Theory LatticeProperties.Modular_Distrib_Lattice
section‹Modular and Distributive Lattices›
theory Modular_Distrib_Lattice
imports Lattice_Prop
begin
text ‹
The main result of this theory is the fact that a lattice is distributive
if and only if it satisfies the following property:
›
term "(∀ x y z . x ⊓ z = y ⊓ z ∧ x ⊔ z = y ⊔ z ⟹ x = y)"
text‹
This result was proved by Bergmann in \<^cite>‹"bergmann:1929"›. The formalization
presented here is based on \<^cite>‹"birkhoff:1967" and "burris:sankappanavar:1981"›.
›
class modular_lattice = lattice +
  assumes modular: "x ≤ y ⟹  x ⊔ (y ⊓ z) = y ⊓ (x ⊔ z)"
context distrib_lattice begin
subclass modular_lattice
  apply unfold_locales
  by (simp add: inf_sup_distrib inf_absorb2)
end
context lattice begin
definition
  "d_aux a b c = (a ⊓ b) ⊔ (b ⊓ c) ⊔ (c ⊓ a)"
lemma d_b_c_a: "d_aux b c a = d_aux a b c"
  by (metis d_aux_def sup.assoc sup_commute)
lemma d_c_a_b: "d_aux c a b = d_aux a b c"
  by (metis d_aux_def sup.assoc sup_commute)
definition
  "e_aux a b c = (a ⊔ b) ⊓ (b ⊔ c) ⊓ (c ⊔ a)"
lemma e_b_c_a: "e_aux b c a = e_aux a b c"
  by (simp add: e_aux_def ac_simps)
lemma e_c_a_b: "e_aux c a b = e_aux a b c"
  by (simp add: e_aux_def ac_simps)
definition
  "a_aux a b c = (a ⊓ (e_aux a b c)) ⊔ (d_aux a b c)"
definition
  "b_aux a b c = (b ⊓ (e_aux a b c)) ⊔ (d_aux a b c)"
definition
  "c_aux a b c = (c ⊓ (e_aux a b c)) ⊔ (d_aux a b c)"
lemma b_a: "b_aux a b c = a_aux b c a" 
  by (simp add: a_aux_def b_aux_def e_b_c_a d_b_c_a)
lemma c_a: "c_aux a b c = a_aux c a b" 
  by (simp add: a_aux_def c_aux_def e_c_a_b d_c_a_b)
lemma [simp]: "a_aux a b c ≤ e_aux a b c"
  apply (simp add: a_aux_def e_aux_def d_aux_def)
  apply (rule_tac y = "(a ⊔ b) ⊓ (b ⊔ c) ⊓ (c ⊔ a)" in order_trans)
  apply (rule inf_le2)
  by simp
lemma [simp]: "b_aux a b c ≤ e_aux a b c"
  apply (unfold b_a)
  apply (subst e_b_c_a [THEN sym])
  by simp
lemma [simp]: "c_aux a b c ≤ e_aux a b c"
  apply (unfold c_a)
  apply (subst e_c_a_b [THEN sym])
  by simp
lemma [simp]: "d_aux a b c ≤ a_aux a b c"
  by (simp add: a_aux_def e_aux_def d_aux_def)
lemma [simp]: "d_aux a b c ≤ b_aux a b c"
  apply (unfold b_a)
  apply (subst d_b_c_a [THEN sym])
  by simp
lemma [simp]: "d_aux a b c ≤ c_aux a b c"
  apply (unfold c_a)
  apply (subst d_c_a_b [THEN sym])
  by simp
lemma a_meet_e: "a ⊓ (e_aux a b c) = a ⊓ (b ⊔ c)"
  by (rule order.antisym) (simp_all add: e_aux_def le_infI2)
  
lemma b_meet_e: "b ⊓ (e_aux a b c) = b ⊓ (c ⊔ a)"
  by (simp add: a_meet_e [THEN sym] e_b_c_a)
lemma c_meet_e: "c ⊓ (e_aux a b c) = c ⊓ (a ⊔ b)"
  by (simp add: a_meet_e [THEN sym] e_c_a_b)
lemma a_join_d: "a ⊔ d_aux a b c = a ⊔ (b ⊓ c)"
