Theory HOL-Analysis.Affine

section "Affine Sets"

theory Affine
imports Linear_Algebra
begin

lemma if_smult: "(if P then x else (y::real)) *R v = (if P then x *R v else y *R v)"
  by simp

lemma sum_delta_notmem:
  assumes "x  s"
  shows "sum (λy. if (y = x) then P x else Q y) s = sum Q s"
    and "sum (λy. if (x = y) then P x else Q y) s = sum Q s"
    and "sum (λy. if (y = x) then P y else Q y) s = sum Q s"
    and "sum (λy. if (x = y) then P y else Q y) s = sum Q s"
  by (smt (verit, best) assms sum.cong)+

lemma span_substd_basis:
  assumes d: "d  Basis"
  shows "span d = {x. iBasis. i  d  xi = 0}"
  (is "_ = ?B")
proof -
  have "d  ?B"
    using d by (auto simp: inner_Basis)
  moreover have s: "subspace ?B"
    using subspace_substandard[of "λi. i  d"] .
  ultimately have "span d  ?B"
    using span_mono[of d "?B"] span_eq_iff[of "?B"] by blast
  moreover have *: "card d  dim (span d)"
    by (simp add: d dim_eq_card_independent independent_substdbasis)
  moreover from * have "dim ?B  dim (span d)"
    using dim_substandard[OF assms] by auto
  ultimately show ?thesis
    by (simp add: s subspace_dim_equal)
qed

lemma basis_to_substdbasis_subspace_isomorphism:
  fixes B :: "'a::euclidean_space set"
  assumes "independent B"
  shows "f d::'a set. card d = card B  linear f  f ` B = d 
    f ` span B = {x. iBasis. i  d  x  i = 0}  inj_on f (span B)  d  Basis"
proof -
  have B: "card B = dim B"
    using dim_unique[of B B "card B"] assms span_superset[of B] by auto
  have "dim B  card (Basis :: 'a set)"
    using dim_subset_UNIV[of B] by simp
  from obtain_subset_with_card_n[OF this] 
  obtain d :: "'a set" where d: "d  Basis" and t: "card d = dim B"
    by auto
  let ?t = "{x::'a::euclidean_space. iBasis. i  d  xi = 0}"
  have "f. linear f  f ` B = d  f ` span B = ?t  inj_on f (span B)"
  proof (intro basis_to_basis_subspace_isomorphism subspace_span subspace_substandard span_superset)
    show "d  {x. iBasis. i  d  x  i = 0}"
      using d inner_not_same_Basis by blast
  qed (auto simp: span_substd_basis independent_substdbasis dim_substandard d t B assms)
  with t card B = dim B d show ?thesis by auto
qed

subsection ‹Affine set and affine hull›

definitiontag important› affine :: "'a::real_vector set  bool"
  where "affine S  (xS. yS. u v. u + v = 1  u *R x + v *R y  S)"

lemma affine_alt: "affine S  (xS. yS. u::real. (1 - u) *R x + u *R y  S)"
  unfolding affine_def by (metis eq_diff_eq')

lemma affine_empty [iff]: "affine {}"
  unfolding affine_def by auto

lemma affine_sing [iff]: "affine {x}"
  unfolding affine_alt by (auto simp: scaleR_left_distrib [symmetric])

lemma affine_UNIV [iff]: "affine UNIV"
  unfolding affine_def by auto

lemma affine_Inter [intro]: "(S. S  affine S)  affine ()"
  unfolding affine_def by auto

lemma affine_Int[intro]: "affine S  affine T  affine (S  T)"
  unfolding affine_def by auto

lemma affine_scaling: "affine S  affine ((*R) c ` S)"
  apply (clarsimp simp: affine_def)
  apply (rule_tac x="u *R x + v *R y" in image_eqI)
  apply (auto simp: algebra_simps)
  done

lemma affine_affine_hull [simp]: "affine(affine hull S)"
  unfolding hull_def
  using affine_Inter[of "{T. affine T  S  T}"] by auto

lemma affine_hull_eq[simp]: "(affine hull s = s)  affine s"
  by (metis affine_affine_hull hull_same)

lemma affine_hyperplane: "affine {x. a  x = b}"
  by (simp add: affine_def algebra_simps) (metis distrib_right mult.left_neutral)


subsubsectiontag unimportant› ‹Some explicit formulations›

text "Formalized by Lars Schewe."

lemma affine:
  fixes V::"'a::real_vector set"
  shows "affine V 
         (S u. finite S  S  {}  S  V  sum u S = 1  (xS. u x *R x)  V)"
proof -
  have "u *R x + v *R y  V" if "x  V" "y  V" "u + v = (1::real)"
    and *: "S u. finite S; S  {}; S  V; sum u S = 1  (xS. u x *R x)  V" for x y u v
  proof (cases "x = y")
    case True
    then show ?thesis
      using that by (metis scaleR_add_left scaleR_one)
  next
    case False
    then show ?thesis
      using that *[of "{x,y}" "λw. if w = x then u else v"] by auto
  qed
  moreover have "(xS. u x *R x)  V"
                if *: "x y u v. xV; yV; u + v = 1  u *R x + v *R y  V"
                  and "finite S" "S  {}" "S  V" "sum u S = 1" for S u
  proof -
    define n where "n = card S"
    consider "card S = 0" | "card S = 1" | "card S = 2" | "card S > 2" by linarith
    then show "(xS. u x *R x)  V"
    proof cases
      assume "card S = 1"
      then obtain a where "S={a}"
        by (auto simp: card_Suc_eq)
      then show ?thesis
        using that by simp
    next
      assume "card S = 2"
      then obtain a b where "S = {a, b}"
        by (metis Suc_1 card_1_singletonE card_Suc_eq)
      then show ?thesis
        using *[of a b] that
        by (auto simp: sum_clauses(2))
    next
      assume "card S > 2"
      then show ?thesis using that n_def
      proof (induct n arbitrary: u S)
        case 0
        then show ?case by auto
      next
        case (Suc n u S)
        have "sum u S = card S" if "¬ (xS. u x  1)"
          using that unfolding card_eq_sum by auto
        with Suc.prems obtain x where "x  S" and x: "u x  1" by force
        have c: "card (S - {x}) = card S - 1"
          by (simp add: Suc.prems(3) x  S)
        have "sum u (S - {x}) = 1 - u x"
          by (simp add: Suc.prems sum_diff1 x  S)
        with x have eq1: "inverse (1 - u x) * sum u (S - {x}) = 1"
          by auto
        have inV: "(yS - {x}. (inverse (1 - u x) * u y) *R y)  V"
        proof (cases "card (S - {x}) > 2")
          case True
          then have S: "S - {x}  {}" "card (S - {x}) = n"
            using Suc.prems c by force+
          show ?thesis
          proof (rule Suc.hyps)
            show "(aS - {x}. inverse (1 - u x) * u a) = 1"
              by (auto simp: eq1 sum_distrib_left[symmetric])
          qed (use S Suc.prems True in auto)
        next
          case False
          then have "card (S - {x}) = Suc (Suc 0)"
            using Suc.prems c by auto
          then obtain a b where ab: "(S - {x}) = {a, b}" "ab"
            unfolding card_Suc_eq by auto
          then show ?thesis
            using eq1 S  V
            by (auto simp: sum_distrib_left distrib_left intro!: Suc.prems(2)[of a b])
        qed
        have "u x + (1 - u x) = 1 
          u x *R x + (1 - u x) *R ((yS - {x}. u y *R y) /R (1 - u x))  V"
          by (rule Suc.prems) (use x  S Suc.prems inV in auto simp: scaleR_right.sum)
        moreover have "(aS. u a *R a) = u x *R x + (aS - {x}. u a *R a)"
          by (meson Suc.prems(3) sum.remove x  S)
        ultimately show "(xS. u x *R x)  V"
          by (simp add: x)
      qed
    qed (use S{} finite S in auto)
  qed
  ultimately show ?thesis
    unfolding affine_def by meson
qed


