Theory Jordan_Normal_Form.Gram_Schmidt
section ‹Gram-Schmidt Orthogonalization›
text ‹
This theory provides the Gram-Schmidt orthogonalization algorithm,
that takes the conjugate operation into account. It works over fields
like the rational, real, or complex numbers.
›
theory Gram_Schmidt
imports
VS_Connect
Missing_VectorSpace
Conjugate
begin
subsection ‹Orthogonality with Conjugates›
definition "corthogonal vs ≡
∀i < length vs. ∀j < length vs. vs ! i ∙c vs ! j = 0 ⟷ i ≠ j"
lemma corthogonalD[elim]:
"corthogonal vs ⟹ i < length vs ⟹ j < length vs ⟹
vs ! i ∙c vs ! j = 0 ⟷ i ≠ j"
unfolding corthogonal_def by auto
lemma corthogonalI[intro]:
"(⋀i j. i < length vs ⟹ j < length vs ⟹ vs ! i ∙c vs ! j = 0 ⟷ i ≠ j) ⟹
corthogonal vs"
unfolding corthogonal_def by auto
lemma corthogonal_distinct: "corthogonal us ⟹ distinct us"
proof (induct us)
case (Cons u us)
have "u ∉ set us"
proof
assume "u : set us"
then obtain j where uj: "u = us!j" and j: "j < length us"
using in_set_conv_nth by metis
hence j': "j+1 < length (u#us)" by auto
have "u ∙c us!j = 0"
using corthogonalD[OF Cons(2) _ j',of 0] by auto
hence "u ∙c u = 0" using uj by simp
thus False using corthogonalD[OF Cons(2),of 0 0] by auto
qed
moreover have "distinct us"
proof (rule Cons(1),intro corthogonalI)
fix i j assume "i < length (us)" "j < length (us)"
hence len: "i+1 < length (u#us)" "j+1 < length (u#us)" by auto
show "(us!i ∙c us!j = 0) = (i≠j)"
using corthogonalD[OF Cons(2) len] by simp
qed
ultimately show ?case by simp
qed simp
lemma corthogonal_sort:
assumes dist': "distinct us'"
and mem: "set us = set us'"
shows "corthogonal us ⟹ corthogonal us'"
proof
assume orth: "corthogonal us"
hence dist: "distinct us" using corthogonal_distinct by auto
fix i' j' assume i': "i' < length us'" and j': "j' < length us'"
obtain i where ii': "us!i = us'!i'" and i: "i < length us"
using mem i' in_set_conv_nth by metis
obtain j where jj': "us!j = us'!j'" and j: "j < length us"
using mem j' in_set_conv_nth by metis
from corthogonalD[OF orth i j]
have "(us!i ∙c us!j = 0) = (i ≠ j)".
hence "(us'!i' ∙c us'!j' = 0) = (i ≠ j)" using ii' jj' by auto
also have "... = (us!i ≠ us!j)" using nth_eq_iff_index_eq dist i j by auto
also have "... = (us'!i' ≠ us'!j')" using ii' jj' by auto
also have "... = (i' ≠ j')" using nth_eq_iff_index_eq dist' i' j' by auto
finally show "(us'!i' ∙c us'!j' = 0) = (i' ≠ j')".
qed
subsection‹The Algorithm›
fun adjuster :: "nat ⇒ 'a :: conjugatable_field vec ⇒ 'a vec list ⇒ 'a vec"
where "adjuster n w [] = 0⇩v n"
| "adjuster n w (u#us) = -(w ∙c u)/(u ∙c u) ⋅⇩v u + adjuster n w us"
text ‹
The following formulation is easier to analyze,
but outputs of the subroutine should be properly reversed.
›
fun gram_schmidt_sub
where "gram_schmidt_sub n us [] = us"
| "gram_schmidt_sub n us (w # ws) =
gram_schmidt_sub n ((adjuster n w us + w) # us) ws"
definition gram_schmidt :: "nat ⇒ 'a :: conjugatable_field vec list ⇒ 'a vec list"
where "gram_schmidt n ws = rev (gram_schmidt_sub n [] ws)"
text ‹
The following formulation requires no reversal.
