Theory Kuratowski_Combinatorial
theory Kuratowski_Combinatorial
imports
Planar_Complete
Planar_Subdivision
Planar_Subgraph
begin
theorem comb_planar_compat:
assumes "comb_planar G"
shows "kuratowski_planar G"
proof (rule ccontr)
assume "¬?thesis"
then obtain G0 rev_G0 K rev_K where sub: "subgraph G0 G" "subdivision (K, rev_K) (G0, rev_G0)"
and is_kur: "K⇘3,3⇙ K ∨ K⇘5⇙ K"
unfolding kuratowski_planar_def by auto
have "comb_planar K" using sub assms
by (metis subgraph_comb_planar subdivision_comb_planar subdivision_bidir)
moreover
have "¬comb_planar K" using is_kur by (metis K5_not_comb_planar K33_not_comb_planar)
ultimately
show False by contradiction
qed
end