lemma affine_hull_explicit:
  "affine hull p = {y. S u. finite S  S  {}  S  p  sum u S = 1  sum (λv. u v *R v) S = y}"
  (is "_ = ?rhs")
proof (rule hull_unique)
  have "x. sum (λz. 1) {x} = 1"
      by auto
  show "p  ?rhs"
  proof (intro subsetI CollectI exI conjI)
    show "x. sum (λz. 1) {x} = 1"
      by auto
  qed auto
  show "?rhs  T" if "p  T" "affine T" for T
    using that unfolding affine by blast
  show "affine ?rhs"
    unfolding affine_def
  proof clarify
    fix u v :: real and sx ux sy uy
    assume uv: "u + v = 1"
      and x: "finite sx" "sx  {}" "sx  p" "sum ux sx = (1::real)"
      and y: "finite sy" "sy  {}" "sy  p" "sum uy sy = (1::real)" 
    have **: "(sx  sy)  sx = sx" "(sx  sy)  sy = sy"
      by auto
    show "S w. finite S  S  {}  S  p 
        sum w S = 1  (vS. w v *R v) = u *R (vsx. ux v *R v) + v *R (vsy. uy v *R v)"
    proof (intro exI conjI)
      show "finite (sx  sy)"
        using x y by auto
      show "sum (λi. (if isx then u * ux i else 0) + (if isy then v * uy i else 0)) (sx  sy) = 1"
        using x y uv
        by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric] sum_distrib_left [symmetric] **)
      have "(isx  sy. ((if i  sx then u * ux i else 0) + (if i  sy then v * uy i else 0)) *R i)
          = (isx. (u * ux i) *R i) + (isy. (v * uy i) *R i)"
        using x y
        unfolding scaleR_left_distrib scaleR_zero_left if_smult
        by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric]  **)
      also have " = u *R (vsx. ux v *R v) + v *R (vsy. uy v *R v)"
        unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] by blast
      finally show "(isx  sy. ((if i  sx then u * ux i else 0) + (if i  sy then v * uy i else 0)) *R i) 
                  = u *R (vsx. ux v *R v) + v *R (vsy. uy v *R v)" .
    qed (use x y in auto)
  qed
qed

lemma affine_hull_finite:
  assumes "finite S"
  shows "affine hull S = {y. u. sum u S = 1  sum (λv. u v *R v) S = y}"
proof -
  have *: "h. sum h S = 1  (vS. h v *R v) = x" 
    if "F  S" "finite F" "F  {}" and sum: "sum u F = 1" and x: "(vF. u v *R v) = x" for x F u
  proof -
    have "S  F = F"
      using that by auto
    show ?thesis
    proof (intro exI conjI)
      show "(xS. if x  F then u x else 0) = 1"
        by (metis (mono_tags, lifting) S  F = F assms sum.inter_restrict sum)
      show "(vS. (if v  F then u v else 0) *R v) = x"
        by (simp add: if_smult cong: if_cong) (metis (no_types) S  F = F assms sum.inter_restrict x)
    qed
  qed
  show ?thesis
    unfolding affine_hull_explicit using assms
    by (fastforce dest: *)
qed


subsubsectiontag unimportant› ‹Stepping theorems and hence small special cases›

lemma affine_hull_empty[simp]: "affine hull {} = {}"
  by simp

lemma affine_hull_finite_step:
  fixes y :: "'a::real_vector"
  shows "finite S 
      (u. sum u (insert a S) = w  sum (λx. u x *R x) (insert a S) = y) 
      (v u. sum u S = w - v  sum (λx. u x *R x) S = y - v *R a)" (is "_  ?lhs = ?rhs")
proof -
  assume fin: "finite S"
  show "?lhs = ?rhs"
  proof
    assume ?lhs
    then obtain u where u: "sum u (insert a S) = w  (xinsert a S. u x *R x) = y"
      by auto
    show ?rhs
    proof (cases "a  S")
      case True
      then show ?thesis
        using u by (simp add: insert_absorb) (metis diff_zero real_vector.scale_zero_left)
    next
      case False
      show ?thesis
        by (rule exI [where x="u a"]) (use u fin False in auto)
    qed
  next
    assume ?rhs
    then obtain v u where vu: "sum u S = w - v"  "(xS. u x *R x) = y - v *R a"
      by auto
    have *: "x M. (if x = a then v else M) *R x = (if x = a then v *R x else M *R x)"
      by auto
    show ?lhs
    proof (cases "a  S")
      case True
      show ?thesis
        by (rule exI [where x="λx. (if x=a then v else 0) + u x"])
           (simp add: True scaleR_left_distrib sum.distrib sum_clauses fin vu * cong: if_cong)
    next
      case False
      then show ?thesis
        apply (rule_tac x="λx. if x=a then v else u x" in exI) 
        apply (simp add: vu sum_clauses(2)[OF fin] *)
        by (simp add: sum_delta_notmem(3) vu)
    qed
  qed
qed

lemma affine_hull_2:
  fixes a b :: "'a::real_vector"
  shows "affine hull {a,b} = {u *R a + v *R b| u v. (u + v = 1)}"
  (is "?lhs = ?rhs")
proof -
  have *:
    "x y z. z = x - y  y + z = (x::real)"
    "x y z. z = x - y  y + z = (x::'a)" by auto
  have "?lhs = {y. u. sum u {a, b} = 1  (v{a, b}. u v *R v) = y}"
    using affine_hull_finite[of "{a,b}"] by auto
  also have " = {y. v u. u b = 1 - v  u b *R b = y - v *R a}"
    by (simp add: affine_hull_finite_step[of "{b}" a])
  also have " = ?rhs" unfolding * by auto
  finally show ?thesis by auto
qed

lemma affine_hull_3:
  fixes a b c :: "'a::real_vector"
  shows "affine hull {a,b,c} = { u *R a + v *R b + w *R c| u v w. u + v + w = 1}"
proof -
  have *:
    "x y z. z = x - y  y + z = (x::real)"
    "x y z. z = x - y  y + z = (x::'a)" by auto
  show ?thesis
    apply (simp add: affine_hull_finite affine_hull_finite_step)
    unfolding *
    apply safe
     apply (metis add.assoc)
    apply (rule_tac x=u in exI, force)
    done
qed

lemma mem_affine:
  assumes "affine S" "x  S" "y  S" "u + v = 1"
  shows "u *R x + v *R y  S"
  using assms affine_def[of S] by auto