  by (rule order.antisym) (simp_all add: d_aux_def le_supI2)
lemma b_join_d: "b ⊔ d_aux a b c = b ⊔ (c ⊓ a)"
  by (simp add: a_join_d [THEN sym] d_b_c_a)
end
context lattice begin
definition
  "no_distrib a b c = (a ⊓ b ⊔ c ⊓ a < a ⊓ (b ⊔ c))"
definition
  "incomp x y = (¬ x ≤ y ∧ ¬ y ≤ x)"
definition 
  "N5_lattice a b c = (a ⊓ c = b ⊓ c ∧ a < b ∧ a ⊔ c = b ⊔ c)"
definition 
  "M5_lattice a b c = (a ⊓ b = b ⊓ c ∧ c ⊓ a = b ⊓ c ∧ a ⊔ b = b ⊔ c ∧ c ⊔ a = b ⊔ c ∧ a ⊓ b < a ⊔ b)"
lemma M5_lattice_incomp: "M5_lattice a b c ⟹ incomp a b"
  apply (simp add: M5_lattice_def incomp_def)
  apply safe
  apply (simp_all add: inf_absorb1 inf_absorb2 )
  apply (simp_all add: sup_absorb1 sup_absorb2 )
  apply (subgoal_tac "c ⊓ (b ⊔ c) = c")
  apply simp
  apply (subst sup_commute)
  by simp
end
context modular_lattice begin
lemma a_meet_d: "a ⊓ (d_aux a b c) = (a ⊓ b) ⊔ (c ⊓ a)"
  proof -
    have "a ⊓ (d_aux a b c) = a ⊓ ((a ⊓ b) ⊔ (b ⊓ c) ⊔ (c ⊓ a))" by (simp add: d_aux_def)
    also have "... = a ⊓ (a ⊓ b ⊔ c ⊓ a ⊔ b ⊓ c)" by (simp add: sup_assoc, simp add: sup_commute)
    also have "... = (a ⊓ b ⊔ c ⊓ a) ⊔ (a ⊓ (b ⊓ c))" by (simp add: modular)
    also have "... = (a ⊓ b) ⊔ (c ⊓ a)" by (rule order.antisym, simp_all, rule_tac y = "a ⊓ b" in order_trans, simp_all)
    finally show ?thesis by simp
  qed
  
lemma b_meet_d: "b ⊓ (d_aux a b c) = (b ⊓ c) ⊔ (a ⊓ b)"
  by (simp add: a_meet_d [THEN sym] d_b_c_a)
lemma c_meet_d: "c ⊓ (d_aux a b c) = (c ⊓ a) ⊔ (b ⊓ c)"
  by (simp add: a_meet_d [THEN sym] d_c_a_b)
lemma d_less_e: "no_distrib a b c ⟹ d_aux a b c < e_aux a b c"
  apply (subst less_le)
  apply(case_tac "d_aux a b c = e_aux a b c")
  apply simp_all
  apply (simp add: no_distrib_def a_meet_e [THEN sym] a_meet_d [THEN sym])
  apply (rule_tac y = "a_aux a b c" in order_trans)
  by simp_all
lemma a_meet_b_eq_d: " d_aux a b c ≤ e_aux a b c ⟹ a_aux a b c ⊓ b_aux a b c = d_aux a b c"
  proof -
    assume d_less_e: " d_aux a b c ≤ e_aux a b c"
    have "(a ⊓ e_aux a b c ⊔ d_aux a b c) ⊓ (b ⊓ e_aux a b c ⊔ d_aux a b c) = (b ⊓ e_aux a b c ⊔  d_aux a b c) ⊓ (d_aux a b c ⊔ a ⊓ e_aux a b c)"
      by (simp add: inf_commute sup_commute)
    also have "… = d_aux a b c ⊔ ((b ⊓ e_aux a b c ⊔ d_aux a b c) ⊓ (a ⊓ e_aux a b c))" 
      by (simp add: modular)
    also have "… = d_aux a b c ⊔ (d_aux a b c ⊔ e_aux a b c ⊓ b) ⊓ (a ⊓ e_aux a b c)" 
      by (simp add: inf_commute sup_commute)
    also have "… = d_aux a b c ⊔ (e_aux a b c ⊓ (d_aux a b c ⊔ b)) ⊓ (a ⊓ e_aux a b c)" 
      by (cut_tac d_less_e, simp add: modular [THEN sym] less_le)
    also have "… =  d_aux a b c ⊔ ((a ⊓ e_aux a b c) ⊓ (e_aux a b c ⊓ (b ⊔ d_aux a b c)))" 
      by (simp add: inf_commute sup_commute)
