* N› ‹(p ∙ xvec) ♯* P› S have "M⦇λ*(p ∙ xvec) (p ∙ N)⦈.(p ∙ P) = M⦇λ*xvec N⦈.P"
apply (simp add: psi.inject) by (rule inputChainAlpha[symmetric]) auto
moreover from ‹(p ∙ xvec) ♯* N› ‹(p ∙ xvec) ♯* Q› S have "M⦇λ*(p ∙ xvec) (p ∙ N)⦈.(p ∙ Q) = M⦇λ*xvec N⦈.Q"
apply (simp add: psi.inject) by (rule inputChainAlpha[symmetric]) auto
ultimately show "Ψ ⊳ (M⦇λ*xvec N⦈.P)[<σ>] ≈ (M⦇λ*xvec N⦈.Q)[<σ>]"
by force
qed
lemma weakBisimSubstReflexive:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
shows "Ψ ⊳ P ≈⇩s P"
by(auto intro: closeSubstI weakBisimReflexive)
lemma bisimSubstTransitive:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assumes "Ψ ⊳ P ≈⇩s Q"
and "Ψ ⊳ Q ≈⇩s R"
shows "Ψ ⊳ P ≈⇩s R"
using assms
by(auto intro: closeSubstI closeSubstE weakBisimTransitive)
lemma weakBisimSubstSymmetric:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "Ψ ⊳ P ≈⇩s Q"
shows "Ψ ⊳ Q ≈⇩s P"
using assms
by(auto intro: closeSubstI closeSubstE weakBisimE)
lemma weakBisimSubstParPres:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assumes "Ψ ⊳ P ≈⇩s Q"
shows "Ψ ⊳ P ∥ R ≈⇩s Q ∥ R"
using assms
by(fastforce intro: closeSubstI closeSubstE weakBisimParPres)
lemma weakBisimSubstResPres:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and x :: name
assumes "Ψ ⊳ P ≈⇩s Q"
and "x ♯ Ψ"
shows "Ψ ⊳ ⦇νx⦈P ≈⇩s ⦇νx⦈Q"
proof(rule closeSubstI)
fix σ :: "(name list × 'a list) list"
assume "wellFormedSubst σ"
obtain y::name where "y ♯ Ψ" and "y ♯ P" and "y ♯ Q" and "y ♯ σ"
by (generate_fresh "name") auto
from ‹Ψ ⊳ P ≈⇩s Q› have "([(x, y)] ∙ Ψ) ⊳ ([(x, y)] ∙ P) ≈⇩s ([(x, y)] ∙ Q)"
by (rule weakBisimSubstClosed)
with ‹x ♯ Ψ› ‹y ♯ Ψ› have "Ψ ⊳ ([(x, y)] ∙ P) ≈⇩s ([(x, y)] ∙ Q)"
by simp
hence "Ψ ⊳ ([(x, y)] ∙ P)[<σ>] ≈ ([(x, y)] ∙ Q)[<σ>]"
using ‹wellFormedSubst σ› by (rule closeSubstE)
hence "Ψ ⊳ ⦇νy⦈(([(x, y)] ∙ P)[<σ>]) ≈ ⦇νy⦈(([(x, y)] ∙ Q)[<σ>])"
using ‹y ♯ Ψ› by (rule weakBisimResPres)
with ‹y ♯ P› ‹y ♯ Q› ‹y ♯ σ› show "Ψ ⊳ (⦇νx⦈P)[<σ>] ≈ (⦇νx⦈Q)[<σ>]"
by (simp add: alphaRes)
qed
lemma weakBisimSubstParNil:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
shows "Ψ ⊳ P ∥ 𝟬 ≈⇩s P"
by(metis strongBisimSubstWeakBisimSubst bisimSubstParNil)
lemma weakBisimSubstParComm:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
shows "Ψ ⊳ P ∥ Q ≈⇩s Q ∥ P"
by(metis strongBisimSubstWeakBisimSubst bisimSubstParComm)
lemma weakBisimSubstParAssoc:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
shows "Ψ ⊳ (P ∥ Q) ∥ R ≈⇩s P ∥ (Q ∥ R)"
by(metis strongBisimSubstWeakBisimSubst bisimSubstParAssoc)
lemma weakBisimSubstResNil:
fixes Ψ :: 'b
and x :: name
shows "Ψ ⊳ ⦇νx⦈𝟬 ∼⇩s 𝟬"
by(metis strongBisimSubstWeakBisimSubst bisimSubstResNil)
lemma weakBisimSubstScopeExt:
fixes Ψ :: 'b
and x :: name
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "x ♯ P"
shows "Ψ ⊳ ⦇νx⦈(P ∥ Q) ≈⇩s P ∥ ⦇νx⦈Q"
using assms
by(metis strongBisimSubstWeakBisimSubst bisimSubstScopeExt)
lemma weakBisimSubstCasePushRes:
fixes x :: name
and Ψ :: 'b
and Cs :: "('c × ('a, 'b, 'c) psi) list"
assumes "x ♯ map fst Cs"
shows "Ψ ⊳ ⦇νx⦈(Cases Cs) ≈⇩s Cases map (λ(φ, P). (φ, ⦇νx⦈P)) Cs"
using assms
by(metis strongBisimSubstWeakBisimSubst bisimSubstCasePushRes)
lemma weakBisimSubstOutputPushRes:
fixes x :: name
and Ψ :: 'b
and M :: 'a
and N :: 'a
and P :: "('a, 'b, 'c) psi"
assumes "x ♯ Ψ"
and "x ♯ M"
and "x ♯ N"
shows "Ψ ⊳ ⦇νx⦈(M⟨N⟩.P) ≈⇩s M⟨N⟩.⦇νx⦈P"
using assms
by(metis strongBisimSubstWeakBisimSubst bisimSubstOutputPushRes)
lemma weakBisimSubstInputPushRes:
fixes x :: name
and Ψ :: 'b
and M :: 'a
and xvec :: "name list"
and N :: 'a
assumes "x ♯ M"
and "x ♯ xvec"
and "x ♯ N"
shows "Ψ ⊳ ⦇νx⦈(M⦇λ*xvec N⦈.P) ≈⇩s M⦇λ*xvec N⦈.⦇νx⦈P"
using assms
by(metis strongBisimSubstWeakBisimSubst bisimSubstInputPushRes)
lemma weakBisimSubstResComm:
fixes x :: name
and y :: name
shows "Ψ ⊳ ⦇νx⦈(⦇νy⦈P) ≈⇩s ⦇νy⦈(⦇νx⦈P)"
by(metis strongBisimSubstWeakBisimSubst bisimSubstResComm)
lemma weakBisimSubstExtBang:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
assumes "guarded P"
shows "Ψ ⊳ !P ≈⇩s P ∥ !P"
using assms
by(metis strongBisimSubstWeakBisimSubst bisimSubstExtBang)
end
end