lemma mem_affine_3:
  assumes "affine S" "x  S" "y  S" "z  S" "u + v + w = 1"
  shows "u *R x + v *R y + w *R z  S"
proof -
  have "u *R x + v *R y + w *R z  affine hull {x, y, z}"
    using affine_hull_3[of x y z] assms by auto
  moreover
  have "affine hull {x, y, z}  affine hull S"
    using hull_mono[of "{x, y, z}" "S"] assms by auto
  moreover
  have "affine hull S = S"
    using assms affine_hull_eq[of S] by auto
  ultimately show ?thesis by auto
qed

lemma mem_affine_3_minus:
  assumes "affine S" "x  S" "y  S" "z  S"
  shows "x + v *R (y-z)  S"
  using mem_affine_3[of S x y z 1 v "-v"] assms
  by (simp add: algebra_simps)

corollary%unimportant mem_affine_3_minus2:
    "affine S; x  S; y  S; z  S  x - v *R (y-z)  S"
  by (metis add_uminus_conv_diff mem_affine_3_minus real_vector.scale_minus_left)


subsubsectiontag unimportant› ‹Some relations between affine hull and subspaces›

lemma affine_hull_insert_subset_span:
  "affine hull (insert a S)  {a + v| v . v  span {x - a | x . x  S}}"
proof -
  have "v T u. x = a + v  (finite T  T  {x - a |x. x  S}  (vT. u v *R v) = v)"
    if "finite F" "F  {}" "F  insert a S" "sum u F = 1" "(vF. u v *R v) = x"
    for x F u
  proof -
    have *: "(λx. x - a) ` (F - {a})  {x - a |x. x  S}"
      using that by auto
    show ?thesis
    proof (intro exI conjI)
      show "finite ((λx. x - a) ` (F - {a}))"
        by (simp add: that(1))
      show "(v(λx. x - a) ` (F - {a}). u(v+a) *R v) = x-a"
        by (simp add: sum.reindex[unfolded inj_on_def] algebra_simps
            sum_subtractf scaleR_left.sum[symmetric] sum_diff1 that)
    qed (use F  insert a S in auto)
  qed
  then show ?thesis
    unfolding affine_hull_explicit span_explicit by fast
qed

lemma affine_hull_insert_span:
  assumes "a  S"
  shows "affine hull (insert a S) = {a + v | v . v  span {x - a | x.  x  S}}"
proof -
  have *: "G u. finite G  G  {}  G  insert a S  sum u G = 1  (vG. u v *R v) = y"
    if "v  span {x - a |x. x  S}" "y = a + v" for y v
  proof -
    from that
    obtain T u where u: "finite T" "T  {x - a |x. x  S}" "a + (vT. u v *R v) = y"
      unfolding span_explicit by auto
    define F where "F = (λx. x + a) ` T"
    have F: "finite F" "F  S" "(vF. u (v - a) *R (v - a)) = y - a"
      unfolding F_def using u by (auto simp: sum.reindex[unfolded inj_on_def])
    have *: "F  {a} = {}" "F  - {a} = F"
      using F assms by auto
    show "G u. finite G  G  {}  G  insert a S  sum u G = 1  (vG. u v *R v) = y"
      apply (rule_tac x = "insert a F" in exI)
      apply (rule_tac x = "λx. if x=a then 1 - sum (λx. u (x - a)) F else u (x - a)" in exI)
      using assms F
      apply (auto simp:  sum_clauses sum.If_cases if_smult sum_subtractf scaleR_left.sum algebra_simps *)
      done
  qed
  show ?thesis
    by (intro subset_antisym affine_hull_insert_subset_span) (auto simp: affine_hull_explicit dest!: *)
qed

lemma affine_hull_span:
  assumes "a  S"
  shows "affine hull S = {a + v | v. v  span {x - a | x. x  S - {a}}}"
  using affine_hull_insert_span[of a "S - {a}", unfolded insert_Diff[OF assms]] by auto


subsubsectiontag unimportant› ‹Parallel affine sets›

definition affine_parallel :: "'a::real_vector set  'a::real_vector set  bool"
  where "affine_parallel S T  (a. T = (λx. a + x) ` S)"

lemma affine_parallel_expl_aux:
  fixes S T :: "'a::real_vector set"
  assumes "x. x  S  a + x  T"
  shows "T = (λx. a + x) ` S"
proof -
  have "x  ((λx. a + x) ` S)" if "x  T" for x
    using that
    by (simp add: image_iff) (metis add.commute diff_add_cancel assms)
  moreover have "T  (λx. a + x) ` S"
    using assms by auto
  ultimately show ?thesis by auto
qed

lemma affine_parallel_expl: "affine_parallel S T  (a. x. x  S  a + x  T)"
  by (auto simp add: affine_parallel_def)
    (use affine_parallel_expl_aux [of S _ T] in blast)

lemma affine_parallel_reflex: "affine_parallel S S"
  unfolding affine_parallel_def
  using image_add_0 by blast

lemma affine_parallel_commute:
  assumes "affine_parallel A B"
  shows "affine_parallel B A"
  by (metis affine_parallel_def assms translation_galois)

lemma affine_parallel_assoc:
  assumes "affine_parallel A B"
    and "affine_parallel B C"
  shows "affine_parallel A C"
  by (metis affine_parallel_def assms translation_assoc)

lemma affine_translation_aux:
  fixes a :: "'a::real_vector"
  assumes "affine ((λx. a + x) ` S)"
  shows "affine S"
proof -
  {
    fix x y u v
    assume xy: "x  S" "y  S" "(u :: real) + v = 1"
    then have "(a + x)  ((λx. a + x) ` S)" "(a + y)  ((λx. a + x) ` S)"
      by auto
    then have h1: "u *R  (a + x) + v *R (a + y)  (λx. a + x) ` S"
      using xy assms unfolding affine_def by auto
    have "u *R (a + x) + v *R (a + y) = (u + v) *R a + (u *R x + v *R y)"
      by (simp add: algebra_simps)
    also have " = a + (u *R x + v *R y)"
      using u + v = 1 by auto
    ultimately have "a + (u *R x + v *R y)  (λx. a + x) ` S"
      using h1 by auto
    then have "u *R x + v *R y  S" by auto
  }
  then show ?thesis unfolding affine_def by auto
qed

lemma affine_translation:
  "affine S  affine ((+) a ` S)" for a :: "'a::real_vector"
  by (metis affine_translation_aux translation_galois)

lemma parallel_is_affine:
  fixes S T :: "'a::real_vector set"
  assumes "affine S" "affine_parallel S T"
  shows "affine T"
  by (metis affine_parallel_def affine_translation assms)

lemma subspace_imp_affine: "subspace s  affine s"
  unfolding subspace_def affine_def by auto

lemma affine_hull_subset_span: "(affine hull s)  (span s)"
  by (metis hull_minimal span_superset subspace_imp_affine subspace_span)


subsubsectiontag unimportant› ‹Subspace parallel to an affine set›

lemma subspace_affine: "subspace S  affine S  0  S"
  by (metis add_cancel_right_left affine_alt diff_add_cancel mem_affine_3 scaleR_eq_0_iff subspace_def vector_space_assms(4))

lemma affine_diffs_subspace:
  assumes "affine S" "a  S"
  shows "subspace ((λx. (-a)+x) ` S)"
  by (metis ab_left_minus affine_translation assms image_eqI subspace_affine)

lemma affine_diffs_subspace_subtract:
  "subspace ((λx. x - a) ` S)" if "affine S" "a  S"
  using that affine_diffs_subspace [of _ a] by simp

