Theory Euler_Witness
section ‹Euler Witnesses›
theory Euler_Witness
imports
Jacobi_Symbol
Residues_Nat
QuadRes
begin
text ‹
Proofs are inspired by \<^cite>‹"solovay_strassen_ori" and "SolovayStrassenTest" and "wiki:Solovay_Strassen_test" and "planetmath:SolovayStrassenTest"›.
›
definition "euler_witness a p ⟷ [Jacobi a p ≠ a ^ ((p - 1) div 2)] (mod p)"
abbreviation "euler_liar a p ≡ ¬ euler_witness a p"
lemma euler_witness_mod[simp]: "euler_witness (a mod p) p = euler_witness a p"
unfolding euler_witness_def cong_def
by (simp add: power_mod)
lemma euler_liar_mod: "euler_liar (a mod p) p = euler_liar a p" by simp
lemma euler_liar_cong:
assumes "[a = b] (mod p)"
shows "euler_liar a p = euler_liar b p"
by (metis assms cong_def euler_witness_mod)
lemma euler_witnessI:
"[x ^ ((n - 1) div 2) = a] (mod int n ) ⟹ [Jacobi x (int n) ≠ a] (mod int n)
⟹ euler_witness x n"
unfolding euler_witness_def using cong_trans by blast
lemma euler_witnessI2:
fixes a b :: int and k :: nat
assumes "[a ≠ b] (mod k)"
and "k dvd n"
and main: "euler_liar x n ⟹ [Jacobi x n = a] (mod k)"
"euler_liar x n ⟹ [x ^ ((n - 1) div 2) = b] (mod k)"
shows "euler_witness x n"
proof (rule ccontr)
assume "euler_liar x n"
then have "[Jacobi x (int n) = x ^ ((n - 1) div 2)] (mod k)"
using ‹k dvd n› cong_dvd_modulus euler_witness_def int_dvd_int_iff by blast
moreover note main[OF ‹euler_liar x n›]
ultimately show False
using ‹[a ≠ b] (mod k)› and cong_trans cong_sym
by metis
qed
lemma euler_witness_exists_weak:
assumes "odd n" "¬prime n" "2 < n"
shows "∃a. euler_witness a n ∧ coprime a n"
proof -
show ?thesis proof (cases "squarefree n")
case True
obtain p k where n: "n = p * k" and "1 < p" "p < n" "1 < k" "k < n" "prime p"
using prime_divisor_exists_strong_nat[of n] ‹¬prime n› ‹2 < n› by auto
have "coprime p k" using ‹n = p * k› and ‹squarefree n›
using squarefree_mult_imp_coprime by blast
hence "coprime (int p) (int k)" by simp
have "odd p" using n ‹odd n› by simp
then obtain b where "¬QuadRes p b"
using not_QuadRes_ex[of "int p"]
using ‹prime p› prime_gt_1_int by auto
then have "[b ≠ 0] (mod p)"
unfolding cong_def QuadRes_def
by (metis zero_power2)
from binary_chinese_remainder_int[OF ‹coprime (int p) (int k)›, of b 1]
obtain x :: int where x: "[x = b] (mod p)" "[x = 1] (mod k)" by blast
have "euler_witness x n"
proof (rule euler_witnessI2[of "-1" 1 k])
show "[x ^ ((n - 1) div 2) = 1] (mod k)"
using ‹[x = 1] (mod k)› and cong_def
using cong_pow by fastforce
next
have "Jacobi x n = Jacobi x p * Jacobi x k"
unfolding n
using ‹1 < k› ‹1 < p› by fastforce
also note Jacobi_mod_cong[OF ‹[x = b] (mod p)›]
also have "Jacobi b p = Legendre b p"
using ‹prime p› by (simp add: prime_p_Jacobi_eq_Legendre)
also have "... = -1"
unfolding Legendre_def
using ‹[b ≠ 0] (mod p)› and ‹¬ QuadRes p b› by auto
also note Jacobi_mod_cong[OF ‹[x = 1] (mod k)›]
finally show "[Jacobi x (int n) = - 1] (mod int k)"
using ‹1 < k› by auto
next
