Theory Polygonal_Number_Theorem_Cauchy
subsection ‹ Cauchy's Polygonal Number Theorem ›
text ‹We will use the definition of the polygonal numbers from the Gauss Theorem theory file
which also imports the Three Squares Theorem AFP entry \cite{Three_Squares-AFP}.›
theory Polygonal_Number_Theorem_Cauchy
imports Polygonal_Number_Theorem_Gauss
begin
text‹The following lemma shows there are two consecutive odd integers in any four consecutive
integers.›
lemma two_consec_odd:
fixes a1 a2 a3 a4 :: int
assumes "a1-a2 = 1"
assumes "a2-a3 = 1"
assumes "a3-a4 = 1"
shows "∃k1 k2 :: int. {k1, k2} ⊆ {a1, a2, a3, a4} ∧ (k2 = k1+2) ∧ odd k1"
proof -
have c1:"∃k1 k2 :: int. {k1, k2} ⊆ {a1, a2, a3, a4} ∧ (k2 = k1+2) ∧ odd k1"
if odd_case:"odd a4"
proof-
define k1 where k1_def:"k1 = a4"
define k2 where k2_def:"k2 = k1 + 2"
have 0:"k2 = a2" using k2_def k1_def assms by simp
have 1:"odd k1" using k1_def odd_case by simp
show "∃k1 k2 :: int. {k1, k2} ⊆ {a1, a2, a3, a4} ∧ (k2 = k1+2) ∧ odd k1"
using 0 1 k1_def k2_def by auto
qed
have c2:"∃k1 k2 :: int. {k1, k2} ⊆ {a1, a2, a3, a4} ∧ (k2 = k1+2) ∧ odd k1"
if even_case:"even a4"
proof -
define k1 where k1_def:"k1 = a3"
define k2 where k2_def:"k2 = k1 + 2"
have 2:"odd k1" using even_case assms k1_def by presburger
have 3:"k2 = a1" using k1_def k2_def assms by simp
show "∃k1 k2 :: int. {k1, k2} ⊆ {a1, a2, a3, a4} ∧ (k2 = k1+2) ∧ odd k1"
using 2 3 k1_def k2_def by auto
qed
show ?thesis using c1 c2 by auto
qed
text ‹This lemma proves that for two consecutive integers $b_1$ and $b_2$, and $r \in \{0,1,\dots,m-3\}$,
numbers of the form $b_1+r$ and $b_2+r$ can cover all the congruence classes modulo $m$.›
lemma cong_classes:
fixes b1 b2 :: int
fixes m :: nat
assumes "m ≥ 4"
assumes "odd b1"
assumes "b2 = b1 + 2"
shows "∀N::nat. ∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
proof -
have first:"∀N::nat. ∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if first_assum:"b1 mod m ≥ 3"
proof -
define k1 where k1_def:"k1 = b1 mod m"
define l where l_def:"l = m - k1"
have k1_size:"k1≥3" using first_assum k1_def by simp
have l_size:"l ≤ m-3" using first_assum k1_def l_def by auto
have "(l+k1) mod m = 0" using l_def by auto
hence "(l+b1) mod m = 0" using k1_def l_def by (metis mod_add_right_eq)
define w where w_def:"w = m-3-l"
have w_size:"w≥0 ∧ w≤m-3" using w_def l_size l_def k1_def first_assum
by (smt (verit, best) Euclidean_Rings.pos_mod_bound assms(1) le_antisym numeral_neq_zero
of_nat_0_less_iff order_trans_rules(22) verit_comp_simplify(3) zero_le_numeral)
have "k1 = w+3" using w_def k1_def l_def w_size first_assum by linarith
hence "w+2 = k1-1" by auto
hence "w+2 = (b1-1) mod m" using first_assum k1_def
by (smt (verit, del_insts) Euclidean_Rings.pos_mod_bound assms(1)
mod_diff_eq mod_pos_pos_trivial of_nat_le_0_iff verit_comp_simplify(8))
hence w_cover:"w+2 = k1-1" using k1_def using ‹w + 2 = k1 - 1› by fastforce
have "∃r::nat. (r≤m-3) ∧ [N=b1+r] (mod m)" if asm1:"N mod m ≥ k1 ∧ N mod m ≤ m-1" for N
proof -
have "m - (N mod m) ≤ l" using asm1 l_def k1_def by linarith
hence "∃d::nat. d≤l ∧ [N = k1+d] (mod m)" using asm1 k1_def l_def
by (metis add.commute add_le_cancel_left cong_mod_left cong_refl diff_add_cancel
diff_le_self le_trans of_nat_mod of_nat_mono zle_iff_zadd)
hence "∃d::nat. d≤l ∧ [N=b1+d] (mod m)" using k1_def
by (metis mod_add_left_eq unique_euclidean_semiring_class.cong_def)
thus "∃r::nat. (r≤m-3) ∧ [N=b1+r] (mod m)" using l_size
by (smt (verit, best) nat_leq_as_int)
qed
hence c1:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)" if asm1:"N mod m ≥ k1 ∧ N mod m ≤ m-1" for N using asm1 by blast
have c2:"∃r::nat. (r≤m-3) ∧ [N=b1+r] (mod m)" if asm2:"N mod m =0" for N using l_def k1_def
by (smt (verit, ccfv_threshold) ‹(l + b1) mod int m = 0› add_diff_cancel_left' cong_0_iff
cong_sym cong_trans diff_add_cancel diff_ge_0_iff_ge dvd_eq_mod_eq_0 int_dvd_int_iff nat_0_le
of_nat_le_iff that w_def w_size)
hence c2:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if asm2:"N mod m = 0" for N using asm2 by metis
have "∃r::nat. (r≤m-3) ∧ [N=b1+r] (mod m)" if asm3:"N mod m > 0 ∧ N mod m ≤w" for N
proof -
have "l+ (N mod m) ≤ m-3" using asm3 w_def by auto
hence "∃d::nat. (d≤w) ∧ [N = k1+l+d] (mod m)" using asm3 w_def k1_def l_def
by (smt (verit, ccfv_threshold) minus_mod_self2 mod_mod_trivial of_nat_mod
unique_euclidean_semiring_class.cong_def)
hence "∃d::nat. (d≤w) ∧ [N = b1+l+d] (mod m)" using k1_def by (metis (mono_tags,
opaque_lifting) mod_add_left_eq unique_euclidean_semiring_class.cong_def)
hence "∃r::nat. (r≤w+l) ∧ [N = b1+r] (mod m)" by (smt (verit) add.commute
add.left_commute le_add_same_cancel2 of_nat_0_le_iff w_def w_size zero_le_imp_eq_int)
thus "∃r::nat. (r≤m-3) ∧ [N = b1+r] (mod m)" using w_def by auto
qed
hence "∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if asm3:"N mod m > 0 ∧ N mod m ≤w" for N using asm3 by blast