lemma parallel_subspace_explicit:
  assumes "affine S"
    and "a  S"
  assumes "L  {y. x  S. (-a) + x = y}"
  shows "subspace L  affine_parallel S L"
  by (smt (verit) Collect_cong ab_left_minus affine_parallel_def assms image_def mem_Collect_eq parallel_is_affine subspace_affine)

lemma parallel_subspace_aux:
  assumes "subspace A"
    and "subspace B"
    and "affine_parallel A B"
  shows "A  B"
  by (metis add.right_neutral affine_parallel_expl assms subsetI subspace_def)

lemma parallel_subspace:
  assumes "subspace A"
    and "subspace B"
    and "affine_parallel A B"
  shows "A = B"
  by (simp add: affine_parallel_commute assms parallel_subspace_aux subset_antisym)

lemma affine_parallel_subspace:
  assumes "affine S" "S  {}"
  shows "∃!L. subspace L  affine_parallel S L"
  by (meson affine_parallel_assoc affine_parallel_commute assms equals0I parallel_subspace parallel_subspace_explicit)


subsection ‹Affine Dependence›

text "Formalized by Lars Schewe."

definitiontag important› affine_dependent :: "'a::real_vector set  bool"
  where "affine_dependent S  (xS. x  affine hull (S - {x}))"

lemma affine_dependent_imp_dependent: "affine_dependent S  dependent S"
  unfolding affine_dependent_def dependent_def
  using affine_hull_subset_span by auto

lemma affine_dependent_subset:
   "affine_dependent S; S  T  affine_dependent T"
  using hull_mono [OF Diff_mono [OF _ subset_refl]]
  by (smt (verit) affine_dependent_def subsetD)

lemma affine_independent_subset:
  shows "¬ affine_dependent T; S  T  ¬ affine_dependent S"
  by (metis affine_dependent_subset)

lemma affine_independent_Diff:
   "¬ affine_dependent S  ¬ affine_dependent(S - T)"
by (meson Diff_subset affine_dependent_subset)

proposition affine_dependent_explicit:
  "affine_dependent p 
    (S U. finite S  S  p  sum U S = 0  (vS. U v  0)  sum (λv. U v *R v) S = 0)"
proof -
  have "S U. finite S  S  p  sum U S = 0  (vS. U v  0)  (wS. U w *R w) = 0"
    if "(wS. U w *R w) = x" "x  p" "finite S" "S  {}" "S  p - {x}" "sum U S = 1" for x S U
  proof (intro exI conjI)
    have "x  S" 
      using that by auto
    then show "(v  insert x S. if v = x then - 1 else U v) = 0"
      using that by (simp add: sum_delta_notmem)
    show "(w  insert x S. (if w = x then - 1 else U w) *R w) = 0"
      using that x  S by (simp add: if_smult sum_delta_notmem cong: if_cong)
  qed (use that in auto)
  moreover have "xp. S U. finite S  S  {}  S  p - {x}  sum U S = 1  (vS. U v *R v) = x"
    if "(vS. U v *R v) = 0" "finite S" "S  p" "sum U S = 0" "v  S" "U v  0" for S U v
  proof (intro bexI exI conjI)
    have "S  {v}"
      using that by auto
    then show "S - {v}  {}"
      using that by auto
    show "(x  S - {v}. - (1 / U v) * U x) = 1"
      unfolding sum_distrib_left[symmetric] sum_diff1[OF finite S] by (simp add: that)
    show "(xS - {v}. (- (1 / U v) * U x) *R x) = v"
      unfolding sum_distrib_left [symmetric] scaleR_scaleR[symmetric]
                scaleR_right.sum [symmetric] sum_diff1[OF finite S] 
      using that by auto
    show "S - {v}  p - {v}"
      using that by auto
  qed (use that in auto)
  ultimately show ?thesis
    unfolding affine_dependent_def affine_hull_explicit by auto
qed

lemma affine_dependent_explicit_finite:
  fixes S :: "'a::real_vector set"
  assumes "finite S"
  shows "affine_dependent S 
    (U. sum U S = 0  (vS. U v  0)  sum (λv. U v *R v) S = 0)"
  (is "?lhs = ?rhs")
proof
  have *: "vt U v. (if vt then U v else 0) *R v = (if vt then (U v) *R v else 0::'a)"
    by auto
  assume ?lhs
  then obtain T U v where
    "finite T" "T  S" "sum U T = 0" "vT" "U v  0"  "(vT. U v *R v) = 0"
    unfolding affine_dependent_explicit by auto
  then show ?rhs
    apply (rule_tac x="λx. if xT then U x else 0" in exI)
    apply (auto simp: * sum.inter_restrict[OF assms, symmetric] Int_absorb1[OF TS])
    done
next
  assume ?rhs
  then obtain U v where "sum U S = 0"  "vS" "U v  0" "(vS. U v *R v) = 0"
    by auto
  then show ?lhs unfolding affine_dependent_explicit
    using assms by auto
qed

lemma dependent_imp_affine_dependent:
  assumes "dependent {x - a| x . x  S}"
    and "a  S"
  shows "affine_dependent (insert a S)"
proof -
  from assms(1)[unfolded dependent_explicit] obtain S' U v
    where S: "finite S'" "S'  {x - a |x. x  S}" "vS'" "U v   0" "(vS'. U v *R v) = 0"
    by auto
  define T where "T = (λx. x + a) ` S'"
  have inj: "inj_on (λx. x + a) S'"
    unfolding inj_on_def by auto
  have "0  S'"
    using S(2) assms(2) unfolding subset_eq by auto
  have fin: "finite T" and "T  S"
    unfolding T_def using S(1,2) by auto
  then have "finite (insert a T)" and "insert a T  insert a S"
    by auto
  moreover have *: "P Q. (xT. (if x = a then P x else Q x)) = (xT. Q x)"
    by (smt (verit, best) T  S assms(2) subsetD sum.cong)
  have "(xinsert a T. if x = a then - (xT. U (x - a)) else U (x - a)) = 0"
    by (smt (verit) T  S assms(2) fin insert_absorb insert_subset sum.insert sum_mono)
  moreover have "vinsert a T. (if v = a then - (xT. U (x - a)) else U (v - a))  0"
    using S(3,4) 0S'
    by (rule_tac x="v + a" in bexI) (auto simp: T_def)
  moreover have *: "P Q. (xT. (if x = a then P x else Q x) *R x) = (xT. Q x *R x)"
    using aS TS by (auto intro!: sum.cong)
  have "(xT. U (x - a)) *R a = (vT. U (v - a) *R v)"
    unfolding scaleR_left.sum
    unfolding T_def and sum.reindex[OF inj] and o_def
    using S(5)
    by (auto simp: sum.distrib scaleR_right_distrib)
  then have "(vinsert a T. (if v = a then - (xT. U (x - a)) else U (v - a)) *R v) = 0"
    unfolding sum_clauses(2)[OF fin] using aS TS by (auto simp: *)
  ultimately show ?thesis
    unfolding affine_dependent_explicit
    by (force intro!: exI[where x="insert a T"])
qed

