Theory Padic_Field_Powers
theory Padic_Field_Powers
imports Ring_Powers Padic_Field_Polynomials Generated_Boolean_Algebra
Padic_Field_Topology
begin
text‹This theory is intended to develop the necessary background on subsets of powers of a $p$-adic
field to prove Macintyre's quantifier elimination theorem. In particular, we define semi-algebraic
subsets of $\mathbb{Q}_p^n$, semi-algebraic functions $\mathbb{Q}_p^n \to \mathbb{Q}_p$, and semi-
algebraic mappings $\mathbb{Q}_p^n \to \mathbb{Q}_p^m$ for arbitrary $n, m \in \mathbb{N}$. In
addition we prove that many common sets and functions are semi-algebraic. We are closely following
the paper \<^cite>‹"denef1986"› by Denef, where an algebraic proof of Mactinyre's theorem is developed.›
section‹Cartesian Powers of $p$-adic Fields›
lemma list_tl:
"tl (t#x) = x"
using List.list.sel(3) by auto
lemma list_hd:
"hd (t#x) = t"
unfolding List.list.sel(1) by auto
sublocale padic_fields < cring_coord_rings Q⇩p "UP Q⇩p"
unfolding cring_coord_rings_axioms_def cring_coord_rings_def
using Qp.zero_not_one UPQ.R_cring
apply (simp add: UPQ.is_UP_cring)
by auto
sublocale padic_fields < Qp: domain_coord_rings Q⇩p "UP Q⇩p"
unfolding domain_coord_rings_def cring_coord_rings_axioms_def cring_coord_rings_def
using Qp.domain_axioms Qp.zero_not_one UPQ.R_cring
apply (simp add: UPQ.UP_cring_axioms)
by auto
context padic_fields
begin
no_notation Zp.to_fun (infixl‹∙› 70)
no_notation ideal_prod (infixl "⋅ı" 80)
notation
evimage (infixr "¯ı" 90) and
euminus_set ("_ ⇧cı" 70)
type_synonym padic_tuple = "padic_number list"
type_synonym padic_function = "padic_number ⇒ padic_number"
type_synonym padic_nary_function = "padic_tuple ⇒ padic_number"
type_synonym padic_function_tuple = "padic_nary_function list"
type_synonym padic_nary_function_poly = "nat ⇒ padic_nary_function"
subsection‹Polynomials over $\mathbb{Q}_p$ and Polynomial Maps›
lemma last_closed':
assumes "x@[t] ∈ carrier (Q⇩p⇗n⇖)"
shows "t ∈ carrier Q⇩p"
using assms last_closed[of n "x@[t]" Q⇩p]
by (metis (full_types) cartesian_power_car_memE gr0I last_snoc
length_append_singleton less_not_refl zero_less_Suc)
lemma segment_in_car':
assumes "x@[t] ∈ carrier (Q⇩p⇗Suc n⇖)"
shows "x ∈ carrier (Q⇩p⇗n⇖)"
proof-
have 0: "length x = n"
by (metis Suc_inject assms cartesian_power_car_memE length_append_singleton)
have "set x ⊆ set (x@[t])"
by (metis rotate1.simps(2) set_rotate1 set_subset_Cons)
then have 1: "set x ⊆ carrier Q⇩p"
using assms cartesian_power_car_memE''[of "x@[t]" Q⇩p "Suc n"]
by blast
show ?thesis
using 0 1 assms cartesian_power_car_memI[of x n Q⇩p]
by blast
qed
lemma Qp_zero:
"Q⇩p⇗0⇖ = nil_ring"
unfolding cartesian_power_def
by simp
lemma Qp_zero_carrier:
"carrier (Q⇩p⇗0⇖) = {[]}"
by (simp add: Qp_zero)
text‹Abbreviation for constant polynomials›
abbreviation(input) Qp_to_IP where
"Qp_to_IP k ≡ Qp.indexed_const k"
lemma Qp_to_IP_car:
assumes "k ∈ carrier Q⇩p"
shows "Qp_to_IP k ∈ carrier (Q⇩p[𝒳⇘n⇙])"
using assms
unfolding coord_ring_def
using Qp.indexed_const_closed by blast
lemma(in cring_coord_rings) smult_closed:
assumes "a ∈ carrier R"
assumes "q ∈ carrier (R[𝒳⇘n⇙])"
shows "a ⊙⇘R[𝒳⇘n⇙]⇙ q ∈ carrier (R[𝒳⇘n⇙])"
using assms unfolding coord_ring_def
using Pring_smult_closed
by (simp add: R.Pring_smult_closed)
lemma Qp_poly_smult_cfs:
assumes "a ∈ carrier Q⇩p"
assumes "P ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "(a ⊙⇘Q⇩p[𝒳⇘n⇙]⇙ P) m = a ⊗ (P m)"
using assms unfolding coord_ring_def
using Qp.Pring_smult_cfs by blast
lemma Qp_smult_r_distr:
assumes "a ∈ carrier Q⇩p"
assumes "P ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "q ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "a ⊙⇘Q⇩p[𝒳⇘n⇙]⇙ (P ⊕⇘Q⇩p[𝒳⇘n⇙]⇙ q) = (a ⊙⇘Q⇩p[𝒳⇘n⇙]⇙ P) ⊕⇘ Q⇩p[𝒳⇘n⇙]⇙ (a ⊙⇘Q⇩p[𝒳⇘n⇙]⇙ q)"
using assms unfolding coord_ring_def
using Qp.Pring_smult_r_distr by blast
lemma Qp_smult_l_distr:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "P ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "(a ⊕ b) ⊙⇘Q⇩p[𝒳⇘n⇙]⇙ P = (a ⊙⇘Q⇩p[𝒳⇘n⇙]⇙ P) ⊕⇘ Q⇩p[𝒳⇘n⇙]⇙ (b ⊙⇘Q⇩p[𝒳⇘n⇙]⇙ P)"
using assms unfolding coord_ring_def
using Qp.Pring_smult_l_distr by blast
abbreviation(input) Qp_funs where
"Qp_funs n ≡ Fun⇘n⇙ Q⇩p"
subsection‹Evaluation of Polynomials in $\mathbb{Q}_p$›
abbreviation(input) Qp_ev where
"Qp_ev P q ≡ (eval_at_point Q⇩p q P)"
lemma Qp_ev_one:
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
shows "Qp_ev 𝟭⇘Q⇩p[𝒳⇘n⇙]⇙ a = 𝟭" unfolding coord_ring_def
by (metis Qp.Pring_one eval_at_point_const Qp.one_closed assms)
lemma Qp_ev_zero:
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
shows "Qp_ev 𝟬⇘Q⇩p[𝒳⇘n⇙]⇙ a = 𝟬"unfolding coord_ring_def
by (metis Qp.Pring_zero eval_at_point_const Qp.zero_closed assms)
lemma Qp_eval_pvar_pow:
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
assumes "k < n"
assumes "(m::nat) ≠ 0"
shows "Qp_ev ((pvar Q⇩p k)[^]⇘Q⇩p[𝒳⇘n⇙]⇙ m) a = ((a!k)[^]m)"
by (metis eval_at_point_nat_pow eval_pvar assms(1) assms(2) pvar_closed)
text‹composition of polynomials over $\mathbb{Q}_p$›
definition Qp_poly_comp where
"Qp_poly_comp m fs = poly_compose (length fs) m fs"