have "2 < k"
using ‹odd n› and ‹1 < k› unfolding n
by(cases "k = 2") auto
then show "[- 1 ≠ 1] (mod k)" by auto
next
show "k dvd n" unfolding n by simp
qed
have "coprime x p"
using ‹[b ≠ 0] (mod int p)› ‹[x = b] (mod int p)› and ‹prime p› not_coprime_cong_eq_0[of p x] prime_nat_int_transfer
by (blast intro: cong_sym cong_trans)
then have "coprime x n"
using n ‹[x = 1] (mod int k)›
by (metis coprime_iff_invertible_int coprime_mult_right_iff mult.right_neutral of_nat_mult)
then show ?thesis
using ‹euler_witness x n› by blast
next
case False
then obtain p where p: "prime p" "p^2 dvd n" using ‹odd n›
by (metis less_not_refl2 odd_pos squarefree_factorial_semiring)
hence "p dvd n" by auto
from p have Z: "p dvd n div p" by (auto intro: dvd_mult_imp_div simp: power2_eq_square)
have n: "n = p * (n div p)"
using p(2) unfolding power2_eq_square by (metis dvd_mult_div_cancel dvd_mult_right)
have "odd p" using p ‹odd n›
by (meson dvd_trans even_power pos2)
then have "2 < p" using prime_ge_2_nat[OF ‹prime p›]
by presburger
define a where a_def: "a = n div p + 1"
have A: "a^p = (∑k=0..p. (p choose k) * (n div p)^k)"
unfolding binomial a_def
using atLeast0AtMost by auto
also have B: "... = 1 + (∑k = 1..p. (p choose k) * (n div p) ^ k)" (is "?A = 1 + ?B")
by (simp add: sum.atLeast_Suc_atMost)
also have C: "?B = (n div p) * (∑k = 1..p. (p choose k) * (n div p) ^ (k - 1))" (is "_ = _ * ?C")
unfolding sum_distrib_left
proof (rule sum.cong)
fix x
assume "x ∈ {1..p}"
hence "0 < x" by simp
hence "(n div p) ^ x = n div p * (n div p) ^ (x - 1)"
by (metis mult.commute power_minus_mult)
thus "(p choose x) * (n div p) ^ x = n div p * ((p choose x) * (n div p) ^ (x-1))"
by simp
qed simp
finally have 1: "a ^ p = 1 + n div p * (∑k = 1..p. (p choose k) * (n div p) ^ (k - 1))" .
have D: "p dvd ?C"
proof (rule dvd_sum, goal_cases)
fix a
assume "a ∈ {1..p}"
show "p dvd (p choose a) * (n div p) ^ (a - 1)"
proof(cases "a = p")
note * = dvd_power_le[of _ _ 1, simplified]
case True
thus ?thesis
using ‹p dvd n div p› ‹2 < p› by (auto intro: *)
next
case False
thus ?thesis
using ‹a ∈ {1..p}› and ‹prime p›
by (auto intro!: dvd_mult2 prime_dvd_choose)
qed
qed
then obtain m where m: "?C = p * m"
using dvdE by blast
have "0 < p" using ‹odd p› and odd_pos by blast
then have "?C ≠ 0"
using sum.atLeast_Suc_atMost[OF Suc_leI]
by (simp add: Suc_leI sum.atLeast_Suc_atMost)
then have "m ≠ 0" using m by fastforce
have "n dvd ?B"
unfolding C m using p by (auto simp: power2_eq_square)
hence "?B mod n = 0" by presburger
hence "[a^p = 1] (mod n)"
unfolding A B cong_def
by (subst mod_Suc_eq[symmetric, unfolded Suc_eq_plus1_left]) simp
have "¬ p dvd n - 1"
using p assms(1)
by (metis One_nat_def Suc_leI dvd_diffD1 dvd_mult_right not_prime_unit odd_pos power2_eq_square)
have "[(n div p + 1) ≠ 1] (mod n)"
using ‹2 < p› ‹odd n› and ‹prime p› ‹p⇧2 dvd n›
using div_mult2_eq n nonzero_mult_div_cancel_left by (force dest!: cong_to_1_nat)