lemma affine_dependent_biggerset:
  fixes S :: "'a::euclidean_space set"
  assumes "finite S" "card S  DIM('a) + 2"
  shows "affine_dependent S"
proof -
  have "S  {}" using assms by auto
  then obtain a where "aS" by auto
  have *: "{x - a |x. x  S - {a}} = (λx. x - a) ` (S - {a})"
    by auto
  have "card {x - a |x. x  S - {a}} = card (S - {a})"
    unfolding * by (simp add: card_image inj_on_def)
  also have " > DIM('a)" using assms(2)
    unfolding card_Diff_singleton[OF aS] by auto
  finally  have "affine_dependent (insert a (S - {a}))"
    using dependent_biggerset dependent_imp_affine_dependent by blast
  then show ?thesis
    by (simp add: a  S insert_absorb)
qed

lemma affine_dependent_biggerset_general:
  assumes "finite (S :: 'a::euclidean_space set)"
    and "card S  dim S + 2"
  shows "affine_dependent S"
proof -
  from assms(2) have "S  {}" by auto
  then obtain a where "aS" by auto
  have *: "{x - a |x. x  S - {a}} = (λx. x - a) ` (S - {a})"
    by auto
  have **: "card {x - a |x. x  S - {a}} = card (S - {a})"
    by (metis (no_types, lifting) "*" card_image diff_add_cancel inj_on_def)
  have "dim {x - a |x. x  S - {a}}  dim S"
    using aS by (auto simp: span_base span_diff intro: subset_le_dim)
  also have " < dim S + 1" by auto
  also have "  card (S - {a})"
    using assms card_Diff_singleton[OF aS] by auto
  finally have "affine_dependent (insert a (S - {a}))"
    by (smt (verit) Collect_cong dependent_imp_affine_dependent dependent_biggerset_general ** Diff_iff insertCI)
  then show ?thesis
    by (simp add: a  S insert_absorb)
qed


subsectiontag unimportant› ‹Some Properties of Affine Dependent Sets›

lemma affine_independent_0 [simp]: "¬ affine_dependent {}"
  by (simp add: affine_dependent_def)

lemma affine_independent_1 [simp]: "¬ affine_dependent {a}"
  by (simp add: affine_dependent_def)

lemma affine_independent_2 [simp]: "¬ affine_dependent {a,b}"
  by (simp add: affine_dependent_def insert_Diff_if hull_same)

lemma affine_hull_translation: "affine hull ((λx. a + x) `  S) = (λx. a + x) ` (affine hull S)"
proof -
  have "affine ((λx. a + x) ` (affine hull S))"
    using affine_translation affine_affine_hull by blast
  moreover have "(λx. a + x) `  S  (λx. a + x) ` (affine hull S)"
    using hull_subset[of S] by auto
  ultimately have h1: "affine hull ((λx. a + x) `  S)  (λx. a + x) ` (affine hull S)"
    by (metis hull_minimal)
  have "affine((λx. -a + x) ` (affine hull ((λx. a + x) `  S)))"
    using affine_translation affine_affine_hull by blast
  moreover have "(λx. -a + x) ` (λx. a + x) `  S  (λx. -a + x) ` (affine hull ((λx. a + x) `  S))"
    using hull_subset[of "(λx. a + x) `  S"] by auto
  moreover have "S = (λx. -a + x) ` (λx. a + x) `  S"
    using translation_assoc[of "-a" a] by auto
  ultimately have "(λx. -a + x) ` (affine hull ((λx. a + x) `  S)) >= (affine hull S)"
    by (metis hull_minimal)
  then have "affine hull ((λx. a + x) ` S) >= (λx. a + x) ` (affine hull S)"
    by auto
  then show ?thesis using h1 by auto
qed

lemma affine_dependent_translation:
  assumes "affine_dependent S"
  shows "affine_dependent ((λx. a + x) ` S)"
proof -
  obtain x where x: "x  S  x  affine hull (S - {x})"
    using assms affine_dependent_def by auto
  have "(+) a ` (S - {x}) = (+) a ` S - {a + x}"
    by auto
  then have "a + x  affine hull ((λx. a + x) ` S - {a + x})"
    using affine_hull_translation[of a "S - {x}"] x by auto
  moreover have "a + x  (λx. a + x) ` S"
    using x by auto
  ultimately show ?thesis
    unfolding affine_dependent_def by auto
qed

lemma affine_dependent_translation_eq:
  "affine_dependent S  affine_dependent ((λx. a + x) ` S)"
  by (metis affine_dependent_translation translation_galois)

lemma affine_hull_0_dependent:
  assumes "0  affine hull S"
  shows "dependent S"
proof -
  obtain s u where s_u: "finite s  s  {}  s  S  sum u s = 1  (vs. u v *R v) = 0"
    using assms affine_hull_explicit[of S] by auto
  then have "vs. u v  0" by auto
  then have "finite s  s  S  (vs. u v  0  (vs. u v *R v) = 0)"
    using s_u by auto
  then show ?thesis
    unfolding dependent_explicit[of S] by auto
qed

lemma affine_dependent_imp_dependent2:
  assumes "affine_dependent (insert 0 S)"
  shows "dependent S"
proof -
  obtain x where x: "x  insert 0 S  x  affine hull (insert 0 S - {x})"
    using affine_dependent_def[of "(insert 0 S)"] assms by blast
  then have "x  span (insert 0 S - {x})"
    using affine_hull_subset_span by auto
  moreover have "span (insert 0 S - {x}) = span (S - {x})"
    using insert_Diff_if[of "0" S "{x}"] span_insert_0[of "S-{x}"] by auto
  ultimately have "x  span (S - {x})" by auto
  then have "x  0  dependent S"
    using x dependent_def by auto
  moreover have "dependent S" if "x = 0"
    by (metis that affine_hull_0_dependent Diff_insert_absorb dependent_zero x)
  ultimately show ?thesis by auto
qed

lemma affine_dependent_iff_dependent:
  assumes "a  S"
  shows "affine_dependent (insert a S)  dependent ((λx. -a + x) ` S)"
proof -
  have "((+) (- a) ` S) = {x - a| x . x  S}" by auto
  then show ?thesis
    using affine_dependent_translation_eq[of "(insert a S)" "-a"]
      affine_dependent_imp_dependent2 assms
      dependent_imp_affine_dependent[of a S]
    by (auto simp del: uminus_add_conv_diff)
qed

lemma affine_dependent_iff_dependent2:
  assumes "a  S"
  shows "affine_dependent S  dependent ((λx. -a + x) ` (S-{a}))"
  by (metis Diff_iff affine_dependent_iff_dependent assms insert_Diff singletonI)

lemma affine_hull_insert_span_gen:
  "affine hull (insert a S) = (λx. a + x) ` span ((λx. - a + x) ` S)"
proof -
  have h1: "{x - a |x. x  S} = ((λx. -a+x) ` S)"
    by auto
  {
    assume "a  S"
    then have ?thesis
      using affine_hull_insert_span[of a S] h1 by auto
  }
  moreover
  {
    assume a1: "a  S"
    then have "insert 0 ((λx. -a+x) ` (S - {a})) = (λx. -a+x) ` S"
      by auto
    then have "span ((λx. -a+x) ` (S - {a})) = span ((λx. -a+x) ` S)"
      using span_insert_0[of "(+) (- a) ` (S - {a})"]
      by presburger
    moreover have "{x - a |x. x  (S - {a})} = ((λx. -a+x) ` (S - {a}))"
      by auto
    moreover have "insert a (S - {a}) = insert a S"
      by auto
    ultimately have ?thesis
      using affine_hull_insert_span[of "a" "S-{a}"] by auto
  }
  ultimately show ?thesis by auto
qed