›
fun gram_schmidt_sub2
where "gram_schmidt_sub2 n us [] = []"
| "gram_schmidt_sub2 n us (w # ws) =
(let u = adjuster n w us + w in
u # gram_schmidt_sub2 n (u # us) ws)"
lemma gram_schmidt_sub_eq:
"rev (gram_schmidt_sub n us ws) = rev us @ gram_schmidt_sub2 n us ws"
by (induct ws arbitrary:us, auto simp:Let_def)
lemma gram_schmidt_code[code]:
"gram_schmidt n ws = gram_schmidt_sub2 n [] ws"
unfolding gram_schmidt_def
apply(subst gram_schmidt_sub_eq) by simp
subsection ‹Properties of the Algorithms›
locale cof_vec_space = vec_space f_ty for
f_ty :: "'a :: conjugatable_ordered_field itself"
begin
lemma adjuster_finsum:
assumes U: "set us ⊆ carrier_vec n"
and dist: "distinct (us :: 'a vec list)"
shows "adjuster n w us = finsum V (λu. -(w ∙c u)/(u ∙c u) ⋅⇩v u) (set us)"
using assms
proof (induct us)
case Cons show ?case unfolding set_simps
by (subst finsum_insert[OF finite_set], insert Cons, auto)
qed simp
lemma adjuster_lincomb:
assumes w: "(w :: 'a vec) : carrier_vec n"
and us: "set (us :: 'a vec list) ⊆ carrier_vec n"
and dist: "distinct us"
shows "adjuster n w us = lincomb (λu. -(w ∙c u)/(u ∙c u)) (set us)"
(is "_ = lincomb ?a _")
using us dist unfolding lincomb_def
proof (induct us)
case (Cons u us)
let ?f = "λu. ?a u ⋅⇩v u"
have "?f : (set us) → carrier_vec n" and "?f u : carrier_vec n" using w Cons by auto
moreover have "u ∉ set us" using Cons by auto
ultimately show ?case
unfolding adjuster.simps
unfolding set_simps
using finsum_insert[OF finite_set] Cons by auto
qed simp
lemma adjuster_in_span:
assumes w: "(w :: 'a vec) : carrier_vec n"
and us: "set (us :: 'a vec list) ⊆ carrier_vec n"
and dist: "distinct us"
shows "adjuster n w us : span (set us)"
using adjuster_lincomb[OF assms]
unfolding finite_span[OF finite_set us] by auto
lemma adjuster_carrier[simp]:
assumes w: "(w :: 'a vec) : carrier_vec n"
and us: "set (us :: 'a vec list) ⊆ carrier_vec n"
and dist: "distinct us"
shows "adjuster n w us : carrier_vec n"
using adjuster_in_span span_closed assms by auto
lemma adjust_not_in_span:
assumes w[simp]: "(w :: 'a vec) : carrier_vec n"
and us: "set (us :: 'a vec list) ⊆ carrier_vec n"
and dist: "distinct us"
and ind: "w ∉ span (set us)"
shows "adjuster n w us + w ∉ span (set us)"
using span_add[OF us adjuster_in_span[OF w us dist] w]
using comm_add_vec ind by auto
lemma adjust_not_mem:
assumes w[simp]: "(w :: 'a vec) : carrier_vec n"
and us: "set (us :: 'a vec list) ⊆ carrier_vec n"
and dist: "distinct us"
and ind: "w ∉ span (set us)"
shows "adjuster n w us + w ∉ set us"
using adjust_not_in_span[OF assms] span_mem[OF us] by auto
lemma adjust_in_span:
assumes w[simp]: "(w :: 'a vec) : carrier_vec n"
and us: "set (us :: 'a vec list) ⊆ carrier_vec n"
and dist: "distinct us"
shows "adjuster n w us + w : span (insert w (set us))" (is "?v + _ : span ?U")
proof -
let ?a = "λu. -(w ∙c u)/(u ∙c u)"
have "?v = lincomb ?a (set us)" using adjuster_lincomb[OF assms].
