Theory HOL-Library.Nat_Bijection
section ‹Bijections between natural numbers and other types›
theory Nat_Bijection
imports Main
begin
subsection ‹Type \<^typ>‹nat × nat››
text ‹Triangle numbers: 0, 1, 3, 6, 10, 15, ...›
definition triangle :: "nat ⇒ nat"
where "triangle n = (n * Suc n) div 2"
lemma triangle_0 [simp]: "triangle 0 = 0"
by (simp add: triangle_def)
lemma triangle_Suc [simp]: "triangle (Suc n) = triangle n + Suc n"
by (simp add: triangle_def)
definition prod_encode :: "nat × nat ⇒ nat"
where "prod_encode = (λ(m, n). triangle (m + n) + m)"
text ‹In this auxiliary function, \<^term>‹triangle k + m› is an invariant.›
fun prod_decode_aux :: "nat ⇒ nat ⇒ nat × nat"
where "prod_decode_aux k m =
(if m ≤ k then (m, k - m) else prod_decode_aux (Suc k) (m - Suc k))"
declare prod_decode_aux.simps [simp del]
definition prod_decode :: "nat ⇒ nat × nat"
where "prod_decode = prod_decode_aux 0"
lemma prod_encode_prod_decode_aux: "prod_encode (prod_decode_aux k m) = triangle k + m"
proof (induction k m rule: prod_decode_aux.induct)
case (1 k m)
then show ?case
by (simp add: prod_encode_def prod_decode_aux.simps)
qed
lemma prod_decode_inverse [simp]: "prod_encode (prod_decode n) = n"
by (simp add: prod_decode_def prod_encode_prod_decode_aux)
lemma prod_decode_triangle_add: "prod_decode (triangle k + m) = prod_decode_aux k m"
proof (induct k arbitrary: m)
case 0
then show ?case
by (simp add: prod_decode_def)
next
case (Suc k)
then show ?case
by (metis ab_semigroup_add_class.add_ac(1) add_diff_cancel_left' le_add1 not_less_eq_eq prod_decode_aux.simps triangle_Suc)
qed
lemma prod_encode_inverse [simp]: "prod_decode (prod_encode x) = x"
unfolding prod_encode_def
proof (induct x)
case (Pair a b)
then show ?case
by (simp add: prod_decode_triangle_add prod_decode_aux.simps)
qed
lemma inj_prod_encode: "inj_on prod_encode A"
by (rule inj_on_inverseI) (rule prod_encode_inverse)
lemma inj_prod_decode: "inj_on prod_decode A"
by (rule inj_on_inverseI) (rule prod_decode_inverse)
lemma surj_prod_encode: "surj prod_encode"
by (rule surjI) (rule prod_decode_inverse)
lemma surj_prod_decode: "surj prod_decode"
by (rule surjI) (rule prod_encode_inverse)
lemma bij_prod_encode: "bij prod_encode"
by (rule bijI [OF inj_prod_encode surj_prod_encode])
lemma bij_prod_decode: "bij prod_decode"
by (rule bijI [OF inj_prod_decode surj_prod_decode])
lemma prod_encode_eq [simp]: "prod_encode x = prod_encode y ⟷ x = y"
by (rule inj_prod_encode [THEN inj_eq])
lemma prod_decode_eq [simp]: "prod_decode x = prod_decode y ⟷ x = y"
by (rule inj_prod_decode [THEN inj_eq])
text ‹Ordering properties›
lemma le_prod_encode_1: "a ≤ prod_encode (a, b)"
by (simp add: prod_encode_def)
lemma le_prod_encode_2: "b ≤ prod_encode (a, b)"
by (induct b) (simp_all add: prod_encode_def)
subsection ‹Type \<^typ>‹nat + nat››
definition sum_encode :: "nat + nat ⇒ nat"
where "sum_encode x = (case x of Inl a ⇒ 2 * a | Inr b ⇒ Suc (2 * b))"
definition sum_decode :: "nat ⇒ nat + nat"
where "sum_decode n = (if even n then Inl (n div 2) else Inr (n div 2))"
lemma sum_encode_inverse [simp]: "sum_decode (sum_encode x) = x"
by (induct x) (simp_all add: sum_decode_def sum_encode_def)
lemma sum_decode_inverse [simp]: "sum_encode (sum_decode n) = n"
by (simp add: even_two_times_div_two sum_decode_def sum_encode_def)
lemma inj_sum_encode: "inj_on sum_encode A"
by (rule inj_on_inverseI) (rule sum_encode_inverse)
lemma inj_sum_decode: "inj_on sum_decode A"
by (rule inj_on_inverseI) (rule sum_decode_inverse)
lemma surj_sum_encode: "surj sum_encode"
by (rule surjI) (rule sum_decode_inverse)
lemma surj_sum_decode: "surj sum_decode"
by (rule surjI) (rule sum_encode_inverse)
lemma bij_sum_encode: "bij sum_encode"
by (rule bijI [OF inj_sum_encode surj_sum_encode])
lemma bij_sum_decode: "bij sum_decode"