lemma affine_hull_span2:
  assumes "a  S"
  shows "affine hull S = (λx. a+x) ` span ((λx. -a+x) ` (S-{a}))"
  by (metis affine_hull_insert_span_gen assms insert_Diff)

lemma affine_hull_span_gen:
  assumes "a  affine hull S"
  shows "affine hull S = (λx. a+x) ` span ((λx. -a+x) ` S)"
  by (metis affine_hull_insert_span_gen assms hull_redundant)

lemma affine_hull_span_0:
  assumes "0  affine hull S"
  shows "affine hull S = span S"
  using affine_hull_span_gen[of "0" S] assms by auto

lemma extend_to_affine_basis_nonempty:
  fixes S V :: "'n::real_vector set"
  assumes "¬ affine_dependent S" "S  V" "S  {}"
  shows "T. ¬ affine_dependent T  S  T  T  V  affine hull T = affine hull V"
proof -
  obtain a where a: "a  S"
    using assms by auto
  then have h0: "independent  ((λx. -a + x) ` (S-{a}))"
    using affine_dependent_iff_dependent2 assms by auto
  obtain B where B:
    "(λx. -a+x) ` (S - {a})  B  B  (λx. -a+x) ` V  independent B  (λx. -a+x) ` V  span B"
    using assms
    by (blast intro: maximal_independent_subset_extend[OF _ h0, of "(λx. -a + x) ` V"])
  define T where "T = (λx. a+x) ` insert 0 B"
  then have "T = insert a ((λx. a+x) ` B)"
    by auto
  then have "affine hull T = (λx. a+x) ` span B"
    using affine_hull_insert_span_gen[of a "((λx. a+x) ` B)"] translation_assoc[of "-a" a B]
    by auto
  then have "V  affine hull T"
    using B assms translation_inverse_subset[of a V "span B"]
    by auto
  moreover have "T  V"
    using T_def B a assms by auto
  ultimately have "affine hull T = affine hull V"
    by (metis Int_absorb1 Int_absorb2 hull_hull hull_mono)
  moreover have "S  T"
    using T_def B translation_inverse_subset[of a "S-{a}" B]
    by auto
  moreover have "¬ affine_dependent T"
    using T_def affine_dependent_translation_eq[of "insert 0 B"]
      affine_dependent_imp_dependent2 B
    by auto
  ultimately show ?thesis using T  V by auto
qed

lemma affine_basis_exists:
  fixes V :: "'n::real_vector set"
  shows "B. B  V  ¬ affine_dependent B  affine hull V = affine hull B"
  by (metis affine_dependent_def affine_independent_1 empty_subsetI extend_to_affine_basis_nonempty insert_subset order_refl)

proposition extend_to_affine_basis:
  fixes S V :: "'n::real_vector set"
  assumes "¬ affine_dependent S" "S  V"
  obtains T where "¬ affine_dependent T" "S  T" "T  V" "affine hull T = affine hull V"
  by (metis affine_basis_exists assms(1) assms(2) bot.extremum extend_to_affine_basis_nonempty)


subsection ‹Affine Dimension of a Set›

definitiontag important› aff_dim :: "('a::euclidean_space) set  int"
  where "aff_dim V =
  (SOME d :: int.
    B. affine hull B = affine hull V  ¬ affine_dependent B  of_nat (card B) = d + 1)"

lemma aff_dim_basis_exists:
  fixes V :: "('n::euclidean_space) set"
  shows "B. affine hull B = affine hull V  ¬ affine_dependent B  of_nat (card B) = aff_dim V + 1"
proof -
  obtain B where "¬ affine_dependent B  affine hull B = affine hull V"
    using affine_basis_exists[of V] by auto
  then show ?thesis
    unfolding aff_dim_def
      some_eq_ex[of "λd. B. affine hull B = affine hull V  ¬ affine_dependent B  of_nat (card B) = d + 1"]
    apply auto
    apply (rule exI[of _ "int (card B) - (1 :: int)"])
    apply (rule exI[of _ "B"], auto)
    done
qed

lemma affine_hull_eq_empty [simp]: "affine hull S = {}  S = {}"
by (metis affine_empty subset_empty subset_hull)

lemma empty_eq_affine_hull[simp]: "{} = affine hull S  S = {}"
  by (metis affine_hull_eq_empty)

lemma aff_dim_parallel_subspace_aux:
  fixes B :: "'n::euclidean_space set"
  assumes "¬ affine_dependent B" "a  B"
  shows "finite B  ((card B) - 1 = dim (span ((λx. -a+x) ` (B-{a}))))"
proof -
  have "independent ((λx. -a + x) ` (B-{a}))"
    using affine_dependent_iff_dependent2 assms by auto
  then have fin: "dim (span ((λx. -a+x) ` (B-{a}))) = card ((λx. -a + x) ` (B-{a}))"
    "finite ((λx. -a + x) ` (B - {a}))"
    using indep_card_eq_dim_span[of "(λx. -a+x) ` (B-{a})"] by auto
  show ?thesis
  proof (cases "(λx. -a + x) ` (B - {a}) = {}")
    case True
    have "B = insert a ((λx. a + x) ` (λx. -a + x) ` (B - {a}))"
      using translation_assoc[of "a" "-a" "(B - {a})"] assms by auto
    then have "B = {a}" using True by auto
    then show ?thesis using assms fin by auto
  next
    case False
    then have "card ((λx. -a + x) ` (B - {a})) > 0"
      using fin by auto
    moreover have h1: "card ((λx. -a + x) ` (B-{a})) = card (B-{a})"
      by (rule card_image) (use translate_inj_on in blast)
    ultimately have "card (B-{a}) > 0" by auto
    then have *: "finite (B - {a})"
      using card_gt_0_iff[of "(B - {a})"] by auto
    then have "card (B - {a}) = card B - 1"
      using card_Diff_singleton assms by auto
    with * show ?thesis using fin h1 by auto
  qed
qed

lemma aff_dim_parallel_subspace:
  fixes V L :: "'n::euclidean_space set"
  assumes "V  {}"
    and "subspace L"
    and "affine_parallel (affine hull V) L"
  shows "aff_dim V = int (dim L)"
proof -
  obtain B where
    B: "affine hull B = affine hull V  ¬ affine_dependent B  int (card B) = aff_dim V + 1"
    using aff_dim_basis_exists by auto
  then have "B  {}"
    using assms B
    by auto
  then obtain a where a: "a  B" by auto
  define Lb where "Lb = span ((λx. -a+x) ` (B-{a}))"
  moreover have "affine_parallel (affine hull B) Lb"
    using Lb_def B assms affine_hull_span2[of a B] a
      affine_parallel_commute[of "Lb" "(affine hull B)"]
    unfolding affine_parallel_def
    by auto
  moreover have "subspace Lb"
    using Lb_def subspace_span by auto
  moreover have "affine hull B  {}"
    using assms B by auto
  ultimately have "L = Lb"
    using assms affine_parallel_subspace[of "affine hull B"] affine_affine_hull[of B] B
    by auto
  then have "dim L = dim Lb"
    by auto
  moreover have "card B - 1 = dim Lb" and "finite B"
    using Lb_def aff_dim_parallel_subspace_aux a B by auto
  ultimately show ?thesis
    using B B  {} card_gt_0_iff[of B] by auto
qed