hence c3:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if asm8:"N mod m > 0 ∧ N mod m ≤k1-3" using asm8 w_cover by auto
have "∃r::nat. (r≤m-3) ∧ [N=b2+r] (mod m)" if asm4:"N mod m = w+1 ∨ N mod m = w+2" for N
proof -
have c4_1:"[N = b2+(m-3)] (mod m)" if asm5:"N mod m=w+2" for N using asm5 w_def assms(3) l_def
by (smt (verit) ‹w + 2 = (b1 - 1) mod int m› ‹w + 2 = k1 - 1› mod_add_self1 of_nat_mod
unique_euclidean_semiring_class.cong_def)
hence "[N-1 = b2+(m-4)] (mod m)" if asm5:"N mod m = w+2" for N
by (smt (verit, ccfv_threshold) Num.of_nat_simps(2) ‹w + 2 = k1 - 1› asm5 assms(1)
cong_iff_lin first_assum k1_def l_def mod_less_eq_dividend numeral_Bit0 of_nat_diff of_nat_le_iff
of_nat_numeral semiring_norm(172) w_def)
hence "[N = b2+(m-4)] (mod m)" if asm6:"N mod m = w+1" for N using asm6
by (metis ‹w + 2 = (b1 - 1) mod int m› add_diff_cancel_right' arith_special(3) int_ops(4)
is_num_normalize(1) mod_add_left_eq mod_diff_left_eq of_nat_mod)
thus ?thesis using c4_1 by (metis asm4 diff_le_mono2 nat_le_linear numeral_le_iff
verit_comp_simplify(10) verit_comp_simplify(13))
qed
hence "∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if asm4:"N mod m = w+1 ∨ N mod m = w+2" for N using asm4 by blast
hence c4:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if asm7:"N mod m = k1-2 ∨ N mod m = k1-1" for N using w_cover asm7 by auto
have "∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if asm10:"N mod m ≥ 0 ∧ N mod m ≤w" for N using c2 c3 asm10
using ‹⋀N. 0 < N mod m ∧ int (N mod m) ≤ w ⟹ ∃b r. r ≤ m - 3 ∧ [int N = b + int r]
(mod int m) ∧ (b = b1 ∨ b = b2)› by blast
hence c5:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if asm11:"N mod m ≥ 0 ∧ N mod m ≤k1-3" for N using w_cover using asm11 by force
have c6:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if asm9:"(N mod m ≥0 ∧ N mod m ≤ k1-3) ∨ N mod m = k1-2 ∨ N mod m = k1-1" for N
using c5 c4 asm9 by blast
hence c7:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if asm12:"(N mod m ≥0 ∧ N mod m ≤ k1-3) ∨ N mod m = k1-2 ∨ N mod m = k1-1 ∨
(N mod m ≥ k1 ∧ N mod m ≤ m-1)" for N using asm12 c1 by blast
have "∀N::nat. (N mod m ≥0 ∧ N mod m≤ k1-3) ∨ N mod m = k1-2 ∨ N mod m = k1-1 ∨
(N mod m ≥ k1 ∧ N mod m ≤ m-1)" using k1_def
by (smt (verit, best) Suc_pred' assms(1) bot_nat_0.extremum le_simps(2) mod_less_divisor
not_numeral_le_zero of_nat_0_less_iff of_nat_le_0_iff)
thus ?thesis using c7 by auto
qed
have second:"∀N::nat. ∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if second_assum:"b1 mod m ≥0 ∧ b1 mod m ≤2"
proof -
have case1:"∀N::nat. ∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if case1_assum:"b1 mod m = 0"
proof -
have "∃r::nat. (r ≤ m-3) ∧ [N = b1+r] (mod m)" if case1_1_assum:"N mod m ≤m-3" for N
using case1_assum case1_1_assum
by (metis cong_add_rcancel_0 cong_mod_left cong_refl cong_sym_eq zmod_int)
hence case1_1:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if case1_1_assum:"N mod m ≤m-3" for N using case1_1_assum by blast
have "[N = b1+(m-2)] (mod m)" if case1_2_assum:"N mod m = m-2" for N using case1_2_assum
case1_assum by (metis (no_types, opaque_lifting) add.commute cong_add_lcancel_0
cong_mod_right of_nat_mod unique_euclidean_semiring_class.cong_def)
hence "[N = b2+(m-4)] (mod m)" if case1_2_assum:"N mod m = m-2" for N using case1_2_assum assms(3)
by (smt (verit, best) add_leD2 assms(1) int_ops(2) numeral_Bit0 of_nat_diff of_nat_numeral
semiring_norm(172))
hence "∃r::nat. (r ≤ m-3) ∧ [N = b2+r] (mod m)" if case1_2_assum:"N mod m = m-2" for N
using case1_2_assum
by (meson diff_le_mono2 less_num_simps(2) numeral_le_iff verit_comp_simplify(15))
hence case1_2:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if case1_2_assum:"N mod m = m-2" for N using case1_2_assum by blast
have "[N = b1+(m-1)] (mod m)" if case1_3_assum:"N mod m = m-1" for N using case1_3_assum
case1_assum by (metis (no_types, opaque_lifting) add.commute cong_add_lcancel_0
cong_mod_right of_nat_mod unique_euclidean_semiring_class.cong_def)
hence "[N = b2+(m-3)] (mod m)" if case1_3_assum:"N mod m = m-1" for N using case1_3_assum assms(3)
by (smt (verit, best) assms(1) int_ops(2) int_ops(6) numeral_Bit0 numeral_Bit1 of_nat_mono
of_nat_numeral semiring_norm(172))
hence "∃r::nat. (r ≤ m-3) ∧ [N = b2+r] (mod m)" if case1_3_assum:"N mod m = m-1" for N
using case1_3_assum by blast
hence case1_3:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if case1_3_assum:"N mod m = m-1" for N using case1_3_assum by blast
have "∀N::nat. (N mod m = m-1) ∨ (N mod m = m-2) ∨ (N mod m ≤ m-3)"
by (smt (verit, ccfv_threshold) Suc_pred' assms(1) bot_nat_0.not_eq_extremum diff_diff_add
diff_is_0_eq' le_simps(2) mod_less_divisor nat_1_add_1 nat_less_le not_numeral_le_zero
numeral.simps(3) semiring_norm(172))