text‹lemmas about polynomial maps›
lemma Qp_is_poly_tupleI:
assumes "⋀i. i < length fs⟹ fs!i ∈ carrier (Q⇩p[𝒳⇘m⇙])"
shows "is_poly_tuple m fs"
unfolding is_poly_tuple_def using assms
using cartesian_power_car_memE'' cartesian_power_car_memI' by blast
lemma Qp_is_poly_tuple_append:
assumes "is_poly_tuple m fs"
assumes "is_poly_tuple m gs"
shows "is_poly_tuple m (fs@gs)"
proof(rule Qp_is_poly_tupleI)
show "⋀i. i < length (fs @ gs) ⟹ (fs @ gs) ! i ∈ carrier (Q⇩p[𝒳⇘m⇙])"
proof- fix i assume A: "i < length (fs @ gs)"
show "(fs @ gs) ! i ∈ carrier (Q⇩p[𝒳⇘m⇙])"
apply(cases "i < length fs")
using assms is_poly_tupleE[of m fs i] nth_append[of fs gs i]
apply presburger
proof-
assume B: "¬ i < length fs"
then have C: "length fs ≤ i ∧ i < length (fs @ gs)"
using A not_le
by blast
then have "i - length fs < length gs"
using length_append[of fs gs]
by linarith
then show ?thesis
using A assms is_poly_tupleE[of m gs "i - length fs"] nth_append[of fs gs i] B
by presburger
qed
qed
qed
lemma Qp_poly_mapE:
assumes "is_poly_tuple n fs"
assumes "length fs = m"
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "j < m"
shows "(poly_map n fs as)!j ∈ carrier Q⇩p"
using assms poly_map_closed cartesian_power_car_memE' by blast
lemma Qp_poly_mapE':
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
shows "length (poly_map n fs as) = length fs"
unfolding poly_map_def
using Qp.cring_axioms poly_tuple_evalE'
by (metis assms restrict_def)
lemma Qp_poly_mapE'':
assumes "is_poly_tuple n fs"
assumes "length fs = m"
assumes "n ≠ 0"
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "j < m"
shows "(poly_map n fs as)!j = (Qp_ev (fs!j) as)"
using assms
unfolding poly_map_def poly_tuple_eval_def
by (metis (no_types, lifting) nth_map restrict_apply')
lemma poly_map_apply:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
shows "poly_map n fs as = poly_tuple_eval fs as"
unfolding poly_map_def restrict_def
by (simp add: assms)
lemma poly_map_pullbackI:
assumes "is_poly_tuple n fs"
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "poly_map n fs as ∈ S"
shows "as ∈ poly_map n fs ¯⇘n⇙ S"
using assms poly_map_apply
by blast
lemma poly_map_pullbackI':
assumes "is_poly_tuple n fs"
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "poly_map n fs as ∈ S"
shows "as ∈ ((poly_map n fs) -` S)"
by (simp add: assms(3))
text‹lemmas about polynomial composition›
lemma poly_compose_ring_hom:
assumes "is_poly_tuple m fs"
assumes "length fs = n"
shows "(ring_hom_ring (Q⇩p[𝒳⇘n⇙]) (Q⇩p[𝒳⇘m⇙]) (Qp_poly_comp m fs))"
unfolding Qp_poly_comp_def
by (simp add: assms(1) assms(2) poly_compose_ring_hom)
lemma poly_compose_closed:
assumes "is_poly_tuple m fs"
assumes "length fs = n"
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "(Qp_poly_comp m fs f) ∈ carrier (Q⇩p[𝒳⇘m⇙])"
using Qp.cring_axioms assms
unfolding Qp_poly_comp_def
using poly_compose_closed by blast
lemma poly_compose_add:
assumes "is_poly_tuple m fs"
assumes "length fs = n"
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "g ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "Qp_poly_comp m fs (f ⊕⇘Q⇩p[𝒳⇘n⇙]⇙ g) = (Qp_poly_comp m fs f) ⊕⇘Q⇩p[𝒳⇘m⇙]⇙ (Qp_poly_comp m fs g)"
using Qp.cring_axioms assms poly_compose_add
unfolding is_poly_tuple_def Qp_poly_comp_def
by blast
lemma poly_compose_mult:
assumes "is_poly_tuple m fs"
assumes "length fs = n"
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "g ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "Qp_poly_comp m fs (f ⊗⇘Q⇩p[𝒳⇘n⇙]⇙ g) = (Qp_poly_comp m fs f) ⊗⇘Q⇩p[𝒳⇘m⇙]⇙ (Qp_poly_comp m fs g)"
using Qp.cring_axioms assms poly_compose_mult
unfolding is_poly_tuple_def Qp_poly_comp_def
by blast
lemma poly_compose_const:
assumes "is_poly_tuple m fs"
assumes "length fs = n"
assumes "a ∈ carrier Q⇩p"
shows "Qp_poly_comp m fs (Qp_to_IP a) = Qp_to_IP a"
using Qp.cring_axioms assms poly_compose_const
unfolding is_poly_tuple_def Qp_poly_comp_def
by metis
lemma Qp_poly_comp_eval:
assumes "is_poly_tuple m fs"
assumes "length fs = n"
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "as ∈ carrier (Q⇩p⇗m⇖)"
shows "Qp_ev (Qp_poly_comp m fs f) as = Qp_ev f (poly_map m fs as)"
proof-
have "(restrict (poly_tuple_eval fs) (carrier (Q⇩p⇗m⇖)) as) = poly_tuple_eval fs as"
unfolding restrict_def
by (simp add: assms)
thus ?thesis
using assms Qp.cring_axioms poly_compose_eval
unfolding Qp_poly_comp_def poly_map_def
by presburger
qed
subsection‹Mapping Univariate Polynomials to Multivariable Polynomials in One Variable›
abbreviation(input) to_Qp_x where
"to_Qp_x ≡ (IP_to_UP (0::nat) :: (nat multiset ⇒ padic_number) ⇒ nat ⇒ padic_number)"
abbreviation(input) from_Qp_x where
"from_Qp_x ≡ UP_to_IP Q⇩p (0::nat)"
lemma from_Qp_x_closed:
assumes "q ∈ carrier Q⇩p_x"
shows "from_Qp_x q ∈ carrier (Q⇩p[𝒳⇘1⇙])"
using assms UP_to_IP_closed unfolding coord_ring_def
by (metis One_nat_def lessThan_0 lessThan_Suc)
lemma to_Qp_x_closed:
assumes "q ∈ carrier (Q⇩p[𝒳⇘1⇙])"
shows "to_Qp_x q ∈ carrier Q⇩p_x"
using assms Qp.IP_to_UP_closed[of q "0::nat"] Qp.cring_axioms
unfolding coord_ring_def
by (metis One_nat_def lessThan_0 lessThan_Suc)
lemma to_Qp_x_from_Qp_x:
assumes "q ∈ carrier (Q⇩p[𝒳⇘1⇙])"
shows "from_Qp_x (to_Qp_x q) = q"
using assms UP_to_IP_inv[of q "0::nat"] Qp.Pring_car
unfolding coord_ring_def
by (metis One_nat_def lessThan_0 lessThan_Suc)
lemma from_Qp_x_to_Qp_x:
assumes "q ∈ carrier Q⇩p_x"
shows "to_Qp_x (from_Qp_x q) = q"
by (meson UPQ.IP_to_UP_inv assms)
text‹ring hom properties of these maps›
lemma to_Qp_x_ring_hom:
"to_Qp_x ∈ ring_hom (Q⇩p[𝒳⇘1⇙]) Q⇩p_x"
using IP_to_UP_ring_hom[of "0::nat"] ring_hom_ring.homh
unfolding coord_ring_def
by (metis One_nat_def lessThan_0 lessThan_Suc)
lemma from_Qp_x_ring_hom:
"from_Qp_x ∈ ring_hom Q⇩p_x (Q⇩p[𝒳⇘1⇙])"
using UP_to_IP_ring_hom ring_hom_ring.homh
unfolding coord_ring_def
by (metis One_nat_def lessThan_0 lessThan_Suc)
lemma from_Qp_x_add:
assumes "a ∈ carrier Q⇩p_x"
assumes "b ∈ carrier Q⇩p_x"
shows "from_Qp_x (a ⊕⇘Q⇩p_x⇙ b) = from_Qp_x a ⊕⇘Q⇩p[𝒳⇘1⇙]⇙ from_Qp_x b"
by (metis (mono_tags, lifting) assms(1) assms(2) from_Qp_x_ring_hom ring_hom_add)
lemma from_Qp_x_mult:
assumes "a ∈ carrier Q⇩p_x"
assumes "b ∈ carrier Q⇩p_x"
shows "from_Qp_x (a ⊗⇘Q⇩p_x⇙ b) = from_Qp_x a ⊗⇘Q⇩p[𝒳⇘1⇙]⇙ from_Qp_x b"
by (metis assms(1) assms(2) from_Qp_x_ring_hom ring_hom_mult)
text‹equivalence of evaluation maps›
lemma Qp_poly_Qp_x_eval:
assumes "P ∈ carrier (Q⇩p[𝒳⇘1⇙])"
assumes "a ∈ carrier (Q⇩p⇗1⇖)"
shows "Qp_ev P a = (to_Qp_x P)∙(Qp.to_R a)"
proof-
have 0: "(IP_to_UP 0 P) ∙ (a ! 0) = ((IP_to_UP 0 P) ∙ (if 0 < length a then a ! 0 else 𝟬))"
using assms
by (metis (mono_tags, lifting) cartesian_power_car_memE gr0I zero_neq_one)
have 1: "closed_fun Q⇩p (λn. if n < length a then a ! n else 𝟬)"
proof
fix n
show "(if n < length a then a ! n else 𝟬) ∈ carrier Q⇩p"
apply(cases "n < length a")
using assms
apply (metis cartesian_power_car_memE cartesian_power_car_memE')
by (meson Qp.cring_axioms cring.cring_simprules(2))
qed
have 2: " P ∈ Pring_set Q⇩p {0::nat}"
using assms unfolding coord_ring_def
by (metis Qp.Pring_car UPQ.UP_to_IP_closed assms(1) to_Qp_x_closed to_Qp_x_from_Qp_x)
have 3: "total_eval Q⇩p (λi. if i < length a then a ! i else 𝟬) P = IP_to_UP 0 P ∙ (if 0 < length a then a ! 0 else 𝟬)"
using 1 2 assms IP_to_UP_poly_eval[of P "0::nat" "(λi. if i < length a then a ! i else 𝟬)" ]
UPQ.to_fun_def by presburger
then show ?thesis
using 0
unfolding eval_at_point_def
by blast
qed
lemma Qp_x_Qp_poly_eval:
assumes "P ∈ carrier Q⇩p_x"
assumes "a ∈ carrier Q⇩p"
shows "P ∙ a = Qp_ev (from_Qp_x P) (to_R1 a)"
proof-
have "Qp_ev (from_Qp_x P) (to_R1 a) = (to_Qp_x (from_Qp_x P))∙(Qp.to_R (Qp.to_R1 a))"
using Qp_poly_Qp_x_eval assms(1) assms(2) from_Qp_x_closed Qp.to_R1_closed by blast
then show ?thesis using assms
by (metis UPQ.IP_to_UP_inv Qp.to_R_to_R1)
qed
subsection‹$n^{th}$-Power Sets over $\mathbb{Q}_p$›
definition P_set where
"P_set (n::nat) = {a ∈ nonzero Q⇩p. (∃y ∈ carrier Q⇩p . (y[^] n) = a)}"
lemma P_set_carrier:
"P_set n ⊆ carrier Q⇩p"
unfolding P_set_def nonzero_def
by blast
lemma P_set_memI:
assumes "a ∈ carrier Q⇩p"
assumes "a ≠ 𝟬"
assumes "b ∈ carrier Q⇩p"
assumes "b[^](n::nat) = a"
shows "a ∈ P_set n"
unfolding P_set_def
using assms
by (metis (mono_tags, lifting) mem_Collect_eq not_nonzero_Qp)
lemma P_set_nonzero:
"P_set n ⊆ nonzero Q⇩p"
unfolding P_set_def by blast
lemma P_set_nonzero':
assumes "a ∈ P_set n"
shows "a ∈ nonzero Q⇩p"
"a ∈ carrier Q⇩p"
using assms P_set_nonzero P_set_carrier
apply blast using assms P_set_carrier by blast
lemma P_set_one:
assumes "n ≠ 0"
shows "𝟭 ∈ P_set (n::nat)"
proof-
have 0: "𝟭[^]n = 𝟭"
using Qp.nat_pow_one by blast
have 1: "𝟭 ∈ carrier Q⇩p"
by blast
then show ?thesis
using one_nonzero unfolding P_set_def
using 0 by blast
qed
lemma zeroth_P_set:
"P_set 0 = {𝟭}"
proof
show "P_set 0 ⊆ {𝟭}"
unfolding P_set_def
proof
fix x
assume "x ∈ {a ∈ nonzero Q⇩p. ∃y∈carrier Q⇩p. (y[^](0::nat)) = a}"
then have "∃y∈carrier Q⇩p. (y[^](0::nat)) = x"
by blast
then obtain a where a_def: "a ∈ carrier Q⇩p ∧ (a[^](0::nat)) = x"
by blast
then show "x ∈ {𝟭}"
using Qp.nat_pow_0 by blast
qed
show "{𝟭} ⊆ P_set 0"
using P_set_memI[of 𝟭 𝟭 0] Qp.nat_pow_one Qp.one_closed local.one_neq_zero
by blast
qed
lemma P_set_mult_closed:
assumes "n ≠ 0"
assumes "a ∈ P_set n"
assumes "b ∈ P_set n"
shows "a ⊗ b ∈ P_set n"
proof-
obtain a0 where a0_def: "a0 ∈ carrier Q⇩p ∧ (a0 [^] n = a)"
using assms(2)
unfolding P_set_def
by blast
obtain b0 where b0_def: "b0 ∈ carrier Q⇩p ∧ (b0 [^] n = b)"
using assms(3)
unfolding P_set_def
by blast
have "(a0 ⊗ b0) [^] n = a0 [^] n ⊗ b0 [^] n"
using a0_def b0_def Qp.nat_pow_distrib by blast
then have 0: "a ⊗ b = (a0 ⊗ b0) [^] n"
using a0_def b0_def by blast
have 1: "a0 ⊗ b0 ∈ carrier Q⇩p"
by (meson Qp.cring_axioms a0_def b0_def cring.cring_simprules(5))
have 2: "a ⊗ b ∈ nonzero Q⇩p"
using assms nonzero_is_submonoid unfolding P_set_def
by (metis (no_types, lifting) "0" "1" Qp.integral Qp_nat_pow_nonzero a0_def b0_def mem_Collect_eq not_nonzero_Qp)
then show ?thesis
using 0 1 assms
unfolding P_set_def by blast
qed
lemma P_set_inv_closed:
assumes "a ∈ P_set n"
shows "inv a ∈ P_set n"
proof(cases "n = 0")
case True
then show ?thesis
using assms zeroth_P_set
