Theory SI_Units
chapter ‹ International System of Units ›
section ‹ SI Units Semantics ›
theory SI_Units
imports ISQ
begin
text ‹ An SI unit is simply a particular kind of quantity with an SI tag. ›
typedef SI = "UNIV :: unit set" by simp
instance SI :: unit_system
by (rule unit_system_intro[of "Abs_SI ()"], metis (full_types) Abs_SI_cases UNIV_eq_I insert_iff old.unit.exhaust)
abbreviation "SI ≡ unit :: SI"
type_synonym ('n, 'd) SIUnitT = "('n, 'd, SI) QuantT" ("_[_]" [999,0] 999)
text ‹ We now define the seven base units. Effectively, these definitions axiomatise given names
for the \<^term>‹1› elements of the base quantities. ›
abbreviation "metre ≡ BUNIT(L, SI)"
abbreviation "kilogram ≡ BUNIT(M, SI)"
abbreviation "ampere ≡ BUNIT(I, SI)"
abbreviation "kelvin ≡ BUNIT(Θ, SI)"
abbreviation "mole ≡ BUNIT(N, SI)"
abbreviation "candela ≡ BUNIT(J, SI)"
text ‹ The second is commonly used in unit systems other than SI. Consequently, we define it
polymorphically, and require that the system type instantiate a type class to use it. ›
class time_second = unit_system
instance SI :: time_second ..
abbreviation "second ≡ BUNIT(T, 'a::time_second)"
text ‹Note that as a consequence of our construction, the term \<^term>‹metre› is a SI Unit constant of
SI-type \<^typ>‹'a[L, SI]›, so a unit of dimension \<^typ>‹Length› with the magnitude of type \<^typ>‹'a›.
A magnitude instantiation can be, e.g., an integer, a rational number, a real number, or a vector of
type \<^typ>‹real⇧3›. Note than when considering vectors, dimensions refer to the ∗‹norm› of the vector,
not to its components. ›
lemma BaseUnits:
"is_base_unit metre" "is_base_unit second" "is_base_unit kilogram" "is_base_unit ampere"
"is_base_unit kelvin" "is_base_unit mole" "is_base_unit candela"
by (simp_all add: mk_base_unit)
text ‹ The effect of the above encoding is that we can use the SI base units as synonyms for their
corresponding dimensions at the type level. ›
type_synonym 'a metre = "'a[Length, SI]"
type_synonym 'a second = "'a[Time, SI]"
type_synonym 'a kilogram = "'a[Mass, SI]"
type_synonym 'a ampere = "'a[Current, SI]"
type_synonym 'a kelvin = "'a[Temperature, SI]"
type_synonym 'a mole = "'a[Amount, SI]"
type_synonym 'a candela = "'a[Intensity, SI]"
text ‹ We can therefore construct a quantity such as \<^term>‹5 :: rat metre›, which unambiguously
identifies that the unit of $5$ is metres using the type system. This works because each base
unit it the one element. ›
subsection ‹ Example Unit Equations ›
lemma "(metre ❙⋅ second⇧-⇧𝟭) ❙⋅ second ≅⇩Q metre"
by (si_calc)
subsection ‹ Metrification ›
class metrifiable = unit_system +
fixes convschema :: "'a itself ⇒ ('a, SI) Conversion" ("schema⇩C")
instantiation SI :: metrifiable
begin
lift_definition convschema_SI :: "SI itself ⇒ (SI, SI) Conversion"
is "λ s.
⦇ cLengthF = 1
, cMassF = 1
, cTimeF = 1
, cCurrentF = 1
, cTemperatureF = 1
, cAmountF = 1
, cIntensityF = 1 ⦈" by simp
instance ..
end
abbreviation metrify :: "('a::field_char_0)['d::dim_type, 's::metrifiable] ⇒ 'a['d::dim_type, SI]" where
"metrify ≡ qconv (convschema (TYPE('s)))"
text ‹ Conversion via SI units ›
abbreviation qmconv ::
"'s⇩1 itself ⇒ 's⇩2 itself
⇒ ('a::field_char_0)['d::dim_type, 's⇩1::metrifiable]
⇒ 'a['d::dim_type, 's⇩2::metrifiable]" where
"qmconv s⇩1 s⇩2 x ≡ qconv (inv⇩C (schema⇩C s⇩2) ∘⇩C schema⇩C s⇩1) x"
syntax
"_qmconv" :: "type ⇒ type ⇒ logic" ("QMC'(_ → _')")
translations
"QMC('s⇩1 → 's⇩2)" == "CONST qmconv TYPE('s⇩1) TYPE('s⇩2)"
lemma qmconv_self: "QMC('s::metrifiable → 's) = id"
by (simp add: fun_eq_iff)
end