thus ?thesis using case1_1 case1_2 case1_3 by blast
qed
have case2:"∀N::nat. ∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if case2_assum:"b1 mod m = 1"
proof -
have case2b2:"b2 mod m = 3" using case2_assum assms(3) by (smt (verit) assms(1) int_ops(2)
mod_add_eq mod_pos_pos_trivial numeral_Bit0 of_nat_mono of_nat_numeral semiring_norm(172))
have "∃r::nat. (r≤m-3) ∧ [N = b2+r] (mod m)" if case2_1_assum:"N mod m = m-1" for N
proof -
have "[N = 3+(m-4)] (mod m)" using case2_1_assum
by (metis (mono_tags, lifting) Suc_eq_plus1 Suc_numeral add_diff_cancel_left
arithmetic_simps(1) arithmetic_simps(7) assms(1)mod_mod_trivial
ordered_cancel_comm_monoid_diff_class.diff_add_assoc unique_euclidean_semiring_class.cong_def)
hence "[N = b2+(m-4)] (mod m)" using case2b2
by (metis (mono_tags, lifting) Num.of_nat_simps(4) mod_add_left_eq
of_nat_mod of_nat_numeral unique_euclidean_semiring_class.cong_def)
thus ?thesis using le_diff_conv by fastforce
qed
hence case2_1:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if case2_1_assum:"N mod m = m-1" for N using case2_1_assum by blast
have "∃r::nat. (r≤m-3) ∧ [N = b2+r] (mod m)" if case2_2_assum:"N mod m =0" for N
proof -
have "(3+(m-3)) mod m = 0" using assms(1) by fastforce
hence "(b2+(m-3)) mod m = 0" using case2b2 by (metis Num.of_nat_simps(1)
Num.of_nat_simps(4) mod_add_left_eq of_nat_mod of_nat_numeral)
thus ?thesis using case2_2_assum
by (metis int_ops(1) nat_le_linear of_nat_mod unique_euclidean_semiring_class.cong_def)
qed
hence case2_2:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if case2_2_assum:"N mod m =0" for N using case2_2_assum by metis
have "∃r::nat. (r ≤ m-3) ∧ [N = b1+r] (mod m)" if
case2_3_assum:"N mod m ≤m-2 ∧ N mod m ≥1" for N
proof -
have "∃r::nat. (r≤m-3)∧((b1+r) mod m = l)" if asml:"l≥1 ∧ l≤m-2" for l
proof -
define r where r_def:"r = l-1"
from asml have r_range:"r≥0 ∧ r≤m-3" using r_def by linarith
have "(1+r) mod m = l" using asml r_def r_range by fastforce
hence "(b1+r) mod m = l" using case2_assum
by (metis Num.of_nat_simps(3) int_ops(9) mod_add_left_eq plus_1_eq_Suc)
thus ?thesis using asml r_range by blast
qed
thus ?thesis using case2_3_assum
by (metis case2_3_assum of_nat_mod unique_euclidean_semiring_class.cong_def)
qed
hence case2_3:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if case2_3_assum:"N mod m ≤m-2 ∧ N mod m ≥1" for N using case2_3_assum by blast
have "∀N::nat. N mod m = 0 ∨ (N mod m ≥1 ∧ N mod m ≤m-1)" by (metis One_nat_def Suc_pred
assms(1) bot_nat_0.extremum_uniqueI leI less_Suc_eq_le mod_less_divisor not_numeral_le_zero)
hence "∀N::nat. N mod m = 0 ∨ (N mod m ≥1 ∧ N mod m ≤m-2) ∨ N mod m = m-1"
by (smt (verit) arithmetic_simps(68) diff_diff_eq le_add_diff_inverse le_neq_implies_less le_simps(2)
le_trans plus_1_eq_Suc)
thus ?thesis using case2_1 case2_2 case2_3 by (metis ‹⋀N. N mod m ≤ m - 2 ∧ 1 ≤ N mod m
⟹ ∃r≤m - 3. [int N = b1 + int r] (mod int m)›)
qed
have case3:"∀N::nat. ∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if case3_assum:"b1 mod m = 2"
proof -
have case3b2:"b2 mod m = 4"
using assms case3_assum
by (smt (verit, ccfv_SIG) Euclidean_Rings.pos_mod_sign dvd_mod_imp_dvd even_numeral int_ops(2)
int_ops(4) mod_diff_eq mod_pos_pos_trivial nat_1_add_1 numeral_Bit0 of_nat_le_iff
of_nat_numeral plus_1_eq_Suc)
have "∃r::nat. (r≤m-3)∧ [N = b2+r] (mod m)" if case3_1_assum:"N mod m = 0 ∨ N mod m =1" for N
proof -
have "(4+(m-3)) mod m = (4+m-3) mod m" using assms(1) by auto
have "(4+m-3) mod m = (1+m) mod m" by simp
hence "(4+(m-3)) mod m = 1" using ‹(4+(m-3)) mod m = (4+m-3) mod m›
by (smt (verit, best) Euclidean_Rings.pos_mod_bound add_lessD1 arith_special(2) assms(1) case3b2
landau_product_preprocess(4) mod_add_self2 mod_less numeral_Bit0 of_nat_numeral order_le_less)
hence caseone:"(b2+(m-3)) mod m = 1" using case3b2
by (metis Num.of_nat_simps(2) Num.of_nat_simps(4) mod_add_left_eq of_nat_mod of_nat_numeral)
have "(4+(m-4)) mod m = 0" using assms(1) by auto
hence casezero:"(b2+(m-4)) mod m = 0" using case3b2
by (metis (full_types) Num.of_nat_simps(1) Num.of_nat_simps(4) mod_add_left_eq of_nat_mod of_nat_numeral)
show ?thesis using caseone casezero case3_1_assum
by (metis cong_int cong_mod_right cong_refl diff_le_mono2 nat_le_linear numeral_le_iff
of_nat_0 of_nat_1 semiring_norm(69) semiring_norm(72))
qed
hence case3_1:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if case3_1_assum:"N mod m = 0 ∨ N mod m =1" for N using case3_1_assum by metis
have "∃r::nat.(r≤m-3)∧ [N = b1+r] (mod m)" if case3_2_assum:"N mod m ≥2∧N mod m ≤ m-1" for N
proof -
have "∃r::nat. (r≤m-3)∧((b1+r) mod m = l)" if asml1:"l≥2 ∧ l≤m-1" for l
proof -
define r1 where r1_def:"r1 = l-2"
from asml1 have r1_range:"r1≥0 ∧ r1≤m-2" using r1_def by linarith
have "(2+r1) mod m = l" using asml1 r1_def r1_range by fastforce
hence "(b1+r1) mod m = l" using case3_assum