then have "ord n a ≠ 1"
using ‹2 < p› ‹odd n› and ‹prime p› ‹p⇧2 dvd n›
using ord_works[of a n]
unfolding a_def
by auto
then have "ord n a = p"
using ord_divides[of a p n] ‹[a ^ p = 1] (mod n)› ‹prime p›
using prime_nat_iff by blast
have "coprime n a"
using ‹prime p› ‹p⇧2 dvd n› ‹p dvd n div p› n
unfolding a_def
by (metis coprime_add_one_right coprime_mult_left_iff dvd_def)
have "[(n - 1) div 2 ≠ 0] (mod p)"
using ‹¬ p dvd n - 1› ‹odd n›
by (subst cong_altdef_nat) (auto elim!: oddE)
then have "[p ≠ (n - 1) div 2] (mod p)"
using cong_mult_self_right[of 1 p, simplified] cong_sym cong_trans by blast
then have "[a^((n-1) div 2) ≠ 1] (mod n)"
using ‹[a ^ p = 1] (mod n)›
using order_divides_expdiff[OF ‹coprime n a›, of p "(n-1) div 2", symmetric]
unfolding ‹ord n a = p›
using cong_sym cong_trans
by blast
then have "[(int a)^((n-1) div 2) ≠ 1] (mod n)"
unfolding cong_def
by (metis of_nat_1 of_nat_eq_iff of_nat_mod of_nat_power)
have "Jacobi a n = Jacobi a (p * int (n div p))"
using n by (metis of_nat_mult)
also have "... = Jacobi a p * Jacobi a (n div p)"
using ‹odd n› and ‹n = p * (n div p)›
by (subst Jacobi_mult_right) auto
also have "Jacobi a p = Jacobi 1 p"
using ‹p dvd n div p›
by (intro Jacobi_mod_cong) (auto simp: cong_iff_dvd_diff a_def)
also have "... = 1"
by (simp add: ‹0 < p›)
also have "Jacobi a (n div p) = Jacobi 1 (n div p)"
by (rule Jacobi_mod_cong) (simp add: cong_iff_dvd_diff a_def)
also have "... = 1"
using ‹p dvd n› ‹prime p› ‹n > 2›
by (intro Jacobi_1_eq_1) (auto intro!: Nat.gr0I elim!: dvdE)
finally show ?thesis using ‹[int a ^ ((n - 1) div 2) ≠ 1] (mod n)› ‹coprime n a›
unfolding euler_witness_def
by (intro exI[of _ "int a"]) (auto simp: cong_sym coprime_commute)
qed
qed
lemma euler_witness_exists:
assumes "odd n" "¬prime n" "2 < n"
shows "∃a. euler_witness a n ∧ coprime a n ∧ 0 < a ∧ a < n"
proof -
obtain a where a: "euler_witness a n" "coprime a n"
using euler_witness_exists_weak assms by blast
then have "euler_witness (a mod n) n" "coprime (a mod n) n"
using ‹odd n› by (simp_all add: odd_pos)
moreover have "0 < (a mod n)"
proof -
have "0 ≤ (a mod n)" by (rule pos_mod_sign) (use ‹2 < n› in simp)
moreover have "0 ≠ (a mod n)"
using ‹coprime (a mod n) n› coprime_0_left_iff[of "int n"] ‹2 < n› by auto
ultimately show ?thesis by linarith
qed
moreover have "a mod n < n"
by (rule pos_mod_bound) (use ‹2 < n› in simp)
ultimately show ?thesis by blast
qed
lemma euler_witness_exists_nat:
assumes "odd n" "¬prime n" "2 < n"
shows "∃a. euler_witness (int a) n ∧ coprime a n ∧ 0 < a ∧ a < n"
using euler_witness_exists[OF assms]
using zero_less_imp_eq_int by fastforce
lemma euler_liar_1_p[intro, simp]: "p ≠ 0 ⟹ euler_liar 1 p"
unfolding euler_witness_def by simp
lemma euler_liar_mult:
shows "euler_liar y n ⟹ euler_liar x n ⟹ euler_liar (x*y) n"
unfolding euler_witness_def
by (auto simp: power_mult_distrib intro: cong_mult)
lemma euler_liar_mult':
assumes "1 < n" "coprime y n"