by (metis Qp.inv_one singletonD)
next
case False
then show ?thesis proof-
obtain a0 where a0_def: "a0 ∈ carrier Q⇩p ∧ a0[^]n = a"
using assms P_set_def[of n] by blast
have "a0 ∈ nonzero Q⇩p"
apply(rule ccontr)
proof-
assume "a0 ∉ nonzero Q⇩p "
then have "a0 = 𝟬"
using a0_def
by (meson not_nonzero_Qp)
then show False using a0_def assms
by (metis (mono_tags, lifting) False P_set_def Qp.cring_axioms ‹a0 ∉ nonzero Q⇩p›
cring_def mem_Collect_eq neq0_conv ring.pow_zero)
qed
then have "(inv a0)[^]n = inv a"
using a0_def ‹a0 ∈ carrier Q⇩p ∧ (a0[^]n) = a› ‹a0 ∈ nonzero Q⇩p› Units_nonzero
monoid.nat_pow_of_inv[of Q⇩p a n] Qp.nat_pow_of_inv Units_eq_nonzero by presburger
then show ?thesis
by (metis P_set_memI Qp.nat_pow_closed Qp.nonzero_memE(2) Qp.nonzero_pow_nonzero ‹a0 ∈ nonzero Q⇩p› a0_def inv_in_frac(1) inv_in_frac(2))
qed
qed
lemma P_set_val:
assumes "a ∈ P_set (n::nat)"
shows "(ord a) mod n = 0"
proof(cases "n = 0")
case True
then show ?thesis
using assms zeroth_P_set
by (metis mod_by_0 of_nat_0 ord_one singletonD)
next
case False
then show ?thesis
proof-
obtain b where b_def: "b ∈ carrier Q⇩p ∧ (b[^] n) = a"
using assms P_set_def by blast
have an: "a ∈ nonzero Q⇩p"
using P_set_def assms by blast
have bn: "b ∈ nonzero Q⇩p"
proof(rule ccontr)
assume "b ∉ nonzero Q⇩p"
then have "b = 𝟬⇘ Q⇩p⇙"
using b_def not_nonzero_Qp
by metis
then have "(b[^] n) = 𝟬"
using False Qp.cring_axioms cring_def ring.pow_zero
by blast
then show False
using b_def an Qp.not_nonzero_memI by blast
qed
then have "ord a = n * (ord b)"
using b_def an nonzero_nat_pow_ord
by blast
then show ?thesis
by (metis mod_mult_self1_is_0)
qed
qed
lemma P_set_pow:
assumes "n > 0"
assumes "s ∈ P_set n"
shows "s[^]k ∈ P_set (n*k)"
proof-
obtain y where y_def: "y ∈ carrier Q⇩p ∧ y[^]n = s"
using assms unfolding P_set_def by blast
then have 0: "y ∈ nonzero Q⇩p"
using assms P_set_nonzero'(1) Qp_nonzero_nat_pow by blast
have 1: "y[^](n*k) = s[^] k"
using 0 y_def assms Qp.nat_pow_pow by blast
hence 2: "s[^]k ∈ nonzero Q⇩p"
using 0 by (metis Qp_nat_pow_nonzero)
thus ?thesis unfolding P_set_def using 1 y_def by blast
qed
subsection‹Semialgebraic Sets›
text‹
In this section we introduce the notion of a $p$-adic semialgebraic set. Intuitively, these are
the subsets of $\mathbb{Q}_p^n$ which are definable by first order quantifier-free formulas in
the standard first-order language of rings, with an additional relation symbol included for the
relation $\text{ val}(x) \leq \text{ val}(y)$, interpreted according to the definiton of the
$p$-adic valuation on $\mathbb{Q}_p$. In fact, by Macintyre's quantifier elimination theorem
for the first-order theory of $\mathbb{Q}_p$ in this language, one can equivalently remove the
``quantifier-free" clause from the latter definition. The definition we give here is also
equivalent, and due to Denef in \<^cite>‹"denef1986"›. The given definition here is desirable mainly
for its utility in producing a proof of Macintyre's theorem, which is our overarching goal.
›
subsubsection‹Defining Semialgebraic Sets›
definition basic_semialg_set where
"basic_semialg_set (m::nat) (n::nat) P = {q ∈ carrier (Q⇩p⇗m⇖). ∃y ∈ carrier Q⇩p. Qp_ev P q = (y[^]n)}"
lemma basic_semialg_set_zero_set:
assumes "P ∈ carrier (Q⇩p[𝒳⇘m⇙])"
assumes "q ∈ carrier (Q⇩p⇗m⇖)"
assumes "Qp_ev P q = 𝟬"
assumes "n ≠ 0"
shows "q ∈ basic_semialg_set (m::nat) (n::nat) P"
proof-
have "𝟬 = (𝟬[^]n)"
using assms(4) Qp.nat_pow_zero by blast
then show ?thesis
unfolding basic_semialg_set_def
using assms Qp.cring_axioms cring.cring_simprules(2)
by blast
qed
lemma basic_semialg_set_def':
assumes "n ≠ 0"
assumes "P ∈ carrier (Q⇩p[𝒳⇘m⇙])"
shows "basic_semialg_set (m::nat) (n::nat) P = {q ∈ carrier (Q⇩p⇗m⇖). Qp_ev P q = 𝟬 ∨ Qp_ev P q ∈ (P_set n)}"
proof
show "basic_semialg_set m n P ⊆ {q ∈ carrier (Q⇩p⇗m⇖). Qp_ev P q = 𝟬 ∨ Qp_ev P q ∈ P_set n}"
proof
fix x
assume A: "x ∈ basic_semialg_set m n P"
show "x ∈ {q ∈ carrier (Q⇩p⇗m⇖). Qp_ev P q = 𝟬 ∨ Qp_ev P q ∈ P_set n}"
apply(cases "Qp_ev P x = 𝟬")
using A basic_semialg_set_def apply blast
unfolding basic_semialg_set_def P_set_def
proof
assume A0: "Qp_ev P x ≠ 𝟬"
have A1: " ∃y∈carrier Q⇩p. Qp_ev P x = (y[^]n)"
using A basic_semialg_set_def
by blast
have A2: "x ∈ carrier (Q⇩p⇗m⇖)"
using A basic_semialg_set_def
by blast
show " x ∈ carrier (Q⇩p⇗m⇖) ∧ (Qp_ev P x = 𝟬 ∨ Qp_ev P x ∈ {a ∈ nonzero Q⇩p. ∃y∈carrier Q⇩p. (y[^]n) = a})"
by (metis (mono_tags, lifting) A1 A2 Qp.nonzero_memI assms(2) eval_at_point_closed mem_Collect_eq)
qed
qed
show "{q ∈ carrier (Q⇩p⇗m⇖). Qp_ev P q = 𝟬 ∨ Qp_ev P q ∈ P_set n} ⊆ basic_semialg_set m n P"
proof
fix x
assume A: " x ∈ {q ∈ carrier (Q⇩p⇗m⇖). Qp_ev P q = 𝟬 ∨ Qp_ev P q ∈ P_set n}"
then have A':"x ∈ carrier (Q⇩p⇗m⇖)"
by blast
show "x ∈ basic_semialg_set m n P"
using A A'
apply(cases "Qp_ev P x = 𝟬")
using assms basic_semialg_set_zero_set[of P m x n]
apply blast
proof-
assume B: "x ∈ {q ∈ carrier (Q⇩p⇗m⇖). Qp_ev P q = 𝟬 ∨ Qp_ev P q ∈ P_set n} "
assume B': "x ∈ carrier (Q⇩p⇗m⇖)"
assume B'': "Qp_ev P x ≠ 𝟬 "
show "x ∈ basic_semialg_set m n P"
unfolding basic_semialg_set_def P_set_def
proof