hence vU: "?v : span (set us)" unfolding finite_span[OF finite_set us] by auto
hence v[simp]: "?v : carrier_vec n" using span_closed[OF us] by auto
have vU': "?v : span ?U" using vU span_is_monotone[OF subset_insertI] by auto
have "{w} ⊆ ?U" by simp
from span_is_monotone[OF this]
have wU': "w : span ?U" using span_self[OF w] by auto
have "?U ⊆ carrier_vec n" using us w by simp
from span_add[OF this wU' v] vU' comm_add_vec[OF w]
show ?thesis by simp
qed
lemma adjust_not_lindep:
assumes w[simp]: "(w :: 'a vec) : carrier_vec n"
and us: "set (us :: 'a vec list) ⊆ carrier_vec n"
and dist: "distinct us"
and wus: "w ∉ span (set us)"
and ind: "~ lin_dep (set us)"
shows "~ lin_dep (insert (adjuster n w us + w) (set us))"
(is "~ _ (insert ?v _)")
proof -
have v: "?v : carrier_vec n" using assms by auto
have "?v ∉ span (set us)"
using adjust_not_in_span[OF w us dist wus]
using comm_add_vec[OF adjuster_carrier[OF w us dist] w] by auto
thus ?thesis
using lin_dep_iff_in_span[OF us ind v] adjust_not_mem[OF w us dist wus] by auto
qed
lemma adjust_preserves_span:
assumes w[simp]: "(w :: 'a vec) : carrier_vec n"
and us: "set (us :: 'a vec list) ⊆ carrier_vec n"
and dist: "distinct us"
shows "w : span (set us) ⟷ adjuster n w us + w : span (set us)"
(is "_ ⟷ ?v + _ : _")
proof -
have "?v : span (set us)"
using adjuster_lincomb[OF assms]
unfolding finite_span[OF finite_set us] by auto
hence [simp]: "?v : carrier_vec n" using span_closed[OF us] by auto
show ?thesis
using span_add[OF us adjuster_in_span[OF w us] w] comm_add_vec[OF w] dist
by auto
qed
lemma in_span_adjust:
assumes w[simp]: "(w :: 'a vec) : carrier_vec n"
and us: "set (us :: 'a vec list) ⊆ carrier_vec n"
and dist: "distinct us"
shows "w : span (insert (adjuster n w us + w) (set us))"
(is "_ : span (insert ?v _)")
proof -
have v: "?v : carrier_vec n" using assms by auto
have a[simp]: "adjuster n w us : carrier_vec n"
and neg: "- adjuster n w us : carrier_vec n" using assms by auto
hence vU: "insert ?v (set us) ⊆ carrier_vec n" using us by auto
have aS: "adjuster n w us : span (insert ?v (set us))"
using adjuster_in_span[OF w us] span_is_monotone[OF subset_insertI] dist
by auto
have negS: "- adjuster n w us : span (insert ?v (set us))"
using span_neg[OF vU aS] us by simp
have [simp]:"- adjuster n w us + (adjuster n w us + w) = w"
unfolding a_assoc[OF neg a w,symmetric] by simp
have "{?v} ⊆ insert ?v (set us)" by simp
from span_is_monotone[OF this]
have vS: "?v : span (insert ?v (set us))" using span_self[OF v] by auto
thus ?thesis using span_add[OF vU negS v] by auto
qed
lemma adjust_zero:
assumes U: "set (us :: 'a vec list) ⊆ carrier_vec n"
and orth: "corthogonal us"
and w[simp]: "w : carrier_vec n"
and i: "i < length us"
shows "(adjuster n w us + w) ∙c us!i = 0"
proof -
define u where "u = us!i"
have u[simp]: "u : carrier_vec n" using i U u_def by auto
hence cu[simp]: "conjugate u : carrier_vec n" by auto
have uU: "u : set us" using i u_def by auto