shows "euler_liar y n ⟹ euler_witness x n ⟹ euler_witness (x*y) n"
proof(simp add: euler_witness_def power_mult_distrib, rule cong_mult_uneq', goal_cases)
case 1
then show ?case
using Jacobi_eq_0_iff_not_coprime[of n y] Jacobi_values[of y n] and assms
by auto
qed simp_all
lemma prime_imp_euler_liar:
assumes "prime p" "2 < p" "0 < x" "x < p"
shows "euler_liar x p"
using assms prime_p_Jacobi_eq_Legendre and euler_criterion
unfolding euler_witness_def
by simp
locale euler_witness_context =
fixes p :: nat
assumes p_gt_1: "p > 1" and odd_p: "odd p"
begin
definition G where "G = Residues_Mult p"
sublocale residues_mult_nat p G
by unfold_locales (use p_gt_1 in ‹simp_all add: G_def›)
definition "H = {x. coprime x p ∧ euler_liar (int x) p ∧ x ∈ {1..<p}}"
sublocale H: subgroup H G
proof -
have subset: "H ⊆ carrier G" by (auto simp: H_def totatives_def)
show "subgroup H G"
proof (rule group.subgroupI, goal_cases)
case 1
then show ?case by (fact is_group)
next
case 3
have "euler_liar 1 p" using p_gt_1
unfolding euler_witness_def cong_def by simp
then show ?case
using p_gt_1 by (auto simp: H_def)
next
case (4 x)
then have "coprime x p" "euler_liar x p" "1 ≤ x" "x < p"
by (auto simp: H_def)
define y where "y = inv⇘G⇙ x"
from ‹x ∈ H› have "x ⊗⇘G⇙ y = 𝟭⇘G⇙"
unfolding y_def using subset by (intro r_inv) auto
hence *: "(x * y) mod p = 1" by (auto simp: y_def)
hence **: "(int x * int y) mod p = 1"
by (metis of_nat_1 of_nat_mod of_nat_mult)
from * have "coprime y p"
using p_gt_1 ‹x < p›
by (auto simp add: coprime_iff_invertible'_nat cong_def mult.commute)
moreover from 4 have "y ∈ carrier G"
using subset unfolding y_def by (intro inv_closed) auto
hence "1 ≤ y" "y < p" using p_gt_1 totatives_less[of y p]
by (auto simp: totatives_def)
moreover have "euler_liar 1 p"
using p_gt_1 by (intro euler_liar_1_p) auto
then have "euler_liar (int x * int y) p"
using ** p_gt_1 by (subst euler_liar_cong[of "int x * int y" 1 p]) (auto simp: cong_def)
then have "euler_liar y p"
using ‹coprime x p› ‹euler_liar x p› and euler_liar_mult'[OF p_gt_1, of x y]
by (metis coprime_int_iff mult.commute)
ultimately show ?case by (auto simp: H_def simp flip: y_def)
next
case (5 x y)
then show ?case
unfolding euler_witness_def H_def
by (auto intro!: gre1I_nat cong_mult
simp: coprime_commute coprime_dvd_mult_left_iff
nat_dvd_not_less zmod_int power_mult_distrib)
qed fact+
qed
lemma H_finite: "finite H"
unfolding H_def by simp
lemma euler_witness_coset:
assumes "euler_witness x p"
shows "y ∈ H #>⇘G⇙ x ⟹ euler_witness y p"
using assms euler_liar_mult'[OF p_gt_1, of _ x] unfolding r_coset_is_image H_def
by (auto simp add: mult.commute of_nat_mod)
lemma euler_liar_coset:
assumes "euler_liar x p" "x ∈ carrier G"
shows "y ∈ H #>⇘G⇙ x ⟹ euler_liar y p"
using is_group H.rcos_const[of x] assms totatives_less[of x p] p_gt_1
by (auto simp: H_def totatives_def)
lemma in_cosets_aux:
assumes "euler_witness x p" "x ∈ carrier G"