lemma aff_independent_finite:
  fixes B :: "'n::euclidean_space set"
  assumes "¬ affine_dependent B"
  shows "finite B"
  using aff_dim_parallel_subspace_aux assms finite.simps by fastforce


lemma aff_dim_empty:
  fixes S :: "'n::euclidean_space set"
  shows "S = {}  aff_dim S = -1"
proof -
  obtain B where *: "affine hull B = affine hull S"
    and "¬ affine_dependent B"
    and "int (card B) = aff_dim S + 1"
    using aff_dim_basis_exists by auto
  moreover
  from * have "S = {}  B = {}"
    by auto
  ultimately show ?thesis
    using aff_independent_finite[of B] card_gt_0_iff[of B] by auto
qed

lemma aff_dim_empty_eq [simp]: "aff_dim ({}::'a::euclidean_space set) = -1"
  using aff_dim_empty by blast

lemma aff_dim_affine_hull [simp]: "aff_dim (affine hull S) = aff_dim S"
  unfolding aff_dim_def using hull_hull[of _ S] by auto

lemma aff_dim_affine_hull2:
  assumes "affine hull S = affine hull T"
  shows "aff_dim S = aff_dim T"
  unfolding aff_dim_def using assms by auto

lemma aff_dim_unique:
  fixes B V :: "'n::euclidean_space set"
  assumes "affine hull B = affine hull V  ¬ affine_dependent B"
  shows "of_nat (card B) = aff_dim V + 1"
proof (cases "B = {}")
  case True
  then have "V = {}"
    using assms
    by auto
  then have "aff_dim V = (-1::int)"
    using aff_dim_empty by auto
  then show ?thesis
    using B = {} by auto
next
  case False
  then obtain a where a: "a  B" by auto
  define Lb where "Lb = span ((λx. -a+x) ` (B-{a}))"
  have "affine_parallel (affine hull B) Lb"
    using Lb_def affine_hull_span2[of a B] a
      affine_parallel_commute[of "Lb" "(affine hull B)"]
    unfolding affine_parallel_def by auto
  moreover have "subspace Lb"
    using Lb_def subspace_span by auto
  ultimately have "aff_dim B = int(dim Lb)"
    using aff_dim_parallel_subspace[of B Lb] B  {} by auto
  moreover have "(card B) - 1 = dim Lb" "finite B"
    using Lb_def aff_dim_parallel_subspace_aux a assms by auto
  ultimately have "of_nat (card B) = aff_dim B + 1"
    using B  {} card_gt_0_iff[of B] by auto
  then show ?thesis
    using aff_dim_affine_hull2 assms by auto
qed

lemma aff_dim_affine_independent:
  fixes B :: "'n::euclidean_space set"
  assumes "¬ affine_dependent B"
  shows "of_nat (card B) = aff_dim B + 1"
  using aff_dim_unique[of B B] assms by auto

lemma affine_independent_iff_card:
    fixes S :: "'a::euclidean_space set"
    shows "¬ affine_dependent S  finite S  aff_dim S = int(card S) - 1" (is "?lhs = ?rhs")
proof
  show "?lhs  ?rhs" 
    by (simp add: aff_dim_affine_independent aff_independent_finite)
  show "?rhs  ?lhs" 
    by (metis of_nat_eq_iff affine_basis_exists aff_dim_unique card_subset_eq diff_add_cancel)
qed

lemma aff_dim_sing [simp]:
  fixes a :: "'n::euclidean_space"
  shows "aff_dim {a} = 0"
  using aff_dim_affine_independent[of "{a}"] affine_independent_1 by auto

lemma aff_dim_2 [simp]:
  fixes a :: "'n::euclidean_space"
  shows "aff_dim {a,b} = (if a = b then 0 else 1)"
proof (clarsimp)
  assume "a  b"
  then have "aff_dim{a,b} = card{a,b} - 1"
    using affine_independent_2 [of a b] aff_dim_affine_independent by fastforce
  also have " = 1"
    using a  b by simp
  finally show "aff_dim {a, b} = 1" .
qed

lemma aff_dim_inner_basis_exists:
  fixes V :: "('n::euclidean_space) set"
  shows "B. B  V  affine hull B = affine hull V 
    ¬ affine_dependent B  of_nat (card B) = aff_dim V + 1"
  by (metis aff_dim_unique affine_basis_exists)

lemma aff_dim_le_card:
  fixes V :: "'n::euclidean_space set"
  assumes "finite V"
  shows "aff_dim V  of_nat (card V) - 1"
  by (metis aff_dim_inner_basis_exists assms card_mono le_diff_eq of_nat_le_iff)

lemma aff_dim_parallel_le:
  fixes S T :: "'n::euclidean_space set"
  assumes "affine_parallel (affine hull S) (affine hull T)"
  shows "aff_dim S  aff_dim T"
proof (cases "S={}  T={}")
  case True
  then show ?thesis
    by (smt (verit, best) aff_dim_affine_hull2 affine_hull_empty affine_parallel_def assms empty_is_image)
next
  case False
    then obtain L where L: "subspace L" "affine_parallel (affine hull T) L"
      by (metis affine_affine_hull affine_hull_eq_empty affine_parallel_subspace)
    with False show ?thesis
      by (metis aff_dim_parallel_subspace affine_parallel_assoc assms dual_order.refl)
qed

lemma aff_dim_parallel_eq:
  fixes S T :: "'n::euclidean_space set"
  assumes "affine_parallel (affine hull S) (affine hull T)"
  shows "aff_dim S = aff_dim T"
  by (smt (verit, del_insts) aff_dim_parallel_le affine_parallel_commute assms)

lemma aff_dim_translation_eq:
  "aff_dim ((+) a ` S) = aff_dim S" for a :: "'n::euclidean_space"
  by (metis aff_dim_parallel_eq affine_hull_translation affine_parallel_def)

lemma aff_dim_translation_eq_subtract:
  "aff_dim ((λx. x - a) ` S) = aff_dim S" for a :: "'n::euclidean_space"
  using aff_dim_translation_eq [of "- a"] by (simp cong: image_cong_simp)

lemma aff_dim_affine:
  fixes S L :: "'n::euclidean_space set"
  assumes "affine S" "subspace L" "affine_parallel S L" "S  {}"
  shows "aff_dim S = int (dim L)"
  by (simp add: aff_dim_parallel_subspace assms hull_same)

lemma dim_affine_hull [simp]:
  fixes S :: "'n::euclidean_space set"
  shows "dim (affine hull S) = dim S"
  by (metis affine_hull_subset_span dim_eq_span dim_mono hull_subset span_eq_dim)

lemma aff_dim_subspace:
  fixes S :: "'n::euclidean_space set"
  assumes "subspace S"
  shows "aff_dim S = int (dim S)"
  by (metis aff_dim_affine affine_parallel_subspace assms empty_iff parallel_subspace subspace_affine)

lemma aff_dim_zero:
  fixes S :: "'n::euclidean_space set"
  assumes "0  affine hull S"
  shows "aff_dim S = int (dim S)"
  by (metis aff_dim_affine_hull aff_dim_subspace affine_hull_span_0 assms dim_span subspace_span)

