Theory Divmod_Int
section ‹Divmod-Int›
text ‹We provide the divmod-operation on type int for efficiency reasons.›
theory Divmod_Int
imports Main
begin
definition divmod_int :: "int ⇒ int ⇒ int × int" where
"divmod_int n m = (n div m, n mod m)"
text ‹We implement @{const divmod_int} via @{const divmod_integer}
instead of invoking both division and modulo separately.›
context
includes integer.lifting
begin
lemma divmod_int_code[code]: "divmod_int m n = map_prod int_of_integer int_of_integer
(divmod_integer (integer_of_int m) (integer_of_int n))"
unfolding divmod_int_def divmod_integer_def map_prod_def split prod.simps
proof
show "m div n = int_of_integer
(integer_of_int m div integer_of_int n)"
by (transfer, simp)
show "m mod n = int_of_integer
(integer_of_int m mod integer_of_int n)"
by (transfer, simp)
qed
end
end