by (metis Num.of_nat_simps(4) mod_add_left_eq of_nat_mod of_nat_numeral)
thus ?thesis using asml1 r1_range by (metis One_nat_def diff_diff_add diff_le_mono
nat_1_add_1 numeral_3_eq_3 plus_1_eq_Suc r1_def)
qed
thus ?thesis using case3_2_assum
by (metis case3_2_assum of_nat_mod unique_euclidean_semiring_class.cong_def)
qed
hence case3_2:"∃b::int. ∃r::nat. (r ≤ m-3) ∧ [N=b+r] (mod m) ∧ (b = b1 ∨ b = b2)"
if case3_2_assum:"N mod m ≥2∧N mod m ≤ m-1" for N using case3_2_assum by blast
have "∀N::nat. N mod m = 0 ∨ (N mod m ≥1 ∧ N mod m ≤m-1)" by (metis Suc_pred' assms(1)
bot_nat_0.not_eq_extremum less_one mod_Suc_le_divisor rel_simps(76) verit_comp_simplify1(3))
hence "∀N::nat. N mod m = 0 ∨ N mod m = 1 ∨ (N mod m ≥2 ∧ N mod m ≤m-1)"
by (metis Suc_eq_plus1 le_neq_implies_less le_simps(3) nat_1_add_1)
thus ?thesis using case3_1 case3_2 by blast
qed
show ?thesis using case1 case2 case3 using that by fastforce
qed
show ?thesis using first second using assms(1) by force
qed
text‹The strong form of Cauchy's polygonal number theorem shows for a natural number $N$ satisfying
certain conditions, it may be written as the sum of $m+1$ polygonal numbers of order $m+2$, at most four
of which are different from 0 or 1. This corresponds to Theorem 1.9 in \cite{nathanson1996}.›
theorem Strong_Form_of_Cauchy_Polygonal_Number_Theorem_1:
fixes m N :: nat
assumes "m≥4"
assumes "N≥108*m"
shows "∃ xs :: nat list. (length xs = m+1) ∧ (sum_list xs = N) ∧ (∀k≤3. ∃a. xs! k = polygonal_number m a)
∧ (∀ k ∈ {4..m} . xs! k = 0 ∨ xs! k = 1)"
proof -
define L where L_def:"L = (2/3 + sqrt (8*N/m - 8)) - (1/2 + sqrt (6*N/m - 3))"
from assms L_def have "L>4" using interval_length_greater_than_four
apply(rule_tac N = "of_nat N" and m = "of_nat m" in interval_length_greater_than_four)
by auto
define c1 where c1_def:"c1 = ⌈1/2 + sqrt (6*N/m - 3)⌉"
define c2 where c2_def:"c2 = c1+1"
define c3 where c3_def:"c3 = c1+2"
define c4 where c4_def:"c4 = c1+3"
from ‹L>4› c1_def c2_def c3_def c4_def L_def have "c4<(2/3 + sqrt (8*N/m - 8))" by linarith
have "N/m ≥ 108" using assms using le_divide_eq by fastforce
hence "sqrt(6*N/m - 3)≥1" by simp
hence "1/2 + sqrt(6*N/m - 3) ≥1" by linarith
hence "c1 ≥1" using c1_def by simp
obtain b1 b2 where bproperties:"{b1, b2} ⊆ {c1, c2, c3, c4} ∧ (b2 = b1+2) ∧ odd b1"
using two_consec_odd c1_def c2_def c3_def c4_def by (metis (no_types, opaque_lifting) Groups.add_ac(2)
empty_subsetI even_plus_one_iff insert_commute insert_mono nat_arith.add1 numeral.simps(2) numeral.simps(3))
have b1andb2:"odd b1 ∧ b2 = b1+2" using bproperties by auto
have b1pos:"b1 ≥1" using ‹c1≥1› c2_def c3_def c4_def bproperties by auto
hence b2pos:"b2 ≥3" using bproperties by simp
have b2odd:"odd b2" using bproperties by simp
obtain b r where b_r:"r≤m-3 ∧ (b = b1 ∨ b = b2) ∧ [int N = b+r] (mod m)" using b1andb2 assms(1)
cong_classes by meson
have bpos:"b≥1" using b1pos b2pos b_r by auto
have bodd:"odd b" using b_r bproperties by auto
define a where a_def:"a = b+2*(N-b-r) div m"
have m_div_num:"m dvd (N-b-r)" using b_r
by (simp add: diff_diff_add mod_eq_dvd_iff unique_euclidean_semiring_class.cong_def)
hence "(N-b-r)/m = (N-b-r) div m" by (simp add: real_of_int_div)
hence a_def1:"a = b+2*(N-b-r)/m" using a_def by (metis ‹int m dvd int N - b - int r›
dvd_add_right_iff mult_2 of_int_add of_int_of_nat_eq real_of_int_div)
have "N-m>0" using assms by linarith
hence "N-r>0" using b_r by force
hence "(N-b-r) = (N-r)-b" by linarith
hence "(N-b-r)/m = (N-r)/m - b/m" by (metis diff_divide_distrib int_of_reals(3) of_int_of_nat_eq)
hence "a = b+2*((N-r)/m - b/m)" using a_def1 by (metis int_of_reals(6) of_int_mult times_divide_eq_right)
hence a_def2:"a = b- b*2/m+2*(N-r)/m " by simp
have "b*(1-2/m) = b*1-b*(2/m)" by (simp add: Rings.ring_distribs(4))
hence a_def3:"a = b*(1-2/m) + 2*(N-r)/m" using a_def2 by simp
have "1-2/m>0" using assms(1) by simp
hence size1:"b*(1-2/m)>0" using bpos by simp
have "N-r>0" using b_r assms by auto
hence size2:"2*(N-r)/m>0" using assms(1) by simp
have apos:"a≥1" using size1 size2 a_def3 by simp
have "odd (b+2*(N-b-r) div m)" using m_div_num b_r b2odd bproperties
by (metis div_mult_swap zdvd_reduce)
hence aodd:"odd a" using a_def by simp
from a_def1 have "a-b = 2*(N-b-r)/m" by simp
hence "m*(a-b)/2 = N-b-r" using assms(1) by simp
hence N_expr:"N = r+b+m*(a-b)/2" by simp
have "b1 ≥ c1" using bproperties c2_def c3_def c4_def by force
hence "b1 ≥ 1/2 + sqrt (6*N/m - 3)" using c1_def using ceiling_le_iff by blast
have b_ineq1:"b ≥ 1/2 + sqrt (6*N/m - 3)" using b_r bproperties
using ‹1 / 2 + sqrt (real (6 * N) / real m - 3) ≤ real_of_int b1› by fastforce
have "b2 ≤ c4" using bproperties c1_def c2_def c3_def c4_def by fastforce
hence "b2 ≤ (2/3 + sqrt (8*N/m - 8))"
using ‹real_of_int c4 < 2 / 3 + sqrt (real (8 * N) / real m - 8)› by linarith