have "∃y∈carrier Q⇩p. Qp_ev P x = (y[^]n) "
using A nonzero_def [of Q⇩p] unfolding P_set_def
proof -
assume "x ∈ {q ∈ carrier (Q⇩p⇗m⇖). Qp_ev P q = 𝟬 ∨ Qp_ev P q ∈ {a ∈ nonzero Q⇩p. ∃y∈carrier Q⇩p. (y[^]n) = a}}"
then have "Qp_ev P x ∈ nonzero Q⇩p ∧ (∃r. r ∈ carrier Q⇩p ∧ (r[^]n) = Qp_ev P x)"
using B'' by blast
then show ?thesis
by blast
qed
then show "x ∈ carrier (Q⇩p⇗m⇖) ∧ (∃y∈carrier Q⇩p. Qp_ev P x = (y[^]n))"
using B'
by blast
qed
qed
qed
qed
lemma basic_semialg_set_memI:
assumes "q ∈ carrier (Q⇩p⇗m⇖)"
assumes "y ∈ carrier Q⇩p"
assumes "Qp_ev P q = (y[^]n)"
shows "q ∈ basic_semialg_set m n P"
using assms(1) assms(2) assms(3) basic_semialg_set_def
by blast
lemma basic_semialg_set_memE:
assumes "q ∈ basic_semialg_set m n P"
shows "q ∈ carrier (Q⇩p⇗m⇖)"
"∃y ∈ carrier Q⇩p. Qp_ev P q = (y[^]n)"
using assms basic_semialg_set_def apply blast
using assms basic_semialg_set_def by blast
definition is_basic_semialg :: "nat ⇒ ((nat ⇒ int) × (nat ⇒ int)) set list set ⇒ bool" where
"is_basic_semialg m S ≡ (∃ (n::nat) ≠ 0. (∃ P ∈ carrier (Q⇩p[𝒳⇘m⇙]). S = basic_semialg_set m n P))"
abbreviation(input) basic_semialgs where
"basic_semialgs m ≡ {S. (is_basic_semialg m S)}"
definition semialg_sets where
"semialg_sets n = gen_boolean_algebra (carrier (Q⇩p⇗n⇖)) (basic_semialgs n)"
lemma carrier_is_semialg:
"(carrier (Q⇩p⇗n⇖)) ∈ semialg_sets n "
unfolding semialg_sets_def
using gen_boolean_algebra.universe by blast
lemma empty_set_is_semialg:
" {} ∈ semialg_sets n"
using carrier_is_semialg[of n]
unfolding semialg_sets_def using gen_boolean_algebra.complement
by (metis Diff_cancel)
lemma semialg_intersect:
assumes "A ∈ semialg_sets n"
assumes "B ∈ semialg_sets n"
shows "(A ∩ B) ∈ semialg_sets n "
using assms(1) assms(2) gen_boolean_algebra_intersect semialg_sets_def
by blast
lemma semialg_union:
assumes "A ∈ semialg_sets n"
assumes "B ∈ semialg_sets n"
shows "(A ∪ B) ∈ semialg_sets n "
using assms gen_boolean_algebra.union semialg_sets_def
by blast
lemma semialg_complement:
assumes "A ∈ semialg_sets n"
shows "(carrier (Q⇩p⇗n⇖) - A) ∈ semialg_sets n "
using assms gen_boolean_algebra.complement semialg_sets_def
by blast
lemma semialg_zero:
assumes "A ∈ semialg_sets 0"
shows "A = {[]} ∨ A = {}"
using assms
unfolding semialg_sets_def cartesian_power_def
proof-
assume A0: " A ∈ gen_boolean_algebra (carrier (RDirProd_list (R_list 0 Q⇩p))) (basic_semialgs 0)"
show " A = {[]} ∨ A = {}"
proof-
have "A ≠ {[]} ⟶ A = {}"
proof
assume A1: "A ≠ {[]}"
show "A = {}"
proof-
have "(R_list 0 Q⇩p) = []"
by simp
then have "(carrier (RDirProd_list (R_list 0 Q⇩p))) = {[]}"
using RDirProd_list_nil
by simp
then show ?thesis
using A0 A1
by (metis gen_boolean_algebra_subset subset_singletonD)
qed
qed
then show ?thesis
by linarith
qed
qed
lemma basic_semialg_is_semialg:
assumes "is_basic_semialg n A"
shows "A ∈ semialg_sets n"
by (metis (no_types, lifting) assms gen_boolean_algebra.simps inf_absorb1
is_basic_semialg_def mem_Collect_eq basic_semialg_set_def
semialg_sets_def subsetI)
lemma basic_semialg_is_semialg':
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "m ≠0"
assumes "A = basic_semialg_set n m f"
shows "A ∈ semialg_sets n"
using assms basic_semialg_is_semialg is_basic_semialg_def
by blast
definition is_semialgebraic where
"is_semialgebraic n S = (S ∈ semialg_sets n)"
lemma is_semialgebraicE:
assumes "is_semialgebraic n S"
shows "S ∈ semialg_sets n"
using assms is_semialgebraic_def by blast
lemma is_semialgebraic_closed:
assumes "is_semialgebraic n S"
shows "S ⊆ carrier (Q⇩p⇗n⇖)"
using is_semialgebraicE[of n S] unfolding semialg_sets_def
using assms gen_boolean_algebra_subset is_semialgebraicE semialg_sets_def
by blast
lemma is_semialgebraicI:
assumes "S ∈ semialg_sets n"
shows "is_semialgebraic n S"
by (simp add: assms is_semialgebraic_def)
lemma basic_semialg_is_semialgebraic:
assumes "is_basic_semialg n A"
shows "is_semialgebraic n A"
using assms basic_semialg_is_semialg is_semialgebraicI by blast
lemma basic_semialg_is_semialgebraic':
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "m ≠0"
assumes "A = basic_semialg_set n m f"
shows "is_semialgebraic n A"
using assms(1) assms(2) assms(3) basic_semialg_is_semialg' is_semialgebraicI by blast
subsubsection‹Algebraic Sets over $p$-adic Fields›
lemma p_times_square_not_square:
assumes "a ∈ nonzero Q⇩p"
shows "𝔭 ⊗ (a [^] (2::nat)) ∉ P_set (2::nat)"
proof
assume A: "𝔭 ⊗ (a[^](2::nat)) ∈ P_set (2::nat)"
then have "𝔭 ⊗ (a[^](2::nat)) ∈ nonzero Q⇩p"
unfolding P_set_def
by blast
then obtain b where b_def: "b ∈ carrier Q⇩p ∧ b[^](2::nat) = 𝔭 ⊗ (a[^](2::nat))"
using A P_set_def by blast
have "b ∈ nonzero Q⇩p"
apply(rule ccontr) using b_def assms
by (metis A P_set_nonzero'(1) Qp.nat_pow_zero not_nonzero_Qp zero_neq_numeral)
then have LHS: "ord (b[^](2::nat)) = 2* (ord b)"
using nonzero_nat_pow_ord
by presburger
have "ord( 𝔭 ⊗ (a[^](2::nat))) = 1 + 2* ord a"
using assms nonzero_nat_pow_ord Qp_nat_pow_nonzero ord_mult ord_p p_nonzero
by presburger
then show False
using b_def LHS
by presburger
qed
lemma p_times_square_not_square':
assumes "a ∈ carrier Q⇩p"