by (rule bijI [OF inj_sum_decode surj_sum_decode])
lemma sum_encode_eq: "sum_encode x = sum_encode y ⟷ x = y"
by (rule inj_sum_encode [THEN inj_eq])
lemma sum_decode_eq: "sum_decode x = sum_decode y ⟷ x = y"
by (rule inj_sum_decode [THEN inj_eq])
subsection ‹Type \<^typ>‹int››
definition int_encode :: "int ⇒ nat"
where "int_encode i = sum_encode (if 0 ≤ i then Inl (nat i) else Inr (nat (- i - 1)))"
definition int_decode :: "nat ⇒ int"
where "int_decode n = (case sum_decode n of Inl a ⇒ int a | Inr b ⇒ - int b - 1)"
lemma int_encode_inverse [simp]: "int_decode (int_encode x) = x"
by (simp add: int_decode_def int_encode_def)
lemma int_decode_inverse [simp]: "int_encode (int_decode n) = n"
unfolding int_decode_def int_encode_def
using sum_decode_inverse [of n] by (cases "sum_decode n") simp_all
lemma inj_int_encode: "inj_on int_encode A"
by (rule inj_on_inverseI) (rule int_encode_inverse)
lemma inj_int_decode: "inj_on int_decode A"
by (rule inj_on_inverseI) (rule int_decode_inverse)
lemma surj_int_encode: "surj int_encode"
by (rule surjI) (rule int_decode_inverse)
lemma surj_int_decode: "surj int_decode"
by (rule surjI) (rule int_encode_inverse)
lemma bij_int_encode: "bij int_encode"
by (rule bijI [OF inj_int_encode surj_int_encode])
lemma bij_int_decode: "bij int_decode"
by (rule bijI [OF inj_int_decode surj_int_decode])
lemma int_encode_eq: "int_encode x = int_encode y ⟷ x = y"
by (rule inj_int_encode [THEN inj_eq])
lemma int_decode_eq: "int_decode x = int_decode y ⟷ x = y"
by (rule inj_int_decode [THEN inj_eq])
subsection ‹Type \<^typ>‹nat list››
fun list_encode :: "nat list ⇒ nat"
where
"list_encode [] = 0"
| "list_encode (x # xs) = Suc (prod_encode (x, list_encode xs))"
function list_decode :: "nat ⇒ nat list"
where
"list_decode 0 = []"
| "list_decode (Suc n) = (case prod_decode n of (x, y) ⇒ x # list_decode y)"
by pat_completeness auto
termination list_decode
proof -
have "⋀n x y. (x, y) = prod_decode n ⟹ y < Suc n"
by (metis le_imp_less_Suc le_prod_encode_2 prod_decode_inverse)
then show ?thesis
using "termination" by blast
qed
lemma list_encode_inverse [simp]: "list_decode (list_encode x) = x"
by (induct x rule: list_encode.induct) simp_all
lemma list_decode_inverse [simp]: "list_encode (list_decode n) = n"
proof (induct n rule: list_decode.induct)
case (2 n)
then show ?case
by (metis list_encode.simps(2) list_encode_inverse prod_decode_inverse surj_pair)
qed auto
lemma inj_list_encode: "inj_on list_encode A"
by (rule inj_on_inverseI) (rule list_encode_inverse)
lemma inj_list_decode: "inj_on list_decode A"
by (rule inj_on_inverseI) (rule list_decode_inverse)
lemma surj_list_encode: "surj list_encode"
by (rule surjI) (rule list_decode_inverse)
lemma surj_list_decode: "surj list_decode"
by (rule surjI) (rule list_encode_inverse)
lemma bij_list_encode: "bij list_encode"
by (rule bijI [OF inj_list_encode surj_list_encode])
lemma bij_list_decode: "bij list_decode"
by (rule bijI [OF inj_list_decode surj_list_decode])
lemma list_encode_eq: "list_encode x = list_encode y ⟷ x = y"
by (rule inj_list_encode [THEN inj_eq])
lemma list_decode_eq: "list_decode x = list_decode y ⟷ x = y"
by (rule inj_list_decode [THEN inj_eq])
subsection ‹Finite sets of naturals›
subsubsection ‹Preliminaries›
lemma finite_vimage_Suc_iff: "finite (Suc -` F) ⟷ finite F"
proof
have "F ⊆ insert 0 (Suc ` Suc -` F)"
using nat.nchotomy by force
moreover
assume "finite (Suc -` F)"
then have "finite (insert 0 (Suc ` Suc -` F))"
by blast
ultimately show "finite F"
using finite_subset by blast
qed (force intro: finite_vimageI inj_Suc)
lemma vimage_Suc_insert_0: "Suc -` insert 0 A = Suc -` A"
by auto
lemma vimage_Suc_insert_Suc: "Suc -` insert (Suc n) A = insert n (Suc -` A)"
by auto
lemma div2_even_ext_nat:
fixes x y :: nat
assumes "x div 2 = y div 2"