hence b_ineq2:"b≤(2/3 + sqrt (8*N/m - 8))" using b_r bproperties by linarith
define Nr where "Nr = real_of_nat N"
define mr where "mr = real m"
define ar where "ar = real_of_int a"
define br where "br = real_of_int b"
define rr where "rr = real_of_nat r"
from assms(1) have "mr ≥3" using mr_def by auto
from assms(2) have "N≥2*m" by simp
hence "Nr ≥ 2*mr" using Nr_def mr_def ‹N ≥ 2 * m› by auto
moreover have "br≥0" using br_def bpos by auto
moreover have "mr≥3" using mr_def assms by auto
moreover have "ar≥0" using ar_def apos by auto
moreover have "rr≥0" using rr_def b_r by auto
moreover have "mr > rr" using mr_def rr_def b_r assms(1) by linarith
moreover have "Nr = mr*(ar-br)/2+br+rr" using Nr_def mr_def ar_def br_def N_expr rr_def by auto
moreover have "1/2+sqrt(6*Nr/mr-3)≤br ∧ br≤2/3+sqrt(8*Nr/mr-8)" using Nr_def mr_def br_def b_ineq1 b_ineq2 by auto
ultimately have "br^2<4*ar ∧ 3*ar<br^2+2*br+4" using Cauchy_lemma by auto
hence real_ineq:"(real_of_int b)^2 < 4*(real_of_int a) ∧ 3*(real_of_int a) < (real_of_int b)^2 + 2*(real_of_int b) + 4"
using br_def ar_def by auto
hence int_ineq1: "b^2<4*a" using of_int_less_iff by fastforce
from real_ineq have int_ineq2: "3*a<b^2+2*b+4" using of_int_less_iff by fastforce
have con1:"nat a ≥1" using apos by auto
have con2:"nat b ≥1" using bpos by auto
have con3:"odd (nat a)" using aodd apos even_nat_iff by auto
have con4:"odd (nat b)" using bodd bpos even_nat_iff by auto
have "(nat b)^2 = b^2" using ‹nat b ≥1› by auto
hence con5:"(nat b)^2<4*(nat a)" using int_ineq1 by linarith
have con6:"3*(nat a)<(nat b)^2+2*(nat b)+4" using ‹(nat b)^2 = b^2› int_ineq2 by linarith
obtain s t u v where stuv:"s ≥ 0 ∧ t ≥ 0 ∧ u ≥ 0 ∧ v ≥ 0 ∧ int(nat a) = s^2 + t^2 + u^2 + v^2 ∧
int(nat b) = s+t+u+v" using four_nonneg_int_sum con1 con2 con3 con4 con5 con6 by presburger
have a_expr:"a = s^2 + t^2 + u^2 + v^2" using apos stuv by linarith
have b_expr:"b = s+t+u+v" using bpos stuv by linarith
from N_expr have "N = m/2*(s^2-s+t^2-t+u^2-u+v^2-v)+r+(s+t+u+v)" using a_expr b_expr by simp
hence N_expr2:"N = m/2*(s^2-s)+ m/2*(t^2-t)+ m/2*(u^2-u)+ m/2*(v^2-v)+ r+(s+t+u+v)"
by (metis (no_types, opaque_lifting) add_diff_eq nat_distrib(2) of_int_add)
have s_div2:"m/2*(s^2-s) = m*(s^2-s) div 2" using real_of_int_div by auto
have t_div2:"m/2*(t^2-t) = m*(t^2-t) div 2" using real_of_int_div by auto
have u_div2:"m/2*(u^2-u) = m*(u^2-u) div 2" using real_of_int_div by auto
have v_div2:"m/2*(v^2-v) = m*(v^2-v) div 2" using real_of_int_div by auto
have N_expr3:"N = (m*(s^2-s) div 2+s)+(m*(t^2-t) div 2+t)+(m*(u^2-u) div 2+u)+(m*(v^2-v) div 2+v)+r"
using s_div2 t_div2 u_div2 v_div2 N_expr2 by simp
define sn where "sn = nat s"
define tn where "tn = nat t"
define un where "un = nat u"
define vn where "vn = nat v"
have seqsn:"s^2-s = sn^2 - sn" using stuv sn_def
by (metis int_nat_eq le_refl of_nat_diff of_nat_power power2_nat_le_imp_le)
have teqtn:"t^2-t = tn^2 - tn" using stuv tn_def
by (metis int_nat_eq le_refl of_nat_diff of_nat_power power2_nat_le_imp_le)
have uequn:"u^2-u = un^2 - un" using stuv un_def
by (metis int_nat_eq le_refl of_nat_diff of_nat_power power2_nat_le_imp_le)
have veqvn:"v^2-v = vn^2 - vn" using stuv vn_def
by (metis int_nat_eq le_refl of_nat_diff of_nat_power power2_nat_le_imp_le)
from N_expr3 have
"N = (m*(sn^2-sn) div 2+s)+(m*(tn^2-tn) div 2+t)+(m*(un^2-un) div 2+u)+(m*(vn^2-vn) div 2+ v)+r"
using seqsn teqtn uequn veqvn by (metis (mono_tags, lifting) int_ops(2) int_ops(4) int_ops(7)
numeral_Bit0 numeral_code(1) plus_1_eq_Suc zdiv_int)
hence "N = (m*(sn^2-sn) div 2+sn)+(m*(tn^2-tn) div 2+tn)+(m*(un^2-un) div 2+un)+(m*(vn^2-vn) div 2+ v)+r"
using sn_def tn_def un_def stuv int_nat_eq int_ops(5) by presburger
hence "N = (m*(sn^2-sn) div 2+sn)+(m*(tn^2-tn) div 2+tn)+(m*(un^2-un) div 2+un)+(m*(vn^2-vn) div 2+ vn)+r"
using vn_def stuv by (smt (verit, del_insts) Num.of_nat_simps(4) int_nat_eq of_nat_eq_iff)
hence "N = (m* sn*(sn-1) div 2+sn)+(m*tn*(tn-1) div 2+tn)+(m*un*(un-1) div 2+un)+(m* vn*(vn-1) div 2+ vn)+r"
by (smt (verit, ccfv_threshold) more_arith_simps(11) mult.right_neutral power2_eq_square right_diff_distrib')
hence N_expr4:"N = polygonal_number m sn + polygonal_number m tn + polygonal_number m un + polygonal_number m vn +r"
using Polygonal_Number_Theorem_Gauss.polygonal_number_def by presburger
define T where T_def:"T = [polygonal_number m sn,polygonal_number m tn,polygonal_number m un,polygonal_number m vn]"
define ones where ones_def:"ones = replicate r (1::nat)"
define zeros where zeros_def:"zeros = replicate (m+1-4-r) (0::nat)"
define final where final_def:"final = T@ones@zeros"
have "m+1-4-r≥0" using assms(1) b_r by force
hence "4+r+(m+1-4-r) = m+1" using assms(1) b_r by force
have "length final = 4+r+(m+1-4-r)" using final_def T_def ones_def zeros_def by auto