shows "𝔭 ⊗ (a [^] (2::nat)) = 𝟬 ⟹ a = 𝟬"
by (metis Qp.integral Qp.nat_pow_closed Qp.nonzero_closed Qp.nonzero_memE(2) Qp.nonzero_pow_nonzero assms p_nonzero)
lemma zero_set_semialg_set:
assumes "q ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
shows "Qp_ev q a = 𝟬 ⟷( ∃y ∈ carrier Q⇩p. 𝔭 ⊗ ((Qp_ev q a) [^] (2::nat)) = y[^](2::nat)) "
proof
show "Qp_ev q a = 𝟬 ⟹ ∃y∈carrier Q⇩p. 𝔭 ⊗ (Qp_ev q a[^] (2::nat)) = (y[^] (2::nat))"
proof-
assume "Qp_ev q a = 𝟬"
then have "𝔭 ⊗ (Qp_ev q a[^](2::nat)) = (𝟬[^](2::nat))"
by (metis Qp.int_inc_closed Qp.nat_pow_zero Qp.r_null zero_neq_numeral)
then have "𝟬 ∈ carrier Q⇩p ∧ 𝔭 ⊗ (Qp_ev q a[^](2::nat)) = (𝟬[^](2::nat))"
using Qp.cring_axioms cring.cring_simprules(2)
by blast
then show "∃y∈carrier Q⇩p. 𝔭 ⊗ (Qp_ev q a[^] (2::nat)) = (y[^] (2::nat))"
by blast
qed
show " ∃y∈carrier Q⇩p. 𝔭 ⊗ (Qp_ev q a[^](2::nat)) = (y[^](2::nat)) ⟹ Qp_ev q a = 𝟬"
proof-
assume A: " ∃y∈carrier Q⇩p. 𝔭 ⊗ (Qp_ev q a[^](2::nat)) = (y[^](2::nat))"
then obtain b where b_def: "b∈carrier Q⇩p ∧ 𝔭 ⊗ (Qp_ev q a[^](2::nat)) = (b[^](2::nat))"
by blast
show "Qp_ev q a = 𝟬"
proof(rule ccontr)
assume " Qp_ev q a ≠ 𝟬"
then have " Qp_ev q a ∈ nonzero Q⇩p" using assms eval_at_point_closed[of a n q] nonzero_def
proof -
have "Qp_ev q a ∈ carrier Q⇩p"
using ‹⟦a ∈ carrier (Q⇩p⇗n⇖); q ∈ carrier (Q⇩p[𝒳⇘n⇙])⟧ ⟹
Qp_ev q a ∈ carrier Q⇩p› ‹a ∈ carrier (Q⇩p⇗n⇖)› ‹q ∈ carrier (Q⇩p[𝒳⇘n⇙])›
by fastforce
then have "Qp_ev q a ∈ {r ∈ carrier Q⇩p. r ≠ 𝟬}"
using ‹Qp_ev q a ≠ 𝟬› by force
then show ?thesis
by (metis nonzero_def )
qed
then have "𝔭 ⊗ (Qp_ev q a[^](2::nat)) ∈ nonzero Q⇩p"
by (metis Qp.nonzero_closed Qp.nonzero_mult_closed Qp_nat_pow_nonzero not_nonzero_Qp p_nonzero p_times_square_not_square')
then have "𝔭 ⊗ (Qp_ev q a[^](2::nat)) ∈ P_set (2::nat)"
using b_def
unfolding P_set_def
by blast
then show False
using ‹Qp_ev q a ∈ nonzero Q⇩p› p_times_square_not_square
by blast
qed
qed
qed
lemma alg_as_semialg:
assumes "P ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "q = 𝔭 ⊙⇘Q⇩p[𝒳⇘n⇙]⇙ (P[^]⇘Q⇩p[𝒳⇘n⇙]⇙ (2::nat))"
shows "zero_set Q⇩p n P = basic_semialg_set n (2::nat) q"
proof
have 00: "⋀x. x ∈ carrier (Q⇩p⇗n⇖) ⟹ Qp_ev q x = 𝔭 ⊗ (Qp_ev P x) [^] (2::nat)"
using assms eval_at_point_smult MP.nat_pow_closed Qp.int_inc_closed eval_at_point_nat_pow
by presburger
show "V⇘Q⇩p⇙ n P ⊆ basic_semialg_set n 2 q"
proof
fix x
assume A: "x ∈ V⇘Q⇩p⇙ n P "
show "x ∈ basic_semialg_set n (2::nat) q "
proof-
have P: "Qp_ev P x = 𝟬"
using A zero_setE(2)
by blast
have "Qp_ev q x = 𝟬"
proof-
have "Qp_ev q x = 𝔭 ⊗ (Qp_ev (P[^]⇘Q⇩p[𝒳⇘n⇙]⇙ (2::nat)) x)"
using assms eval_at_point_smult[of x n "(P[^]⇘Q⇩p[𝒳⇘n⇙]⇙ (2::nat))" 𝔭] basic_semialg_set_def
by (meson A MP.nat_pow_closed Qp.int_inc_closed zero_setE(1))
then show ?thesis
by (metis A P Qp.int_inc_closed Qp.integral_iff Qp.nat_pow_zero Qp.zero_closed assms(1)
eval_at_point_nat_pow neq0_conv zero_less_numeral zero_setE(1))
qed
then have 0: "Qp_ev q x = 𝟬 ∨ Qp_ev q x ∈ P_set (2::nat)"
by blast
have 1: "x ∈ carrier (Q⇩p⇗n⇖)"
using A zero_setE(1)
by blast
then show ?thesis using 0 basic_semialg_set_def'
by (metis (no_types, opaque_lifting) Qp.nat_pow_zero Qp.zero_closed
‹eval_at_point Q⇩p x q = 𝟬› basic_semialg_set_memI zero_neq_numeral)
qed
qed
show "basic_semialg_set n 2 q ⊆ V⇘Q⇩p⇙ n P"
proof
fix x
assume A: "x ∈ basic_semialg_set n 2 q"
have 0: "¬ Qp_ev q x ∈ P_set 2"
proof
assume "Qp_ev q x ∈ P_set 2"
then have 0: "Qp_ev q x ∈ nonzero Q⇩p ∧ (∃y ∈ carrier Q⇩p . (y[^] (2::nat)) = Qp_ev q x)"
using P_set_def by blast
have "( ∃y ∈ carrier Q⇩p. 𝔭 ⊗ ((Qp_ev P x) [^] (2::nat)) = y[^](2::nat))"
proof-
obtain y where y_def: "y ∈ carrier Q⇩p ∧ (y[^] (2::nat)) = Qp_ev q x"
using 0 by blast
have "x ∈ carrier (Q⇩p⇗n⇖)"
using A basic_semialg_set_memE(1) by blast
then have "Qp_ev q x = 𝔭 ⊗ ((Qp_ev P x) [^] (2::nat))"
using assms eval_at_point_scalar_mult 00 by blast
then have "(y[^] (2::nat)) = 𝔭 ⊗ ((Qp_ev P x) [^] (2::nat))"
using y_def by blast
then show ?thesis using y_def by blast
qed
then have "Qp_ev P x = 𝟬"
by (metis (no_types, lifting) A assms(1) basic_semialg_set_def mem_Collect_eq zero_set_semialg_set)
then have "Qp_ev q x = 𝟬"
using assms eval_at_point_smult
by (metis "00" A Qp.int_inc_closed Qp.nat_pow_zero Qp.r_null basic_semialg_set_memE(1) zero_neq_numeral)
then show False
using 0 Qp.not_nonzero_memI by blast
qed
show " x ∈ V⇘Q⇩p⇙ n P"
apply(rule zero_setI)
using A basic_semialg_set_memE(1) apply blast
using A 0 00[of x]
by (metis assms(1) basic_semialg_set_memE(1) basic_semialg_set_memE(2) zero_set_semialg_set)
qed
qed
lemma is_zero_set_imp_basic_semialg:
assumes "P ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "S = zero_set Q⇩p n P"
shows "is_basic_semialg n S"
unfolding is_basic_semialg_def
proof-
obtain q where q_def: "q = 𝔭 ⊙⇘Q⇩p[𝒳⇘n⇙]⇙ (P[^]⇘Q⇩p[𝒳⇘n⇙]⇙ (2::nat))"
by blast
have 0: "zero_set Q⇩p n P = basic_semialg_set n (2::nat) q"
using alg_as_semialg[of P n q] q_def assms(1) by linarith
have "(P [^]⇘Q⇩p[𝒳⇘n⇙]⇙ (2::nat)) ∈ carrier (Q⇩p[𝒳⇘n⇙])"
using assms(1)
by blast
then have "𝔭 ⊙⇘Q⇩p[𝒳⇘n⇙]⇙(P [^]⇘Q⇩p[𝒳⇘n⇙]⇙ (2::nat)) ∈ carrier (Q⇩p[𝒳⇘n⇙])"