and "even x ⟷ even y"
shows "x = y"
proof -
from ‹even x ⟷ even y› have "x mod 2 = y mod 2"
by (simp only: even_iff_mod_2_eq_zero) auto
with assms have "x div 2 * 2 + x mod 2 = y div 2 * 2 + y mod 2"
by simp
then show ?thesis
by simp
qed
subsubsection ‹From sets to naturals›
definition set_encode :: "nat set ⇒ nat"
where "set_encode = sum ((^) 2)"
lemma set_encode_empty [simp]: "set_encode {} = 0"
by (simp add: set_encode_def)
lemma set_encode_inf: "¬ finite A ⟹ set_encode A = 0"
by (simp add: set_encode_def)
lemma set_encode_insert [simp]: "finite A ⟹ n ∉ A ⟹ set_encode (insert n A) = 2^n + set_encode A"
by (simp add: set_encode_def)
lemma even_set_encode_iff: "finite A ⟹ even (set_encode A) ⟷ 0 ∉ A"
by (induct set: finite) (auto simp: set_encode_def)
lemma set_encode_vimage_Suc: "set_encode (Suc -` A) = set_encode A div 2"
proof (induction A rule: infinite_finite_induct)
case (infinite A)
then show ?case
by (simp add: finite_vimage_Suc_iff set_encode_inf)
next
case (insert x A)
show ?case
proof (cases x)
case 0
with insert show ?thesis
by (simp add: even_set_encode_iff vimage_Suc_insert_0)
next
case (Suc y)
with insert show ?thesis
by (simp add: finite_vimageI add.commute vimage_Suc_insert_Suc)
qed
qed auto
lemmas set_encode_div_2 = set_encode_vimage_Suc [symmetric]
subsubsection ‹From naturals to sets›
definition set_decode :: "nat ⇒ nat set"
where "set_decode x = {n. odd (x div 2 ^ n)}"
lemma set_decode_0 [simp]: "0 ∈ set_decode x ⟷ odd x"
by (simp add: set_decode_def)
lemma set_decode_Suc [simp]: "Suc n ∈ set_decode x ⟷ n ∈ set_decode (x div 2)"
by (simp add: set_decode_def div_mult2_eq)
lemma set_decode_zero [simp]: "set_decode 0 = {}"
by (simp add: set_decode_def)
lemma set_decode_div_2: "set_decode (x div 2) = Suc -` set_decode x"
by auto
lemma set_decode_plus_power_2:
"n ∉ set_decode z ⟹ set_decode (2 ^ n + z) = insert n (set_decode z)"
proof (induct n arbitrary: z)
case 0
show ?case
proof (rule set_eqI)
show "q ∈ set_decode (2 ^ 0 + z) ⟷ q ∈ insert 0 (set_decode z)" for q
by (induct q) (use 0 in simp_all)
qed
next
case (Suc n)
show ?case
proof (rule set_eqI)
show "q ∈ set_decode (2 ^ Suc n + z) ⟷ q ∈ insert (Suc n) (set_decode z)" for q
by (induct q) (use Suc in simp_all)
qed
qed
lemma finite_set_decode [simp]: "finite (set_decode n)"
proof (induction n rule: less_induct)
case (less n)
show ?case
proof (cases "n = 0")
case False
then show ?thesis
using less.IH [of "n div 2"] finite_vimage_Suc_iff set_decode_div_2 by auto
qed auto
qed
subsubsection ‹Proof of isomorphism›
lemma set_decode_inverse [simp]: "set_encode (set_decode n) = n"
proof (induction n rule: less_induct)
case (less n)
show ?case
proof (cases "n = 0")
case False
then have "set_encode (set_decode (n div 2)) = n div 2"
using less.IH by auto
then show ?thesis
by (metis div2_even_ext_nat even_set_encode_iff finite_set_decode set_decode_0 set_decode_div_2 set_encode_div_2)
qed auto
qed
lemma set_encode_inverse [simp]: "finite A ⟹ set_decode (set_encode A) = A"
proof (induction rule: finite_induct)
case (insert x A)
then show ?case
by (simp add: set_decode_plus_power_2)
qed auto
lemma inj_on_set_encode: "inj_on set_encode (Collect finite)"
by (rule inj_on_inverseI [where g = "set_decode"]) simp
lemma set_encode_eq: "finite A ⟹ finite B ⟹ set_encode A = set_encode B ⟷ A = B"
by (rule iffI) (simp_all add: inj_onD [OF inj_on_set_encode])
lemma subset_decode_imp_le:
assumes "set_decode m ⊆ set_decode n"
shows "m ≤ n"
proof -
have "n = m + set_encode (set_decode n - set_decode m)"
proof -
obtain A B where
"m = set_encode A" "finite A"
"n = set_encode B" "finite B"
by (metis finite_set_decode set_decode_inverse)
with assms show ?thesis
by auto (simp add: set_encode_def add.commute sum.subset_diff)
qed
then show ?thesis
by (metis le_add1)
qed
end