hence final_length:"length final = m+1" using ‹4+r+(m+1-4-r) = m+1› by simp
have T_sum:"sum_list T = polygonal_number m sn + polygonal_number m tn + polygonal_number m un + polygonal_number m vn" by (simp add: T_def)
have ones_sum:"sum_list ones = r" using ones_def by (simp add: sum_list_replicate)
have zeros_sum:"sum_list zeros = 0" using zeros_def by simp
have "sum_list final = sum_list T + sum_list ones + sum_list zeros" using final_def by simp
hence final_sum:"sum_list final = N" using N_expr4 by (simp add: T_sum ones_sum zeros_sum)
have final_0th:"final! 0 = polygonal_number m sn" using final_def T_def by simp
have final_1st:"final! 1 = polygonal_number m tn" using final_def T_def by simp
have final_2nd:"final! 2 = polygonal_number m un" using final_def T_def by simp
have final_3rd:"final! 3 = polygonal_number m vn" using final_def T_def by simp
have first_four:"∀k≤3. ∃a. final! k = polygonal_number m a" using final_0th final_1st final_2nd final_3rd
by (metis Suc_eq_plus1 add_leD2 arith_simps(50) le_simps(2) numeral_Bit0 numeral_Bit1
numeral_One verit_comp_simplify1(3) verit_la_disequality)
have "length T = 4" using T_def by simp
have "∀k<length (ones@zeros). (ones@zeros)! k =1 ∨ (ones@zeros)! k =0" using ones_def zeros_def
by (simp add: nth_append)
hence "final! k = 1 ∨ final! k = 0" if "k≥4 ∧ k<(length final)" for k
using ‹length T = 4› final_def that by (metis add_less_cancel_left le_add_diff_inverse
length_append nth_append verit_comp_simplify1(3))
hence other_terms:"∀ k ∈ {4..m} . final! k = 0 ∨ final! k = 1" using final_length
by (metis Suc_eq_plus1 atLeastAtMost_iff le_simps(2))
show ?thesis using final_length final_sum first_four other_terms by auto
qed
theorem Strong_Form_of_Cauchy_Polygonal_Number_Theorem_2:
fixes N :: nat
assumes "N≥324"
shows "∃ p1 p2 p3 p4 r ::nat. N = p1+p2+p3+p4+r ∧ (∃k1. p1 = polygonal_number 3 k1) ∧ (∃k2. p2 = polygonal_number 3 k2)
∧ (∃k3. p3 = polygonal_number 3 k3) ∧ (∃k4. p4 = polygonal_number 3 k4) ∧ (r = 0 ∨ r = 1)"
proof -
define L where L_def:"L = (2/3 + sqrt (8*N/3 - 8)) - (1/2 + sqrt (6*N/3 - 3))"
from assms L_def have "L>4" using interval_length_greater_than_four
apply -
apply(rule interval_length_greater_than_four[where N = "of_nat N" and m = "of_nat 3"])
by auto
define c1 where c1_def:"c1 = ⌈1/2 + sqrt (6*N/3 - 3)⌉"
define c2 where c2_def:"c2 = c1+1"
define c3 where c3_def:"c3 = c1+2"
define c4 where c4_def:"c4 = c1+3"
from ‹L>4› c1_def c2_def c3_def c4_def L_def have "c4<(2/3 + sqrt (8*N/3 - 8))" by linarith
define Nn where "Nn = int N"
have "c4<(2/3 + sqrt (8*Nn/3 - 8))" using Nn_def ‹c4<(2/3 + sqrt (8*N/3 - 8))› by simp
have Nn3:"(Nn-3)^2 - (sqrt (8*Nn/3 - 8))^2 = Nn^2-3*Nn-3*Nn+9 - (sqrt (8*Nn/3 - 8))^2"
using assms Nn_def power2_diff by (simp add: power2_eq_square algebra_simps)
have "(Nn-3)^2 - (sqrt (8*Nn/3 - 8))^2 = Nn^2-3*Nn-3*Nn+9 - (8*Nn/3 - 8)" using assms Nn_def Nn3 by fastforce
hence "(Nn-3)^2 - (sqrt (8*Nn/3 - 8))^2 = Nn^2-6*Nn+9-8*Nn/3 +8" by linarith
hence Nn4:"(Nn-3)^2 - (sqrt (8*Nn/3 - 8))^2 = Nn*(Nn-26/3)+17" by (simp add: Rings.ring_distribs(4) power2_eq_square)
have "Nn*(Nn-26/3)+17>17" using assms Nn_def by auto
hence "(Nn-3)^2 - (sqrt (8*Nn/3 - 8))^2 > 0" using Nn4 by auto
hence "Nn-3 > sqrt (8*Nn/3 - 8)" using assms Nn_def by (simp add: real_less_lsqrt)
hence "Nn-2 > sqrt (8*Nn/3 - 8)+2/3" by linarith
hence "N > c4" using Nn_def ‹c4<(2/3 + sqrt (8*Nn/3 - 8))› by simp
have "N/3 ≥ 108" using assms using le_divide_eq by fastforce
hence "sqrt(6*N/3 - 3)≥1" by simp
hence "1/2 + sqrt(6*N/3 - 3) ≥1" by linarith
hence "c1 ≥1" using c1_def by simp
obtain b1 b2 where bproperties:"{b1, b2} ⊆ {c1, c2, c3, c4} ∧ (b2 = b1+2) ∧ odd b1"
using two_consec_odd c1_def c2_def c3_def c4_def by (metis (no_types, opaque_lifting) Groups.add_ac(2)
empty_subsetI even_plus_one_iff insert_commute insert_mono nat_arith.add1 numeral.simps(2) numeral.simps(3))
have b1andb2:"odd b1 ∧ b2 = b1+2" using bproperties by auto
have b1pos:"b1 ≥1" using ‹c1≥1› c2_def c3_def c4_def bproperties by auto
hence b2pos:"b2 ≥3" using bproperties by simp
have b2odd:"odd b2" using bproperties by simp
define b1n where "b1n = nat b1"
define b2n where "b2n = nat b2"
from b1n_def b1pos have "b1n mod 3 = b1 mod 3" using int_ops(9) by force
from b2n_def b2pos have "b2n mod 3 = b2 mod 3" using int_ops(9) by force
have b_and_r:"∃b r::nat. [N = b+r] (mod 3) ∧ (b = b1n ∨ b = b2n) ∧ (r = 0 ∨ r = 1)"
proof -
have case1:"∃b r::nat. [N = b+r] (mod 3) ∧ (b = b1n ∨ b = b2n) ∧ (r = 0 ∨ r = 1)"
if asm1:"b1 mod 3 = 0"
proof -
have "b1n mod 3 = 0" using asm1 ‹b1n mod 3 = b1 mod 3› by simp
hence "b2n mod 3 = 2" using ‹b2n mod 3 = b2 mod 3› bproperties asm1 by fastforce
have case1_1:"[0 = b1n+0] (mod 3)" using ‹b1n mod 3 = 0›
by (metis mod_0 nat_arith.rule0 unique_euclidean_semiring_class.cong_def)
have case1_2:"[1 = b1n+1] (mod 3)" using ‹b1n mod 3 = 0›
