Theory Strong_Early_Sim

(* 
   Title: The pi-calculus   
   Author/Maintainer: Jesper Bengtson (jebe.dk), 2012
*)
theory Strong_Early_Sim
  imports Early_Semantics Rel
begin

definition "strongSimEarly" :: "pi  (pi × pi) set  pi  bool" ("_ ↝[_] _" [80, 80, 80] 80) where
  "P ↝[Rel] Q  (a y Q'. Q ay>  Q'  y  P  (P'. P ay>  P'  (P', Q')  Rel)) 
                 (α Q'. Q α  Q'  (P'. P α  P'  (P', Q')  Rel))"

lemma monotonic: 
  fixes A  :: "(pi × pi) set"
  and   B  :: "(pi × pi) set"
  and   P  :: pi
  and   P' :: pi

  assumes "P ↝[A] P'"
  and     "A  B"

  shows "P ↝[B] P'"
using assms
by(fastforce simp add: strongSimEarly_def)

lemma freshUnit[simp]:
  fixes y :: name

  shows "y  ()"
by(auto simp add: fresh_def supp_unit)

lemma simCasesCont[consumes 1, case_names Bound Free]:
  fixes P   :: pi
  and   Q   :: pi
  and   Rel :: "(pi × pi) set"
  and   C   :: "'a::fs_name"

  assumes Eqvt:  "eqvt Rel"
  and     Bound: "a y Q'. Q  ay>  Q'; y  P; y  Q; y  C  P'. P  ay>  P'  (P', Q')  Rel"
  and     Free:  "α Q'. Q  α  Q'  P'. P  α  P'  (P', Q')  Rel"

  shows "P ↝[Rel] Q"
proof -
  from Free show ?thesis
  proof(auto simp add: strongSimEarly_def)
    fix Q' a y
    assume yFreshP: "(y::name)  P"
    assume Trans: "Q  ay>  Q'"
    have "c::name. c  (P, Q', y, Q, C)" by(blast intro: name_exists_fresh)
    then obtain c::name where cFreshP: "c  P" and cFreshQ': "c  Q'" and cFreshC: "c  C"
                          and cineqy: "c  y" and "c  Q"
      by(force simp add: fresh_prod name_fresh)

    from Trans cFreshQ' have "Q  ac>  ([(y, c)]  Q')" by(simp add: alphaBoundOutput)
    hence "P'. P  ac>  P'  (P', [(y, c)]  Q')  Rel" using c  P c  Q c  C
      by(rule Bound)
    then obtain P' where PTrans: "P  ac>  P'" and P'RelQ': "(P', [(y, c)]  Q')  Rel"
      by blast

    from PTrans yFreshP cineqy have yFreshP': "y  P'" by(force intro: freshTransition)
    with PTrans have "P  ay>  ([(y, c)]  P')" by(simp add: alphaBoundOutput name_swap)
    moreover have "([(y, c)]  P', Q')  Rel" (is "?goal")
    proof -
      from Eqvt P'RelQ' have "([(y, c)]  P', [(y, c)]  [(y, c)]  Q')  Rel"
        by(rule eqvtRelI)
      with cineqy show ?goal by(simp add: name_calc)
    qed
    ultimately show "P'. P ay>  P'  (P', Q')  Rel" by blast
  qed
qed

lemma simCases[consumes 0, case_names Bound Free]:
  fixes P   :: pi
  and   Q   :: pi
  and   Rel :: "(pi × pi) set"
  and   C   :: "'a::fs_name"

  assumes Bound: "a y Q'. Q  ay>  Q'; y  P  P'. P  ay>  P'  (P', Q')  Rel"
  and     Free:  "α Q'. Q  α  Q'  P'. P  α  P'  (P', Q')  Rel"

  shows "P ↝[Rel] Q"
using assms
by(auto simp add: strongSimEarly_def)

lemma elim:
  fixes P   :: pi
  and   Rel :: "(pi × pi) set"
  and   Q   :: pi
  and   a   :: name
  and   x   :: name
  and   Q'  :: pi

  assumes "P ↝[Rel] Q"

  shows "Q  ax>  Q'  x  P  P'. P  ax>  P'  (P', Q')  Rel"
  and   "Q  α  Q'  P'. P  α  P'  (P', Q')  Rel"
using assms by(simp add: strongSimEarly_def)+

lemma eqvtI:
  fixes P    :: pi
  and   Q    :: pi
  and   Rel  :: "(pi × pi) set"
  and   perm :: "name prm"

  assumes Sim: "P ↝[Rel] Q"
  and     RelRel': "Rel  Rel'"
  and     EqvtRel': "eqvt Rel'"

  shows "(perm  P) ↝[Rel'] (perm  Q)"
proof(induct rule: simCases)
  case(Bound a y Q')
  have Trans: "(perm  Q)  ay>  Q'" by fact
  have yFreshP: "y  perm  P" by fact
  
