Theory RightComplementedMonoid
section‹Right Complemented Monoid›
theory RightComplementedMonoid
imports LeftComplementedMonoid
begin
class left_pordered_monoid_mult = order + monoid_mult +
assumes mult_left_mono: "a ≤ b ⟹ c * a ≤ c * b"
class integral_left_pordered_monoid_mult = left_pordered_monoid_mult + one_greatest
class right_residuated = ord + times + right_imp +
assumes right_residual: "(a * x ≤ b) = (x ≤ a r→ b)"
class right_residuated_pordered_monoid = integral_left_pordered_monoid_mult + right_residuated
class right_inf = inf + times + right_imp +
assumes inf_r_def: "(a ⊓ b) = a * (a r→ b)"
class right_complemented_monoid = right_residuated_pordered_monoid + right_inf +
assumes left_divisibility: "(a ≤ b) = (∃ c . a = b * c)"