by (metis ‹[0 = b1n + 0] (mod 3)› add.commute cong_add_lcancel_0_nat cong_sym)
have case1_3:"[2 = b2n+0] (mod 3)" using ‹b2n mod 3 = 2›
by (simp add: unique_euclidean_semiring_class.cong_def)
have "∀N::nat. N mod 3 = 0 ∨ N mod 3 ≥ 1" by linarith
hence "∀N::nat. N mod 3 = 0 ∨ N mod 3 = 1 ∨ N mod 3 = 2" by linarith
hence "∀N. ∃b r::nat. [N = b+r] (mod 3) ∧ (b = b1n ∨ b = b2n) ∧ (r = 0 ∨ r = 1)"
if asm1:"b1 mod 3 = 0" using case1_1 case1_2 case1_3 by (metis cong_mod_left)
thus ?thesis using asm1 by auto
qed
have case2:"∃b r::nat. [N = b+r] (mod 3) ∧ (b = b1n ∨ b = b2n) ∧ (r = 0 ∨ r = 1)"
if asm2:"b1 mod 3 = 1"
proof -
have "b1n mod 3 = 1" using asm2 ‹b1n mod 3 = b1 mod 3› by simp
hence "b2n mod 3 = 0" using ‹b2n mod 3 = b2 mod 3› bproperties asm2
by (smt (verit, best) Euclidean_Rings.pos_mod_bound Euclidean_Rings.pos_mod_sign
int_ops(1) mod_diff_eq mod_pos_pos_trivial of_nat_eq_iff)
have case2_1:"[0 = b2n+0] (mod 3)" using ‹b2n mod 3 = 0›
by (metis mod_0 nat_arith.rule0 unique_euclidean_semiring_class.cong_def)
have case2_2:"[1 = b1n+0] (mod 3)" using ‹b1n mod 3 = 1›
by (simp add: unique_euclidean_semiring_class.cong_def)
have case2_3:"[2 = b1n+1] (mod 3)" using ‹b1n mod 3 = 1›
by (metis case2_2 cong_add_rcancel_nat nat_1_add_1 nat_arith.rule0)
have "∀N::nat. N mod 3 = 0 ∨ N mod 3 ≥ 1" by linarith
hence "∀N::nat. N mod 3 = 0 ∨ N mod 3 = 1 ∨ N mod 3 = 2" by linarith
hence "∀N. ∃b r::nat. [N = b+r] (mod 3) ∧ (b = b1n ∨ b = b2n) ∧ (r = 0 ∨ r = 1)"
if asm2:"b1 mod 3 = 1" using case2_1 case2_2 case2_3 by (metis cong_mod_left)
thus ?thesis using asm2 by auto
qed
have case3:"∃b r::nat. [N = b+r] (mod 3) ∧ (b = b1n ∨ b = b2n) ∧ (r = 0 ∨ r = 1)"
if asm3:"b1 mod 3 = 2"
proof -
have "b1n mod 3 = 2" using asm3 ‹b1n mod 3 = b1 mod 3› by simp
have "(b1+2) mod 3 = (2+2) mod 3" using asm3 by (metis Groups.add_ac(2) mod_add_right_eq)
hence "b2n mod 3 = 1" using ‹b2n mod 3 = b2 mod 3› bproperties by simp
have case3_1:"[0 = b1n+1] (mod 3)" using ‹b1n mod 3 = 2›
by (metis One_nat_def add.commute mod_0 mod_add_right_eq mod_self nat_1_add_1 numeral_3_eq_3
plus_1_eq_Suc unique_euclidean_semiring_class.cong_def)
have case3_2:"[1 = b2n+0] (mod 3)" using ‹b2n mod 3 = 1›
by (simp add: unique_euclidean_semiring_class.cong_def)
have case3_3:"[2 = b1n+0] (mod 3)" using ‹b1n mod 3 = 2›
by (simp add: unique_euclidean_semiring_class.cong_def)
have "∀N::nat. N mod 3 = 0 ∨ N mod 3 ≥ 1" by linarith
hence "∀N::nat. N mod 3 = 0 ∨ N mod 3 = 1 ∨ N mod 3 = 2" by linarith
hence "∀N. ∃b r::nat. [N = b+r] (mod 3) ∧ (b = b1n ∨ b = b2n) ∧ (r = 0 ∨ r = 1)"
if asm3:"b1 mod 3 = 2" using case3_1 case3_2 case3_3 by (metis cong_mod_left)
thus ?thesis using asm3 by auto
qed
have "b1 mod 3 = 0 ∨ b1 mod 3 = 1 ∨ b1 mod 3 = 2" by auto
thus ?thesis using case1 case2 case3 by auto
qed
obtain b r where b_r:"[N = b+r] (mod 3) ∧ (b = b1n ∨ b = b2n) ∧ (r = 0 ∨ r = 1)"
using b_and_r by auto
have bpos:"b≥1" using b1pos b2pos b_r b1n_def b2n_def by auto
have bodd:"odd b"
using b_r bproperties by (metis b1n_def b2n_def b2odd bpos even_nat_iff nat_eq_iff2 rel_simps(45))
define a where a_def:"a = b+2*(N-b-r) div 3"
have "int b1n = b1" using b1n_def b1pos by linarith
have "int b2n = b2" using b2n_def b2pos by linarith
have m_div_num:"3 dvd (N-b-r)" using b_r
by (metis cong_altdef_nat diff_diff_left diff_is_0_eq' dvd_0_right nat_le_linear)
hence a_def1:"a = b+2*(N-b-r)/3" using a_def m_div_num real_of_nat_div by auto
from ‹N>c4› have "N>b" using b_r bproperties b1n_def b2n_def
by (smt (verit, del_insts) ‹int b1n = b1› ‹int b2n = b2› c2_def c3_def c4_def empty_iff insert_iff insert_subset of_nat_less_imp_less)
hence "(N-b-r)/3 = (N-r)/3 - b/3" using ‹b < N› b_r by force
hence "a = b- b*2/3+2*(N-r)/3" using a_def1 by linarith
hence a_def3:"a = b*(1-2/3) + 2*(N-r)/3" by simp
have size1:"b*(1-2/3)>0" using bpos by simp
have "N-r>0" using b_r assms by auto
hence size2:"2*(N-r)/3>0" using assms(1) by simp
have apos:"a≥1" using size1 size2 a_def3 by simp
have "odd (b+2*(N-b-r) div 3)" using m_div_num b_r b2odd bproperties by (simp add: bodd mult_2)
hence aodd:"odd a" using a_def by simp
from a_def1 have "a-b = 2*(N-b-r)/3" by simp
hence "(a-b)/2 = (N-b-r)/3" by simp
hence "3*(a-b)/2 = N-b-r" by simp
have "N-b-r≥0" using b_r by simp
hence N_expr:"N = r+b+3*(a-b)/2" using ‹N-b-r≥0› ‹b < N› b_r ‹real (3 * (a - b)) / 2 = real (N - b - r)› by linarith
from a_def ‹N-b-r≥0› have "a≥b" using a_def le_add1 by blast
have "b1 ≥ c1" using bproperties c2_def c3_def c4_def by force
hence "b1 ≥ 1/2 + sqrt (6*N/3 - 3)" using c1_def using ceiling_le_iff by blast
hence b1ngreater:"b1n ≥ 1/2 + sqrt (6*N/3 - 3)" using b1n_def by simp
hence b2ngreater:"b2n ≥ 1/2 + sqrt (6*N/3 - 3)" using bproperties b1n_def b2n_def by linarith
hence b_ineq1:"b ≥ 1/2 + sqrt (6*N/3 - 3)" using b_r b1ngreater by auto