  from Trans have "(rev perm  (perm  Q))  rev perm  (ay>  Q')"
    by(rule TransitionsEarly.eqvt)
  hence "Q  (rev perm  a)(rev perm  y)>  (rev perm  Q')" 
    by(simp add: name_rev_per)
  moreover from yFreshP have "(rev perm  y)  P" by(simp add: name_fresh_left)
  ultimately have "P'. P  (rev perm  a)(rev perm  y)>  P'  (P', rev perm  Q')  Rel" using Sim
    by(force intro: elim)
  then obtain P' where PTrans: "P  (rev perm  a)(rev perm  y)>  P'" and P'RelQ': "(P', rev perm  Q')  Rel"
    by blast
  
  from PTrans have "(perm  P)  perm  ((rev perm  a)(rev perm  y)>  P')" by(rule TransitionsEarly.eqvt)
  hence L1: "(perm  P)  ay>  (perm  P')" by(simp add: name_per_rev)
  from P'RelQ' RelRel' have "(P', rev perm  Q')  Rel'" by blast
  with EqvtRel' have "(perm  P', perm  (rev perm  Q'))  Rel'"
    by(rule eqvtRelI)
  hence "(perm  P', Q')  Rel'" by(simp add: name_per_rev)
  with L1 show ?case by blast
next
  case(Free α Q')
  have Trans: "(perm  Q)  α  Q'" by fact

  from Trans have "(rev perm  (perm  Q))  rev perm  (α  Q')"
    by(rule TransitionsEarly.eqvt)
  hence "Q  (rev perm  α)  (rev perm  Q')" 
    by(simp add: name_rev_per)
  with Sim have "P'. P  (rev perm  α)  P'  (P', (rev perm  Q'))  Rel"
    by(force intro: elim)
  then obtain P' where PTrans: "P  (rev perm  α)  P'" and PRel: "(P', (rev perm  Q'))  Rel" by blast
  
  from PTrans have "(perm  P)  perm  ((rev perm  α) P')" by(rule TransitionsEarly.eqvt)
  hence L1: "(perm  P)  α  (perm  P')" by(simp add: name_per_rev)
  from PRel EqvtRel' RelRel'  have "((perm  P'), (perm  (rev perm  Q')))  Rel'"
    by(force intro: eqvtRelI)
  hence "((perm  P'), Q')  Rel'" by(simp add: name_per_rev)
  with L1 show ?case by blast
qed


(*****************Reflexivity and transitivity*********************)

lemma reflexive:
  fixes P   :: pi
  and   Rel :: "(pi × pi) set"

  assumes "Id  Rel"

  shows "P ↝[Rel] P"
using assms
by(auto simp add: strongSimEarly_def)

lemmas fresh_prod[simp]

lemma transitive:
  fixes P     :: pi
  and   Q     :: pi
  and   R     :: pi
  and   Rel   :: "(pi × pi) set"
  and   Rel'  :: "(pi × pi) set"
  and   Rel'' :: "(pi × pi) set"

  assumes PSimQ: "P ↝[Rel] Q"
  and     QSimR: "Q ↝[Rel'] R"
  and     Eqvt': "eqvt Rel''"
  and     Trans: "Rel O Rel'  Rel''"

  shows "P ↝[Rel''] R"
proof -
  from Eqvt' show ?thesis
  proof(induct rule: simCasesCont[where C=Q])
    case(Bound a y R')
    have RTrans: "R  ay>  R'" by fact

    from QSimR RTrans y  Q have "Q'. Q  ay>  Q'  (Q', R')  Rel'"
      by(rule elim)
    then obtain Q' where QTrans: "Q  ay>  Q'" and Q'Rel'R': "(Q', R')  Rel'" by blast
    from PSimQ QTrans y  P have "P'. P  ay>  P'  (P', Q')  Rel"
      by(rule elim)
    then obtain P' where PTrans: "P  ay>  P'" and P'RelQ': "(P', Q')  Rel" by blast

    moreover from P'RelQ' Q'Rel'R' Trans have "(P', R')  Rel''" by blast

    ultimately show ?case by blast
  next
    case(Free α R')
    have RTrans: "R  α  R'" by fact
    with QSimR have "Q'. Q  α  Q'  (Q', R')  Rel'" by(rule elim)
    then obtain Q' where QTrans: "Q  α  Q'" and Q'RelR': "(Q', R')  Rel'" by blast
    from PSimQ QTrans have "P'. P  α  P'  (P', Q')  Rel" by(rule elim)
    then obtain P' where PTrans: "P  α  P'" and P'RelQ': "(P', Q')  Rel" by blast
    from P'RelQ' Q'RelR' Trans have "(P', R')  Rel''" by blast
    with PTrans show "P'. P  α  P'  (P', R')  Rel''" by blast
  qed
qed

end