Theory Well_Quasi_Orders.Least_Enum
section ‹Enumerations of Well-Ordered Sets in Increasing Order›
theory Least_Enum
imports Main
begin
locale infinitely_many1 =
fixes P :: "'a :: wellorder ⇒ bool"
assumes infm: "∀i. ∃j>i. P j"
begin
text ‹
Enumerate the elements of a well-ordered infinite set in increasing order.
›
fun enum :: "nat ⇒ 'a" where
"enum 0 = (LEAST n. P n)" |
"enum (Suc i) = (LEAST n. n > enum i ∧ P n)"
lemma enum_mono:
shows "enum i < enum (Suc i)"
using infm by (cases i, auto) (metis (lifting) LeastI)+
lemma enum_less:
"i < j ⟹ enum i < enum j"
using enum_mono by (metis lift_Suc_mono_less)
lemma enum_P:
shows "P (enum i)"
using infm by (cases i, auto) (metis (lifting) LeastI)+
end
locale infinitely_many2 =
fixes P :: "'a :: wellorder ⇒ 'a ⇒ bool"
and N :: "'a"
assumes infm: "∀i≥N. ∃j>i. P i j"
begin
text ‹
Enumerate the elements of a well-ordered infinite set that form a chain w.r.t.\ a given predicate
@{term P} starting from a given index @{term N} in increasing order.
›
fun enumchain :: "nat ⇒ 'a" where
"enumchain 0 = N" |
"enumchain (Suc n) = (LEAST m. m > enumchain n ∧ P (enumchain n) m)"
lemma enumchain_mono:
shows "N ≤ enumchain i ∧ enumchain i < enumchain (Suc i)"
proof (induct i)
case 0
have "enumchain 0 ≥ N" by simp
moreover then have "∃m>enumchain 0. P (enumchain 0) m" using infm by blast
ultimately show ?case by auto (metis (lifting) LeastI)
next
case (Suc i)
then have "N ≤ enumchain (Suc i)" by auto
moreover then have "∃m>enumchain (Suc i). P (enumchain (Suc i)) m" using infm by blast
ultimately show ?case by (auto) (metis (lifting) LeastI)
qed
lemma enumchain_chain:
shows "P (enumchain i) (enumchain (Suc i))"
proof (cases i)
case 0
moreover have "∃m>enumchain 0. P (enumchain 0) m" using infm by auto
ultimately show ?thesis by auto (metis (lifting) LeastI)
next
case (Suc i)
moreover have "enumchain (Suc i) > N" using enumchain_mono by (metis le_less_trans)
moreover then have "∃m>enumchain (Suc i). P (enumchain (Suc i)) m" using infm by auto
ultimately show ?thesis by (auto) (metis (lifting) LeastI)
qed
end
end