using assms q_def Qp.int_inc_closed local.smult_closed by blast
then have 1: "q ∈ carrier (Q⇩p[𝒳⇘n⇙])"
by (metis q_def )
then show "∃m. m ≠ 0 ∧ (∃P∈carrier (Q⇩p[𝒳⇘n⇙]). S = basic_semialg_set n m P)"
using 0 assms
by (metis zero_neq_numeral)
qed
lemma is_zero_set_imp_semialg:
assumes "P ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "S = zero_set Q⇩p n P"
shows "is_semialgebraic n S"
using assms(1) assms(2) basic_semialg_is_semialg is_semialgebraicI is_zero_set_imp_basic_semialg
by blast
text‹Algebraic sets are semialgebraic›
lemma is_algebraic_imp_is_semialg:
assumes "is_algebraic Q⇩p n S"
shows "is_semialgebraic n S"
proof(rule is_semialgebraicI)
obtain ps where ps_def: "finite ps ∧ ps ⊆ carrier (Q⇩p[𝒳⇘n⇙]) ∧ S = affine_alg_set Q⇩p n ps"
using is_algebraicE
by (metis assms)
have "ps ⊆ carrier (Q⇩p[𝒳⇘n⇙]) ⟶ affine_alg_set Q⇩p n ps ∈ semialg_sets n"
apply(rule finite.induct[of ps])
apply (simp add: ps_def)
using affine_alg_set_empty[of n]
apply (simp add: carrier_is_semialg)
proof
fix A a
assume IH: "A ⊆ carrier (Q⇩p[𝒳⇘n⇙]) ⟶ affine_alg_set Q⇩p n A ∈ semialg_sets n"
assume P: "insert a A ⊆ carrier (Q⇩p[𝒳⇘n⇙])"
have "A ⊆ carrier (Q⇩p[𝒳⇘n⇙])"
using P by blast
then
show "affine_alg_set Q⇩p n (insert a A) ∈ semialg_sets n"
using IH P semialg_intersect[of "affine_alg_set Q⇩p n A" n "affine_alg_set Q⇩p n {a}" ]
is_zero_set_imp_semialg affine_alg_set_insert[of n a A]
by (metis Int_commute affine_alg_set_singleton insert_subset is_semialgebraicE)
qed
then show "S ∈ semialg_sets n"
using ps_def by blast
qed
subsubsection‹Basic Lemmas about the Semialgebraic Predicate›
text‹Finite and cofinite sets are semialgebraic›
lemma finite_is_semialg:
assumes "F ⊆ carrier (Q⇩p⇗n⇖)"
assumes "finite F"
shows "is_semialgebraic n F"
using Qp.finite_sets_are_algebraic is_algebraic_imp_is_semialg[of n F]
assms(1) assms(2)
by blast
definition is_cofinite where
"is_cofinite n F = finite (ring_pow_comp Q⇩p n F)"
lemma is_cofiniteE:
assumes "F ⊆ carrier (Q⇩p⇗n⇖)"
assumes "is_cofinite n F"
shows "finite (carrier (Q⇩p⇗n⇖) - F)"
using assms(2) is_cofinite_def
by (simp add: ring_pow_comp_def)
lemma complement_is_semialg:
assumes "is_semialgebraic n F"
shows "is_semialgebraic n ((carrier (Q⇩p⇗n⇖)) - F)"
using assms is_semialgebraic_def semialg_complement by blast
lemma cofinite_is_semialgebraic:
assumes "F ⊆ carrier (Q⇩p⇗n⇖)"
assumes "is_cofinite n F"
shows "is_semialgebraic n F"
using assms ring_pow_comp_inv[of F Q⇩p n] complement_is_semialg[of n "(carrier (Q⇩p⇗n⇖) - F)"]
finite_is_semialg[of "(carrier (Q⇩p⇗n⇖) - F)"] is_cofiniteE[of F]
by (simp add: ring_pow_comp_def)
lemma diff_is_semialgebraic:
assumes "is_semialgebraic n A"
assumes "is_semialgebraic n B"
shows "is_semialgebraic n (A - B)"
apply(rule is_semialgebraicI)
using assms unfolding semialg_sets_def
using gen_boolean_algebra_diff is_semialgebraicE semialg_sets_def
by blast
lemma intersection_is_semialg:
assumes "is_semialgebraic n A"
assumes "is_semialgebraic n B"
shows "is_semialgebraic n (A ∩ B)"
using assms(1) assms(2) is_semialgebraicE is_semialgebraicI semialg_intersect
by blast
lemma union_is_semialgebraic:
assumes "is_semialgebraic n A"
assumes "is_semialgebraic n B"
shows "is_semialgebraic n (A ∪ B)"
using assms(1) assms(2) is_semialgebraicE is_semialgebraicI semialg_union by blast
lemma carrier_is_semialgebraic:
"is_semialgebraic n (carrier (Q⇩p⇗n⇖))"
using carrier_is_semialg
by (simp add: carrier_is_semialg is_semialgebraic_def)
lemma empty_is_semialgebraic:
"is_semialgebraic n {}"
by (simp add: empty_set_is_semialg is_semialgebraic_def)
subsubsection‹One-Dimensional Semialgebraic Sets›
definition one_var_semialg where
"one_var_semialg S = ((to_R1 ` S) ∈ (semialg_sets 1))"
definition univ_basic_semialg_set where
"univ_basic_semialg_set (m::nat) P = {a ∈ carrier Q⇩p. (∃y ∈ carrier Q⇩p. (P ∙ a = (y[^]m)))}"
text‹Equivalence of univ\_basic\_semialg\_sets and semialgebraic subsets of $\mathbb{Q}^1$ ›
lemma univ_basic_semialg_set_to_semialg_set:
assumes "P ∈ carrier Q⇩p_x"
assumes "m ≠ 0"
shows "to_R1 ` (univ_basic_semialg_set m P) = basic_semialg_set 1 m (from_Qp_x P)"
proof
show "(λa. [a]) ` univ_basic_semialg_set m P ⊆ basic_semialg_set 1 m (from_Qp_x P)"
proof fix x
assume A: "x ∈ (λa. [a]) ` univ_basic_semialg_set m P"
then obtain b y where by_def:"b ∈ carrier Q⇩p ∧ y ∈ carrier Q⇩p ∧ (P ∙ b) = (y[^]m) ∧ x = [b]"
unfolding univ_basic_semialg_set_def
by blast
then have "x ∈ carrier (Q⇩p⇗1⇖)"
using A Qp.to_R1_closed[of b]
unfolding univ_basic_semialg_set_def
by blast
then show "x ∈ basic_semialg_set 1 m (from_Qp_x P)"
using by_def Qp_x_Qp_poly_eval assms
unfolding basic_semialg_set_def
by blast
qed
show "basic_semialg_set 1 m (from_Qp_x P) ⊆ (λa. [a]) ` univ_basic_semialg_set m P"
proof
fix x
assume A: "x ∈ basic_semialg_set 1 m (from_Qp_x P)"
then obtain b where b_def: "b ∈ carrier Q⇩p ∧ x = [b]"
unfolding basic_semialg_set_def
by (metis (mono_tags, lifting) mem_Collect_eq Qp.to_R1_to_R Qp.to_R_pow_closed)
obtain y where y_def: "y ∈ carrier Q⇩p ∧ (Qp_ev (from_Qp_x P) [b] = (y[^]m))"
using A b_def
unfolding basic_semialg_set_def
by blast