let ?g = "λu'::'a vec. (-(w ∙c u')/(u' ∙c u') ⋅⇩v u')"
have g: "?g : set us → carrier_vec n" using w U by auto
hence carrier: "finsum V ?g (set us) : carrier_vec n" by simp
let ?f = "λu'. ?g u' ∙c u"
let ?U = "set us - {u}"
{ fix u' assume u': "(u'::'a vec) : carrier_vec n"
have [simp]: "dim_vec u = n" by auto
have "?f u' = (- (w ∙c u') / (u' ∙c u')) * (u' ∙c u)"
using scalar_prod_smult_left[of "u'" "conjugate u"]
unfolding carrier_vecD[OF u] carrier_vecD[OF u'] by auto
} note conv = this
have "?f : ?U → {0}"
proof (intro Pi_I)
fix u' assume u'Uu: "u' : set us - {u}"
hence u'U: "u' : set us" by auto
hence u'[simp]: "u' : carrier_vec n" using U by auto
obtain j where j: "j < length us" and u'j: "u' = us ! j"
using u'U in_set_conv_nth by metis
have "i ≠ j" using u'Uu u'j u_def by auto
hence "u' ∙c u = 0"
unfolding u'j using corthogonalD[OF orth j i] u_def by auto
hence "?f u' = 0" using mult_zero_right conv[OF u'] by auto
thus "?f u' : {0}" by auto
qed
hence "restrict ?f ?U = restrict (λu. 0) ?U" by force
hence "sum ?f ?U = sum (λu. 0) ?U"
by (intro R.finsum_restrict, auto)
hence fU'0: "sum ?f ?U = 0" by auto
have uU': "u ∉ ?U" by auto
have "set us = insert u ?U"
using insert_Diff_single uU by auto
hence "sum ?f (set us) = ?f u + sum ?f ?U"
using R.finsum_insert[OF _ uU'] by auto
also have "... = ?f u" using fU'0 by auto
also have "... = - (w ∙c u) / (u ∙c u) * (u ∙c u)"
using conv[OF u] by auto
finally have main: "sum ?f (set us) = - (w ∙c u)"
unfolding u_def
by (simp add: i orth corthogonalD)
show ?thesis
unfolding u_def[symmetric]
unfolding adjuster_finsum[OF U corthogonal_distinct[OF orth]]
unfolding add_scalar_prod_distrib[OF carrier w cu]
unfolding finsum_scalar_prod_sum[OF g cu]
unfolding main
unfolding comm_scalar_prod[OF cu w]
using left_minus by auto
qed
lemma adjust_nonzero:
assumes U: "set (us :: 'a vec list) ⊆ carrier_vec n"
and dist: "distinct us"
and w[simp]: "w : carrier_vec n"
and wsU: "w ∉ span (set us)"
shows "adjuster n w us + w ≠ 0⇩v n" (is "?a + _ ≠ _")
proof
have [simp]: "?a : carrier_vec n" using U dist by auto
have [simp]: "- ?a : carrier_vec n" by auto
have [simp]: "?a + w : carrier_vec n" by auto
assume "?a + w = 0⇩v n"
hence "- ?a = - ?a + (?a + w)" by auto
also have "... = (- ?a + ?a) + w" apply(subst a_assoc) by auto
also have "- ?a + ?a = 0⇩v n" using r_neg[OF w] unfolding vec_neg[OF w] by auto
finally have "- ?a = w" by auto
moreover have "- ?a : span (set us)"
using span_neg[OF U adjuster_in_span[OF w U dist]] by auto
ultimately show "False" using wsU by auto
qed
lemma adjust_orthogonal:
assumes U: "set (us :: 'a vec list) ⊆ carrier_vec n"
and orth: "corthogonal us"
and w[simp]: "w : carrier_vec n"
and wsU: "w ∉ span (set us)"
shows "corthogonal ((adjuster n w us + w) # us)"
(is "corthogonal (?aw # _)")
proof
have dist: "distinct us" using corthogonal_distinct orth by auto
have aw[simp]: "?aw : carrier_vec n" using U dist by auto
note adjust_nonzero[OF U dist w] wsU
hence aw0: "?aw ∙c ?aw ≠ 0" using conjugate_square_eq_0_vec[OF aw] by auto