    also have "… = d_aux a b c ⊔ (a ⊓ e_aux a b c ⊓ (b ⊔ d_aux a b c))" by (simp add: inf_assoc)
    also have "… = d_aux a b c ⊔ (a ⊓ e_aux a b c ⊓ (b ⊔ (c ⊓ a)))" by (simp add: b_join_d)
    also have "… = d_aux a b c ⊔ (a ⊓ (b ⊔ c) ⊓ (b ⊔ (c ⊓ a)))" by (simp add: a_meet_e)
    also have "… = d_aux a b c ⊔ (a ⊓ ((b ⊔ c) ⊓ (b ⊔ (c ⊓ a))))" by (simp add: inf_assoc)
    also have "… = d_aux a b c ⊔ (a ⊓ (b ⊔ ((b ⊔ c) ⊓ (c ⊓ a))))" by (simp add: modular)
    also have "… = d_aux a b c ⊔ (a ⊓ (b ⊔ (c ⊓ a)))" by (simp add: inf_absorb2)
    also have "… = d_aux a b c ⊔ (a ⊓ ((c ⊓ a) ⊔ b))" by (simp add: sup_commute inf_commute)
    also have "… = d_aux a b c ⊔ ((c ⊓ a) ⊔ (a ⊓ b))" by (simp add: modular)
    also have "… = d_aux a b c"
      by (rule order.antisym, simp_all add: d_aux_def)
    finally show ?thesis by (simp add: a_aux_def b_aux_def)
  qed
lemma b_meet_c_eq_d: " d_aux a b c ≤ e_aux a b c ⟹ b_aux a b c ⊓ c_aux a b c = d_aux a b c"
  apply (subst b_a)
  apply (subgoal_tac "c_aux a b c = b_aux b c a")
  apply simp
  apply (subst a_meet_b_eq_d)
  by (simp_all add: c_aux_def b_aux_def d_b_c_a e_b_c_a)
  
lemma c_meet_a_eq_d: "d_aux a b c ≤ e_aux a b c ⟹ c_aux a b c ⊓ a_aux a b c = d_aux a b c"
  apply (subst c_a)
  apply (subgoal_tac "a_aux a b c = b_aux c a b")
  apply simp
  apply (subst a_meet_b_eq_d)
  by (simp_all add: a_aux_def b_aux_def d_b_c_a e_b_c_a)
  
lemma a_def_equiv: "d_aux a b c ≤ e_aux a b c ⟹ a_aux a b c = (a ⊔ d_aux a b c) ⊓ e_aux a b c"
  apply (simp add: a_aux_def)
  apply (subst inf_commute) 
  apply (subst sup_commute)
  apply (simp add: modular)
  by (simp add: inf_commute sup_commute)
lemma b_def_equiv: "d_aux a b c ≤ e_aux a b c ⟹ b_aux a b c = (b ⊔ d_aux a b c) ⊓ e_aux a b c"
  apply (cut_tac a = b and b = c and c = a in a_def_equiv)
  by (simp_all add: d_b_c_a e_b_c_a b_a)
lemma c_def_equiv: "d_aux a b c ≤ e_aux a b c ⟹ c_aux a b c = (c ⊔ d_aux a b c) ⊓ e_aux a b c"
  apply (cut_tac a = c and b = a and c = b in a_def_equiv)
  by (simp_all add: d_c_a_b e_c_a_b c_a)
lemma a_join_b_eq_e: "d_aux a b c ≤ e_aux a b c ⟹ a_aux a b c ⊔ b_aux a b c = e_aux a b c"
  proof -
    assume d_less_e: " d_aux a b c ≤ e_aux a b c"
    have "((a ⊔ d_aux a b c) ⊓ e_aux a b c) ⊔ ((b ⊔ d_aux a b c) ⊓ e_aux a b c) = ((b ⊔ d_aux a b c) ⊓ e_aux a b c) ⊔ (e_aux a b c ⊓ (a ⊔ d_aux a b c))"
      by (simp add: inf_commute sup_commute)
    also have "… = e_aux a b c ⊓ (((b ⊔ d_aux a b c) ⊓ e_aux a b c) ⊔ (a ⊔ d_aux a b c))" 
      by (simp add: modular)
    also have "… = e_aux a b c ⊓ ((e_aux a b c ⊓ (d_aux a b c ⊔ b)) ⊔ (a ⊔ d_aux a b c))" 
      by (simp add: inf_commute sup_commute)