have "b2 ≤ c4" using bproperties c1_def c2_def c3_def c4_def by fastforce
hence "b2 ≤ (2/3 + sqrt (8*N/3 - 8))"
using ‹real_of_int c4 < 2 / 3 + sqrt (real (8 * N) / 3 - 8)› by linarith
hence b2nsmaller:"b2n ≤ (2/3 + sqrt (8*N/3 - 8))" using b2n_def by (metis ‹int b2n = b2› of_int_of_nat_eq)
hence "b1n ≤ (2/3 + sqrt (8*N/3 - 8))" using b1n_def bproperties using ‹int b2n = b2› by linarith
hence b_ineq2:"b≤(2/3 + sqrt (8*N/3 - 8))" using b_r b2nsmaller by auto
define Nr where "Nr = real_of_nat N"
define ar where "ar = real_of_int a"
define br where "br = real_of_int b"
define rr where "rr = real_of_nat r"
define m where "m = real_of_nat 3"
from assms have "N≥2*m" using m_def by simp
then have "Nr ≥ 2*m" using Nr_def ‹N ≥ 2 * m› by auto
moreover have "br≥0" using br_def bpos by auto
moreover have "ar≥0" using ar_def apos by auto
moreover have "rr≥0" using rr_def b_r by auto
moreover have "m≥3" using m_def by auto
moreover have "m>rr" using m_def rr_def b_r by auto
moreover have "Nr = m*(ar-br)/2+br+rr" using Nr_def ar_def br_def N_expr rr_def m_def ‹a≥b› by auto
moreover have "1/2+sqrt(6*Nr/m-3)≤br ∧ br≤2/3+sqrt(8*Nr/m-8)" using Nr_def br_def b_ineq1 b_ineq2 m_def by auto
ultimately have "br^2<4*ar ∧ 3*ar<br^2+2*br+4" using Cauchy_lemma by auto
hence real_ineq:"(real_of_int b)^2 < 4*(real_of_int a) ∧ 3*(real_of_int a) < (real_of_int b)^2 + 2*(real_of_int b) + 4"
using br_def ar_def by auto
hence nat_ineq1: "b^2<4*a" using br_def by (smt (verit, del_insts) Num.of_nat_simps(4)
mult.commute mult_2_right nat_distrib(1) numeral_Bit0 of_int_of_nat_eq of_nat_less_of_nat_power_cancel_iff)
from real_ineq have nat_ineq2: "3*a<b^2+2*b+4" using ar_def br_def of_nat_less_iff by fastforce
obtain s t u v where stuv:"s ≥ 0 ∧ t ≥ 0 ∧ u ≥ 0 ∧ v ≥ 0 ∧ int a = s^2 + t^2 + u^2 + v^2 ∧
int b = s+t+u+v" using apos bpos aodd bodd nat_ineq1 nat_ineq2 four_nonneg_int_sum by presburger
have a_expr:"a = s^2 + t^2 + u^2 + v^2" using apos stuv by linarith
have b_expr:"b = s+t+u+v" using bpos stuv by linarith
have "N = r + (s+t+u+v)+ 3*(a-(s+t+u+v))/2" using b_expr N_expr
by (metis Num.of_nat_simps(4) Num.of_nat_simps(5) ‹b ≤ a› of_int_of_nat_eq of_nat_diff of_nat_numeral)
hence "N = 3/2*(s^2-s+t^2-t+u^2-u+v^2-v)+r+(s+t+u+v)" using a_expr by simp
hence N_expr2:"N = 3/2*(s^2-s)+ 3/2*(t^2-t)+ 3/2*(u^2-u)+ 3/2*(v^2-v)+ r+(s+t+u+v)"
by (metis (no_types, opaque_lifting) add_diff_eq nat_distrib(2) of_int_add)
have s_div2:"3/2*(s^2-s) = 3*(s^2-s) div 2" using real_of_int_div by auto
have t_div2:"3/2*(t^2-t) = 3*(t^2-t) div 2" using real_of_int_div by auto
have u_div2:"3/2*(u^2-u) = 3*(u^2-u) div 2" using real_of_int_div by auto
have v_div2:"3/2*(v^2-v) = 3*(v^2-v) div 2" using real_of_int_div by auto
have N_expr3:"N = (3*(s^2-s) div 2+s)+(3*(t^2-t) div 2+t)+(3*(u^2-u) div 2+u)+(3*(v^2-v) div 2+v)+r"
using N_expr2 s_div2 t_div2 u_div2 v_div2 by simp
define sn where "sn = nat s"
define tn where "tn = nat t"
define un where "un = nat u"
define vn where "vn = nat v"
have seqsn:"s^2-s = sn^2 - sn" using stuv sn_def
by (metis int_nat_eq le_refl of_nat_diff of_nat_power power2_nat_le_imp_le)
have teqtn:"t^2-t = tn^2 - tn" using stuv tn_def
by (metis int_nat_eq le_refl of_nat_diff of_nat_power power2_nat_le_imp_le)
have uequn:"u^2-u = un^2 - un" using stuv un_def
by (metis int_nat_eq le_refl of_nat_diff of_nat_power power2_nat_le_imp_le)
have veqvn:"v^2-v = vn^2 - vn" using stuv vn_def
by (metis int_nat_eq le_refl of_nat_diff of_nat_power power2_nat_le_imp_le)
from N_expr3 have
"N = (3*(sn^2-sn) div 2+s)+(3*(tn^2-tn) div 2+t)+(3*(un^2-un) div 2+u)+(3*(vn^2-vn) div 2+ v)+r"
using seqsn teqtn uequn veqvn
by (metis (mono_tags, lifting) Num.of_nat_simps(5) of_nat_numeral zdiv_int)
hence "N = (3*(sn^2-sn) div 2+sn)+(3*(tn^2-tn) div 2+tn)+(3*(un^2-un) div 2+un)+(3*(vn^2-vn) div 2+ v)+r"
using sn_def tn_def un_def stuv int_nat_eq int_ops(5) by presburger
hence "N = (3*(sn^2-sn) div 2+sn)+(3*(tn^2-tn) div 2+tn)+(3*(un^2-un) div 2+un)+(3*(vn^2-vn) div 2+ vn)+r"
using vn_def stuv by (smt (verit, del_insts) Num.of_nat_simps(4) int_nat_eq of_nat_eq_iff)
hence "N = (3* sn*(sn-1) div 2+sn)+(3*tn*(tn-1) div 2+tn)+(3*un*(un-1) div 2+un)+(3* vn*(vn-1) div 2+ vn)+r"
by (smt (verit, ccfv_threshold) more_arith_simps(11) mult.right_neutral power2_eq_square right_diff_distrib')
hence N_expr4:"N = polygonal_number 3 sn + polygonal_number 3 tn + polygonal_number 3 un + polygonal_number 3 vn +r"
using Polygonal_Number_Theorem_Gauss.polygonal_number_def by presburger
define p1 where "p1 = polygonal_number 3 sn"
define p2 where "p2 = polygonal_number 3 tn"
define p3 where "p3 = polygonal_number 3 un"
define p4 where "p4 = polygonal_number 3 vn"
have N_expr5:"N = p1 + p2 + p3 + p4 + r" using N_expr4 p1_def p2_def p3_def p4_def by auto
thus ?thesis using p1_def p2_def p3_def p4_def b_r by blast
qed
end