fix i j assume i: "i < length (?aw # us)" and j: "j < length (?aw # us)"
show "((?aw # us) ! i ∙c (?aw # us) ! j = 0) = (i ≠ j)"
proof (cases "i = 0")
case True note i0 = this
show ?thesis
proof (cases "j = 0")
case True show ?thesis unfolding True i0 using aw0 by auto
next case False
define j' where "j' = j-1"
hence jfold: "j = j'+1" using False by auto
hence j': "j' < length us" using j by auto
show ?thesis unfolding i0 jfold
using adjust_zero[OF U orth w j'] by auto
qed
next case False
define i' where "i' = i-1"
hence ifold: "i = i'+1" using False by auto
hence i': "i' < length us" using i by auto
have [simp]: "us ! i' : carrier_vec n" using U i' by auto
hence cu': "conjugate (us ! i') : carrier_vec n" by auto
show ?thesis
proof (cases "j = 0")
case True
{ assume "?aw ∙c us ! i' = 0"
hence "conjugate (?aw ∙c us ! i') = 0" using conjugate_zero by auto
hence "conjugate ?aw ∙ us ! i' = 0"
using conjugate_sprod_vec[OF aw cu'] by auto
}
thus ?thesis unfolding True ifold
using adjust_zero[OF U orth w i']
by (subst comm_scalar_prod[of _ n], auto)
next case False
define j' where "j' = j-1"
hence jfold: "j = j'+1" using False by auto
hence j': "j' < length us" using j by auto
show ?thesis
unfolding ifold jfold
using orth i' j' by (auto simp: corthogonalD)
qed
qed
qed
lemma gram_schmidt_sub_span:
assumes w[simp]: "w : carrier_vec n"
and us: "set us ⊆ carrier_vec n"
and dist: "distinct us"
shows "span (set ((adjuster n w us + w) # us)) = span (set (w # us))"
(is "span (set (?v # _)) = span ?wU")
proof (cases "w : span (set us)")
case True
hence "?v : span (set us)"
using adjust_preserves_span[OF assms] by auto
thus ?thesis using already_in_span[OF us] True by auto next
case False show ?thesis
proof
have wU: "?wU ⊆ carrier_vec n" using us by simp
have vswU: "?v : span ?wU" using adjust_in_span[OF assms] by auto
hence v: "?v : carrier_vec n" using span_closed[OF wU] by auto
have wsvU: "w : span (insert ?v (set us))" using in_span_adjust[OF assms].
show "span ?wU ⊆ span (set (?v # us))"
using span_swap[OF finite_set us w False v wsvU] by auto
have "?v ∉ span (set us)"
using False adjust_preserves_span[OF assms] by auto
thus "span (set (?v # us)) ⊆ span ?wU"
using span_swap[OF finite_set us v _ w] vswU by auto
qed
qed
lemma gram_schmidt_sub_result:
assumes "gram_schmidt_sub n us ws = us'"
and "set ws ⊆ carrier_vec n"
and "set us ⊆ carrier_vec n"
and "distinct (us @ ws)"
and "~ lin_dep (set (us @ ws))"
and "corthogonal us"
shows "set us' ⊆ carrier_vec n ∧
distinct us' ∧
corthogonal us' ∧
span (set (us @ ws)) = span (set us') ∧ length us' = length us + length ws"
using assms
proof (induct ws arbitrary: us us')
case (Cons w ws)
let ?v = "adjuster n w us"
have wW[simp]: "set (w#ws) ⊆ carrier_vec n" using Cons by simp
hence W[simp]: "set ws ⊆ carrier_vec n"
and w[simp]: "w : carrier_vec n" by auto
have U[simp]: "set us ⊆ carrier_vec n" using Cons by simp
have UW: "set (us@ws) ⊆ carrier_vec n" by simp