    also have "… = e_aux a b c ⊓ ((d_aux a b c ⊔ (e_aux a b c ⊓ b)) ⊔ (a ⊔ d_aux a b c))" 
      by (cut_tac d_less_e, simp add: modular)
    also have "… = e_aux a b c ⊓ ((a ⊔ d_aux a b c) ⊔ (d_aux a b c ⊔ (b ⊓ e_aux a b c)))" 
      by (simp add: inf_commute sup_commute)
    also have "… = e_aux a b c ⊓ (a ⊔ d_aux a b c ⊔ (b ⊓ e_aux a b c))" by (simp add: sup_assoc)
    also have "… = e_aux a b c ⊓ (a ⊔ d_aux a b c ⊔ (b ⊓ (c ⊔ a)))" by (simp add: b_meet_e)
    also have "… = e_aux a b c ⊓ (a ⊔ (b ⊓ c) ⊔ (b ⊓ (c ⊔ a)))" by (simp add: a_join_d)
    also have "… = e_aux a b c ⊓ (a ⊔ ((b ⊓ c) ⊔ (b ⊓ (c ⊔ a))))" by (simp add: sup_assoc)
    also have "… = e_aux a b c ⊓ (a ⊔ (b ⊓ ((b ⊓ c) ⊔ (c ⊔ a))))" by (simp add: modular)
    also have "… = e_aux a b c ⊓ (a ⊔ (b ⊓ (c ⊔ a)))" by (simp add: sup_absorb2) 
    also have "… = e_aux a b c ⊓ (a ⊔ ((c ⊔ a) ⊓ b))" by (simp add: sup_commute inf_commute)
    also have "… = e_aux a b c ⊓ ((c ⊔ a) ⊓ (a ⊔ b))" by (simp add: modular)
    also have "… = e_aux a b c"
      by (rule order.antisym, simp_all, simp_all add: e_aux_def)
    finally show ?thesis by (cut_tac d_less_e, simp add: a_def_equiv b_def_equiv)
  qed
lemma b_join_c_eq_e: " d_aux a b c <= e_aux a b c ⟹ b_aux a b c ⊔ c_aux a b c = e_aux a b c"
  apply (subst b_a)
  apply (subgoal_tac "c_aux a b c = b_aux b c a")
  apply simp
  apply (subst a_join_b_eq_e)
  by (simp_all add: c_aux_def b_aux_def d_b_c_a e_b_c_a)
  
lemma c_join_a_eq_e: "d_aux a b c <= e_aux a b c ⟹ c_aux a b c ⊔ a_aux a b c = e_aux a b c"
  apply (subst c_a)
  apply (subgoal_tac "a_aux a b c = b_aux c a b")
  apply simp
  apply (subst a_join_b_eq_e)
  by (simp_all add: a_aux_def b_aux_def d_b_c_a e_b_c_a)
lemma "no_distrib a b c ⟹ incomp a b"
  apply (simp add: no_distrib_def incomp_def ac_simps)
  using order.strict_iff_not inf.absorb_iff2 inf.commute modular
  apply fastforce
  done
lemma M5_modular: "no_distrib a b c ⟹ M5_lattice (a_aux a b c) (b_aux a b c) (c_aux a b c)"
  apply (frule d_less_e)
  by (simp add: M5_lattice_def a_meet_b_eq_d b_meet_c_eq_d c_meet_a_eq_d a_join_b_eq_e b_join_c_eq_e c_join_a_eq_e)
lemma M5_modular_def: "M5_lattice a b c = (a ⊓ b = b ⊓ c ∧ c ⊓ a = b ⊓ c ∧ a ⊔ b = b ⊔ c ∧ c ⊔ a = b ⊔ c ∧ a ⊓ b < a ⊔ b)"
  by (simp add: M5_lattice_def)
end
context lattice begin
lemma not_modular_N5: "(¬ class.modular_lattice inf ((≤)::'a ⇒ 'a ⇒ bool) (<) sup) =
   (∃ a b c::'a . N5_lattice a b c)"
  apply (subgoal_tac "class.lattice (⊓) ((≤)::'a ⇒ 'a ⇒ bool) (<) sup")
  apply (unfold N5_lattice_def class.modular_lattice_def class.modular_lattice_axioms_def)
  apply simp_all
  apply safe
  apply (subgoal_tac "x ⊔ y ⊓ z < y ⊓ (x ⊔ z)")