lemma aff_dim_eq_dim:
  fixes S :: "'n::euclidean_space set"
  assumes "a  affine hull S"
  shows "aff_dim S = int (dim ((+) (- a) ` S))" 
  by (metis ab_left_minus aff_dim_translation_eq aff_dim_zero affine_hull_translation image_eqI assms)

lemma aff_dim_eq_dim_subtract:
  fixes S :: "'n::euclidean_space set"
  assumes "a  affine hull S"
  shows "aff_dim S = int (dim ((λx. x - a) ` S))"
  using aff_dim_eq_dim assms by auto

lemma aff_dim_UNIV [simp]: "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))"
  by (simp add: aff_dim_subspace)

lemma aff_dim_geq:
  fixes V :: "'n::euclidean_space set"
  shows "aff_dim V  -1"
  by (metis add_le_cancel_right aff_dim_basis_exists diff_self of_nat_0_le_iff uminus_add_conv_diff)

lemma aff_dim_negative_iff [simp]:
  fixes S :: "'n::euclidean_space set"
  shows "aff_dim S < 0  S = {}"
  by (metis aff_dim_empty aff_dim_geq diff_0 eq_iff zle_diff1_eq)

lemma aff_lowdim_subset_hyperplane:
  fixes S :: "'a::euclidean_space set"
  assumes "aff_dim S < DIM('a)"
  obtains a b where "a  0" "S  {x. a  x = b}"
proof (cases "S={}")
  case True
  moreover
  have "(SOME b. b  Basis)  0"
    by (metis norm_some_Basis norm_zero zero_neq_one)
  ultimately show ?thesis
    using that by blast
next
  case False
  then obtain c S' where "c  S'" "S = insert c S'"
    by (meson equals0I mk_disjoint_insert)
  have "dim ((+) (-c) ` S) < DIM('a)"
    by (metis S = insert c S' aff_dim_eq_dim assms hull_inc insertI1 of_nat_less_imp_less)
  then obtain a where "a  0" "span ((+) (-c) ` S)  {x. a  x = 0}"
    using lowdim_subset_hyperplane by blast
  moreover
  have "a  w = a  c" if "span ((+) (- c) ` S)  {x. a  x = 0}" "w  S" for w
  proof -
    have "w-c  span ((+) (- c) ` S)"
      by (simp add: span_base w  S)
    with that have "w-c  {x. a  x = 0}"
      by blast
    then show ?thesis
      by (auto simp: algebra_simps)
  qed
  ultimately have "S  {x. a  x = a  c}"
    by blast
  then show ?thesis
    by (rule that[OF a  0])
qed

lemma affine_independent_card_dim_diffs:
  fixes S :: "'a :: euclidean_space set"
  assumes "¬ affine_dependent S" "a  S"
    shows "card S = dim ((λx. x - a) ` S) + 1"
  using aff_dim_affine_independent aff_dim_eq_dim_subtract assms hull_subset by fastforce

lemma independent_card_le_aff_dim:
  fixes B :: "'n::euclidean_space set"
  assumes "B  V"
  assumes "¬ affine_dependent B"
  shows "int (card B)  aff_dim V + 1"
  by (metis aff_dim_unique aff_independent_finite assms card_mono extend_to_affine_basis of_nat_mono)

lemma aff_dim_subset:
  fixes S T :: "'n::euclidean_space set"
  assumes "S  T"
  shows "aff_dim S  aff_dim T"
  by (metis add_le_cancel_right aff_dim_inner_basis_exists assms dual_order.trans independent_card_le_aff_dim)

lemma aff_dim_le_DIM:
  fixes S :: "'n::euclidean_space set"
  shows "aff_dim S  int (DIM('n))"
  by (metis aff_dim_UNIV aff_dim_subset top_greatest)

lemma affine_dim_equal:
  fixes S :: "'n::euclidean_space set"
  assumes "affine S" "affine T" "S  {}" "S  T" "aff_dim S = aff_dim T"
  shows "S = T"
proof -
  obtain a where "a  S" "a  T" "T  {}" using assms by auto
  define LS where "LS = {y. x  S. (-a) + x = y}"
  then have ls: "subspace LS" "affine_parallel S LS"
    using assms parallel_subspace_explicit[of S a LS] a  S by auto
  then have h1: "int(dim LS) = aff_dim S"
    using assms aff_dim_affine[of S LS] by auto
  define LT where "LT = {y. x  T. (-a) + x = y}"
  then have lt: "subspace LT  affine_parallel T LT"
    using assms parallel_subspace_explicit[of T a LT] a  T by auto
  then have "dim LS = dim LT"
    using assms aff_dim_affine[of T LT] T  {}  h1 by auto
  moreover have "LS  LT"
    using LS_def LT_def assms by auto
  ultimately have "LS = LT"
    using subspace_dim_equal[of LS LT] ls lt by auto
  moreover have "S = {x. y  LS. a+y=x}" "T = {x. y  LT. a+y=x}"
    using LS_def LT_def by auto
  ultimately show ?thesis by auto
qed

lemma aff_dim_eq_0:
  fixes S :: "'a::euclidean_space set"
  shows "aff_dim S = 0  (a. S = {a})"
proof (cases "S = {}")
  case False
  then obtain a where "a  S" by auto
  show ?thesis
  proof safe
    assume 0: "aff_dim S = 0"
    have "¬ {a,b}  S" if "b  a" for b
      by (metis "0" aff_dim_2 aff_dim_subset not_one_le_zero that)
    then show "a. S = {a}"
      using a  S by blast
  qed auto
qed auto

lemma affine_hull_UNIV:
  fixes S :: "'n::euclidean_space set"
  assumes "aff_dim S = int(DIM('n))"
  shows "affine hull S = (UNIV :: ('n::euclidean_space) set)"
  by (simp add: aff_dim_empty affine_dim_equal assms)

lemma disjoint_affine_hull:
  fixes S :: "'n::euclidean_space set"
  assumes "¬ affine_dependent S" "T  S" "U  S" "T  U = {}"
    shows "(affine hull T)  (affine hull U) = {}"
proof -
  obtain "finite S" "finite T" "finite U"
    using assms by (simp add: aff_independent_finite finite_subset)
  have False if "y  affine hull T" and "y  affine hull U" for y
  proof -
    from that obtain a b
      where a1 [simp]: "sum a T = 1"
        and [simp]: "sum (λv. a v *R v) T = y"
        and [simp]: "sum b U = 1" "sum (λv. b v *R v) U = y"
      by (auto simp: affine_hull_finite finite T finite U)
    define c where "c x = (if x  T then a x else if x  U then -(b x) else 0)" for x
    have [simp]: "S  T = T" "S  - T  U = U"
      using assms by auto
    have "sum c S = 0"
      by (simp add: c_def comm_monoid_add_class.sum.If_cases finite S sum_negf)
    moreover have "¬ (vS. c v = 0)"
      by (metis (no_types) IntD1 S  T = T a1 c_def sum.neutral zero_neq_one)
    moreover have "(vS. c v *R v) = 0"
      by (simp add: c_def if_smult sum_negf comm_monoid_add_class.sum.If_cases finite S)
    ultimately show ?thesis
      using assms(1) finite S by (auto simp: affine_dependent_explicit)
  qed
  then show ?thesis by blast
qed

end