have wU: "set (w#us) ⊆ carrier_vec n" by simp
have dist: "distinct (us @ w # ws)" using Cons by simp
hence dist_U: "distinct us"
and dist_W: "distinct ws"
and dist_UW: "distinct (us @ ws)"
and w_U: "w ∉ set us"
and w_W: "w ∉ set ws"
and w_UW: "w ∉ set (us @ ws)" by auto
have ind: "~ lin_dep (set (us @ w # ws))" using Cons by simp
have ind_U: "~ lin_dep (set us)"
and ind_W: "~ lin_dep (set ws)"
and ind_wU: "~ lin_dep (insert w (set us))"
and ind_UW: "~ lin_dep (set (us @ ws))"
by (subst subset_li_is_li[OF ind];auto)+
have corth: "corthogonal us" using Cons by simp
have U'def: "gram_schmidt_sub n ((?v + w)#us) ws = us'" using Cons by simp
have v: "?v : carrier_vec n" using dist_U by auto
hence vw: "?v + w : carrier_vec n" by auto
hence vwU: "set ((?v + w) # us) ⊆ carrier_vec n" by auto
have vsU: "?v : span (set us)" using adjuster_in_span[OF w] dist by auto
hence vsUW: "?v : span (set (us @ ws))"
using span_is_monotone[of "set us" "set (us@ws)"] by auto
have wsU: "w ∉ span (set us)"
using lin_dep_iff_in_span[OF U ind_U w w_U] ind_wU by auto
hence vwU: "?v + w ∉ span (set us)" using adjust_not_in_span[OF w U dist_U] by auto
have "w ∉ span (set (us@ws))" using lin_dep_iff_in_span[OF _ ind_UW] dist ind by auto
hence span: "?v + w ∉ span (set (us@ws))" using span_add[OF UW vsUW w] by auto
hence vwUS: "?v + w ∉ set (us @ ws)" using span_mem by auto
hence ind2: "~ lin_dep (set (((?v + w) # us) @ ws))"
using lin_dep_iff_in_span[OF UW ind_UW vw] span by auto
have vwU: "set ((?v + w) # us) ⊆ carrier_vec n" using U w dist by auto
have dist2: "distinct (((?v + w) # us) @ ws)" using dist vwUS by simp
have orth2: "corthogonal ((adjuster n w us + w) # us)"
using adjust_orthogonal[OF U corth w wsU].
show ?case
using Cons(1)[OF U'def W vwU dist2 ind2] orth2
using span_Un[OF vwU wU gram_schmidt_sub_span[OF w U dist_U] W W] by auto
qed simp
lemma gram_schmidt_hd [simp]:
assumes [simp]: "w : carrier_vec n" shows "hd (gram_schmidt n (w#ws)) = w"
unfolding gram_schmidt_code by simp
theorem gram_schmidt_result:
assumes ws: "set ws ⊆ carrier_vec n"
and dist: "distinct ws"
and ind: "~ lin_dep (set ws)"
and us: "us = gram_schmidt n ws"
shows "span (set ws) = span (set us)"
and "corthogonal us"
and "set us ⊆ carrier_vec n"
and "length us = length ws"
and "distinct us"
proof -
have main: "gram_schmidt_sub n [] ws = rev us"
using us unfolding gram_schmidt_def
using gram_schmidt_sub_eq by auto
have orth: "corthogonal []" by auto
have "span (set ws) = span (set (rev us))"
and orth2: "corthogonal (rev us)"
and "set us ⊆ carrier_vec n"
and "length us = length ws"
and dist: "distinct us"
using gram_schmidt_sub_result[OF main ws]
by (auto simp: assms orth)
thus "span (set ws) = span (set us)" by simp
show "set us ⊆ carrier_vec n" by fact
show "length us = length ws" by fact
show "distinct us" by fact
show "corthogonal us"
using corthogonal_distinct[OF orth2] unfolding distinct_rev
using corthogonal_sort[OF _ set_rev orth2] by auto
qed
end
end