  apply (rule_tac x = "x ⊔ y ⊓ z" in exI)
  apply (rule_tac x = "y ⊓ (x ⊔ z)" in exI)
  apply (rule_tac x = z in exI)
  apply safe
  apply (rule order.antisym)
  apply simp
  apply (rule_tac y = "x ⊔ y ⊓ z" in order_trans)
  apply simp_all
  apply (rule_tac y = "y ⊓ z" in order_trans)
  apply simp_all
  apply (rule order.antisym)
  apply simp_all
  apply (rule_tac y = "y ⊓ (x ⊔ z)" in order_trans)
  apply simp_all
  apply (rule_tac y = "x ⊔ z" in order_trans)
  apply simp_all
  apply (rule neq_le_trans)
  apply simp
  apply simp
  apply (rule_tac x = a in exI)
  apply (rule_tac x = b in exI)
  apply safe
  apply (simp add: less_le)
  apply (rule_tac x = c in exI)
  apply simp
  apply (simp add: less_le)
  apply safe
  apply (subgoal_tac "a ⊔ a ⊓ c = b")
  apply (unfold sup_inf_absorb) [1]
  apply simp
  apply simp
  proof qed
lemma not_distrib_N5_M5: "(¬ class.distrib_lattice (⊓) ((≤)::'a ⇒ 'a ⇒ bool) (<) (⊔)) =
   ((∃ a b c::'a . N5_lattice a b c) ∨ (∃ a b c::'a . M5_lattice a b c))"
  apply (unfold not_modular_N5 [THEN sym])
  proof
    assume A: "¬ class.distrib_lattice (⊓) ((≤)::'a ⇒ 'a ⇒ bool) (<) (⊔)"
    have B: "∃ a b c:: 'a . (a ⊓ b) ⊔ (a ⊓ c) < a ⊓ (b ⊔ c)"
      apply (cut_tac A)
      apply (unfold  class.distrib_lattice_def)
      apply safe
      apply simp_all
      proof
        fix x y z::'a
        assume A: "∀(a::'a) (b::'a) c::'a. ¬ a ⊓ b ⊔ a ⊓ c < a ⊓ (b ⊔ c)"
        show "x ⊔ y ⊓ z = (x ⊔ y) ⊓ (x ⊔ z)"
          apply (cut_tac A)
          apply (rule distrib_imp1)
          by (simp add: less_le)
      qed
    from B show "¬ class.modular_lattice (⊓) ((≤)::'a ⇒ 'a ⇒ bool) (<) (⊔) ∨ (∃a b c::'a. M5_lattice a b c)"
      proof (unfold disj_not1, safe)
        fix a b c::'a
        assume A: "a ⊓ b ⊔ a ⊓ c < a ⊓ (b ⊔ c)"
        assume B: "class.modular_lattice (⊓) ((≤)::'a ⇒ 'a ⇒ bool) (<) (⊔)"
        interpret modular: modular_lattice "(⊓)" "((≤)::'a ⇒ 'a ⇒ bool)" "(<)" "(⊔)"
          by (fact B)
        have H: "M5_lattice (a_aux a b c) (b_aux a b c) (c_aux a b c)"
          apply (cut_tac a = a and b = b and c = c in  modular.M5_modular)
          apply (unfold no_distrib_def)
          by (simp_all add: A inf_commute)
        from H show "∃a b c::'a. M5_lattice a b c" by blast
     qed
   next
     assume A: "¬ class.modular_lattice (⊓) ((≤)::'a ⇒ 'a ⇒ bool) (<) (⊔) ∨ (∃(a::'a) (b::'a) c::'a. M5_lattice a b c)"
     show "¬ class.distrib_lattice (⊓) ((≤)::'a ⇒ 'a ⇒ bool) (<) (⊔)"
       apply (cut_tac A)
       apply safe
       apply (erule notE)
       apply unfold_locales
       apply (unfold class.distrib_lattice_def)
       apply (unfold class.distrib_lattice_axioms_def)
       apply safe