shows "H #>⇘G⇙ x ∈ rcosets⇘G⇙ H"
using assms by (intro rcosetsI) (auto simp: H_def totatives_def)
lemma H_cosets_aux:
assumes "euler_witness x p"
shows "(H #>⇘G⇙ x) ∩ H = {}"
using euler_witness_coset assms unfolding H_def by blast
lemma H_rcosets_aux:
assumes "euler_witness x p" "x ∈ carrier G"
shows "{H, H #>⇘G⇙ x} ⊆ rcosets⇘G⇙ H"
using in_cosets_aux[OF assms] H.subgroup_in_rcosets[OF is_group]
by blast
lemma H_not_eq_coset:
assumes "euler_witness x p"
shows "H ≠ H #>⇘G⇙ x"
using H.one_closed H_def assms(1) euler_witness_coset by blast
lemma finite_cosets_H: "finite (rcosets⇘G⇙ H)"
using rcosets_part_G[OF H.is_subgroup]
by (auto intro: finite_UnionD)
lemma card_cosets_limit:
assumes "euler_witness x p" "x ∈ carrier G"
shows "2 ≤ card (rcosets⇘G⇙ H)"
using H_not_eq_coset[OF assms(1)] card_mono[OF finite_cosets_H H_rcosets_aux[OF assms]]
by simp
lemma card_euler_liars_cosets_limit:
assumes "¬prime p" "2 < p"
shows "2 ≤ card (rcosets⇘G⇙ H)" "card H < (p - 1) div 2"
proof -
have "H ∈ rcosets⇘G⇙ H" " H ⊆ carrier G"
by (auto simp: is_group H.subgroup_in_rcosets simp del: carrier_eq)
obtain a :: nat where "euler_witness a p" "coprime a p" "0 < a" "a < p"
using odd_p assms euler_witness_exists_nat
by blast
moreover have a: "a ∈ carrier G"
using calculation by (auto simp: totatives_def)
ultimately show "2 ≤ card (rcosets⇘G⇙ H)"
using card_cosets_limit by blast
have "finite H"
by (rule finite_subset[OF H.subset]) auto
have "finite (H #>⇘G⇙ a)"
by (rule cosets_finite[OF rcosetsI]) (use H.subset a in auto)
have "H #>⇘G⇙ a ∈ rcosets⇘G⇙ H"
using H.subset rcosetsI ‹a ∈ carrier G› by blast
then have "card H = card (H #>⇘G⇙ a)"
using card_rcosets_equal H.subset by blast
moreover have "H ∪ H #>⇘G⇙ a ⊆ carrier G"
using rcosets_part_G[OF H.is_subgroup]
using H.subgroup_in_rcosets[OF is_group] and ‹H #>⇘G⇙ a ∈ rcosets⇘G⇙ H›
by auto
then have "card H + card (H #>⇘G⇙ a) ≤ card (carrier G)"
using ‹finite H› ‹finite (H #>⇘G⇙ a)›
using H_cosets_aux[OF ‹euler_witness a p›]
using H.subset finite_subset card_Un_disjoint
by (subst card_Un_disjoint[symmetric]) (auto intro: card_mono simp flip: card_Un_disjoint)
ultimately have "card H ≤ card (carrier G) div 2"
by linarith
obtain pa k where pa: "p = pa * k" "1 < pa" "pa < p" "1 < k" "k < p" "prime pa"
using prime_divisor_exists_strong_nat[OF p_gt_1 ‹¬ prime p›]
by blast
hence "¬coprime pa p" by simp
then have "carrier G ⊂ {1..<p}"
using ‹¬ prime p› pa(2, 3) by (auto simp: totatives_def)
then have "card (carrier G) < p - 1"
by (metis card_atLeastLessThan finite_atLeastLessThan psubset_card_mono)
show "card H < (p - 1) div 2"
using ‹card H ≤ card (carrier G) div 2› ‹card (carrier G) < p - 1›
using odd_p less_mult_imp_div_less[of "card (carrier G)" "(p - 1) div 2" 2]
by auto
qed
lemma prime_imp_G_is_H:
assumes "prime p" "2 < p"
shows "carrier G = H"
unfolding H_def using assms prime_imp_euler_liar[of p] totatives_less[of _ p]
by (auto simp: totatives_def)
end
end