       apply (simp add: sup_absorb2)
       apply (frule M5_lattice_incomp)
       apply (unfold M5_lattice_def)
       apply (drule_tac x = a in spec)
       apply (drule_tac x = b in spec)
       apply (drule_tac x = c in spec)
       apply safe
       proof -
         fix a b c:: 'a
         assume A:"a ⊔ b ⊓ c = (a ⊔ b) ⊓ (a ⊔ c)"
         assume B: "a ⊓ b = b ⊓ c"
         assume D: "a ⊔ b = b ⊔ c"
         assume E: "c ⊔ a = b ⊔ c"
         assume G: "incomp a b"
         have H: "a ⊔ b ⊓ c = a" by (simp add: B [THEN sym] sup_absorb1)
         have I: "(a ⊔ b) ⊓ (a ⊔ c) = a ⊔ b" by (cut_tac E, simp add: sup_commute D)
         have J: "a = a ⊔ b" by (cut_tac A, simp add: H I)
         show False
           apply (cut_tac G J)
           apply (subgoal_tac "b ≤ a")
           apply (simp add: incomp_def)
           apply (rule_tac y = "a ⊔ b" in order_trans)
           apply (rule sup_ge2)
           by simp
       qed
     qed
 
lemma distrib_not_N5_M5: "(class.distrib_lattice (⊓) ((≤)::'a ⇒ 'a ⇒ bool) (<) (⊔)) =
   ((∀ a b c::'a . ¬ N5_lattice a b c) ∧ (∀ a b c::'a . ¬ M5_lattice a b c))"
  apply (cut_tac not_distrib_N5_M5)
  by auto
lemma distrib_inf_sup_eq:
  "(class.distrib_lattice (⊓) ((≤)::'a ⇒ 'a ⇒ bool) (<) (⊔)) = 
    (∀ x y z::'a . x ⊓ z = y ⊓ z ∧ x ⊔ z = y ⊔ z ⟶ x = y)"
  apply safe
  proof -
    fix x y z:: 'a
    assume A: "class.distrib_lattice (⊓) ((≤) ::'a ⇒ 'a ⇒ bool) (<) (⊔)"
    interpret distrib: distrib_lattice "(⊓)" "(≤) :: 'a ⇒ 'a ⇒ bool" "(<)" "(⊔)"
      by (fact A)
    assume B: "x ⊓ z = y ⊓ z"
    assume C: "x ⊔ z = y ⊔ z"
    have "x = x ⊓ (x ⊔ z)" by simp
    also have "… = x ⊓ (y ⊔ z)" by (simp add: C)
    also have "… = (x ⊓ y) ⊔ (x ⊓ z)" by (simp add: distrib.inf_sup_distrib)
    also have "… = (y ⊓ x) ⊔ (y ⊓ z)" by (simp add: B inf_commute)
    also have "… = y ⊓ (x ⊔ z)" by (simp add: distrib.inf_sup_distrib)
    also have "… = y" by (simp add: C)
    finally show "x = y" .
  next
    assume A: "(∀x y z:: 'a. x ⊓ z = y ⊓ z ∧ x ⊔ z = y ⊔ z ⟶ x = y)"
    have B: "!! x y z :: 'a. x ⊓ z = y ⊓ z ∧ x ⊔ z = y ⊔ z ⟹ x = y"
      by (cut_tac A, blast)
    show "class.distrib_lattice (⊓) ((≤)::'a ⇒ 'a ⇒ bool) (<) (⊔)"
      apply (unfold distrib_not_N5_M5)
      apply safe
      apply (unfold N5_lattice_def)
      apply (cut_tac x = a and y = b and z = c in B)
      apply (simp_all)
      apply (unfold M5_lattice_def)
      apply (cut_tac x = a and y = b and z = c in B)
      by (simp_all add: inf_commute sup_commute)
 qed
end
class inf_sup_eq_lattice = lattice +
  assumes inf_sup_eq: "x ⊓ z = y ⊓ z ⟹ x ⊔ z = y ⊔ z ⟹ x = y"
begin
subclass distrib_lattice
  by (metis distrib_inf_sup_eq inf_sup_eq)
end
end