have " P ∙ b = (y[^]m)"
using assms y_def b_def Qp_x_Qp_poly_eval by blast
then show " x ∈ (λa. [a]) ` univ_basic_semialg_set m P"
using y_def b_def
unfolding basic_semialg_set_def univ_basic_semialg_set_def
by blast
qed
qed
definition is_univ_semialgebraic where
"is_univ_semialgebraic S = (S ⊆ carrier Q⇩p ∧ is_semialgebraic 1 (to_R1 ` S))"
lemma is_univ_semialgebraicE:
assumes "is_univ_semialgebraic S"
shows "is_semialgebraic 1 (to_R1 ` S)"
using assms is_univ_semialgebraic_def by blast
lemma is_univ_semialgebraicI:
assumes "is_semialgebraic 1 (to_R1 ` S)"
shows "is_univ_semialgebraic S"
proof-
have "S ⊆ carrier Q⇩p"
proof fix x assume "x ∈ S"
then have "(to_R1 x) ∈ carrier (Q⇩p⇗1⇖)"
using assms
by (smt Collect_mono_iff gen_boolean_algebra_subset image_def is_semialgebraicE mem_Collect_eq semialg_sets_def Qp.to_R1_carrier)
then show "x ∈ carrier Q⇩p"
using assms
by (metis nth_Cons_0 Qp.to_R_pow_closed)
qed
then show ?thesis
using assms
unfolding is_univ_semialgebraic_def
by blast
qed
lemma univ_basic_semialg_set_is_univ_semialgebraic:
assumes "P ∈ carrier Q⇩p_x"
assumes "m ≠ 0"
shows "is_univ_semialgebraic (univ_basic_semialg_set m P)"
using assms
by (metis (mono_tags, lifting) basic_semialg_is_semialgebraic'
from_Qp_x_closed is_univ_semialgebraic_def mem_Collect_eq subsetI
univ_basic_semialg_set_def univ_basic_semialg_set_to_semialg_set)
lemma intersection_is_univ_semialgebraic:
assumes "is_univ_semialgebraic A"
assumes "is_univ_semialgebraic B"
shows "is_univ_semialgebraic (A ∩ B)"
using assms intersection_is_semialg[of 1 "((λa. [a]) ` A)" "((λa. [a]) ` B)"]
unfolding is_univ_semialgebraic_def
by (metis le_infI1 Qp.to_R1_intersection)
lemma union_is_univ_semialgebraic:
assumes "is_univ_semialgebraic A"
assumes "is_univ_semialgebraic B"
shows "is_univ_semialgebraic (A ∪ B)"
using assms union_is_semialgebraic[of 1 "((λa. [a]) ` A)" "((λa. [a]) ` B)"]
unfolding is_univ_semialgebraic_def
by (metis Un_subset_iff image_Un)
lemma diff_is_univ_semialgebraic:
assumes "is_univ_semialgebraic A"
assumes "is_univ_semialgebraic B"
shows "is_univ_semialgebraic (A - B)"
using assms diff_is_semialgebraic[of 1 "((λa. [a]) ` A)" "((λa. [a]) ` B)"]
unfolding is_univ_semialgebraic_def
by (smt Diff_subset subset_trans Qp.to_R1_diff)
lemma finite_is_univ_semialgebraic:
assumes "A ⊆ carrier Q⇩p"
assumes "finite A"
shows "is_univ_semialgebraic A"
using assms finite_is_semialg[of "((λa. [a]) ` A)" ] to_R1_finite[of A]
unfolding is_univ_semialgebraic_def
by (metis Qp.to_R1_carrier Qp.to_R1_subset)
subsubsection‹Defining the $p$-adic Valuation Semialgebraically›
lemma Qp_square_root_criterion0:
assumes "p ≠ 2"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "val a ≤ val b"
assumes "a ≠ 𝟬"
assumes "b ≠ 𝟬"
assumes "val a ≥ 0"
shows "∃y ∈ carrier Q⇩p. a[^](2::nat) ⊕⇘Q⇩p⇙ 𝔭⊗b[^](2::nat) = (y [^] (2::nat))"
proof-
have 0: "(to_Zp a) ∈ carrier Z⇩p"
using assms(2) to_Zp_closed
by blast
have 1: "(to_Zp b) ∈ carrier Z⇩p"
using assms(3) to_Zp_closed
by blast
have 2: "a ∈ 𝒪⇩p"
using val_ring_val_criterion assms(2) assms(5) assms(7) by blast
have 3: "b ∈ 𝒪⇩p"
using assms val_ring_val_criterion[of b] dual_order.trans by blast
have 4: "val_Zp (to_Zp b) = val b"
using 3 Zp_def ι_def padic_fields.to_Zp_val padic_fields_axioms by blast
have 5: "val_Zp (to_Zp a) = val a"
using Q⇩p_def Zp_def assms(2) assms(7) padic_fields.Qp_val_ringI padic_fields.to_Zp_val padic_fields_axioms
by blast
have "∃y ∈ carrier Z⇩p. (to_Zp a)[^]⇘Z⇩p⇙(2::nat) ⊕⇘Z⇩p⇙ 𝗉 ⊗⇘Z⇩p⇙(to_Zp b)[^]⇘Z⇩p⇙(2::nat) = (y [^]⇘Z⇩p⇙ (2::nat))"
using 0 1 2 4 5 assms Zp_square_root_criterion[of "(to_Zp a)" "(to_Zp b)"]
by (metis "3" to_Zp_inc to_Zp_zero zero_in_val_ring)
then obtain y where y_def: "y ∈ carrier Z⇩p ∧ (to_Zp a)[^]⇘Z⇩p⇙(2::nat) ⊕⇘Z⇩p⇙ 𝗉 ⊗⇘Z⇩p⇙(to_Zp b)[^]⇘Z⇩p⇙(2::nat) = (y [^]⇘Z⇩p⇙ (2::nat))"
by blast
have 6: "a[^](2::nat) ⊕⇘Q⇩p⇙ 𝔭 ⊗b[^](2::nat) = ((ι y) [^] (2::nat))"
proof-
have 0: "ι (y [^]⇘Z⇩p⇙ (2::nat)) = ((ι y) [^] (2::nat))"
using Qp_nonzero_nat_pow nat_pow_closed inc_pow nat_inc_zero inc_is_hom ι_def y_def ring_hom_nat_pow[of Z⇩p Q⇩p ι y 2]
Q⇩p_def Qp.ring_axioms Zp.ring_axioms
by blast
have 1: "ι (y [^]⇘Z⇩p⇙ (2::nat)) = ι ((to_Zp a)[^]⇘Z⇩p⇙(2::nat) ⊕⇘Z⇩p⇙ 𝗉 ⊗⇘Z⇩p⇙(to_Zp b)[^]⇘Z⇩p⇙(2::nat))"
using y_def by presburger
have 2: "ι (y [^]⇘Z⇩p⇙ (2::nat)) = ι ((to_Zp a)[^]⇘Z⇩p⇙(2::nat)) ⊕⇘Q⇩p⇙ ι ( 𝗉 ⊗⇘Z⇩p⇙(to_Zp b)[^]⇘Z⇩p⇙(2::nat))"
using "1" Zp.m_closed Zp_int_inc_closed assms(2) assms(3) inc_of_sum pow_closed to_Zp_closed by presburger
hence 3: "ι (y [^]⇘Z⇩p⇙ (2::nat)) = (ι (to_Zp a))[^](2::nat) ⊕ (ι 𝗉) ⊗ ι ((to_Zp b)[^]⇘Z⇩p⇙(2::nat))"
using Qp_nonzero_nat_pow nat_pow_closed inc_pow nat_inc_zero inc_is_hom ι_def y_def ring_hom_nat_pow[of Z⇩p Q⇩p ι _ 2]
Q⇩p_def Qp.ring_axioms Zp.ring_axioms Zp_int_inc_closed assms(2) assms(3) inc_of_prod pow_closed to_Zp_closed
by metis
then show ?thesis
using "0" "4" val_ring_ord_criterion assms(2) assms(3) assms(4) assms(5)
assms(6) assms(7) inc_pow not_nonzero_Zp ord_of_nonzero(1) p_inc to_Zp_closed to_Zp_inc
by (metis to_Zp_zero val_pos val_ringI zero_in_val_ring)
qed
have "(ι y) ∈ carrier Q⇩p"
using frac_closed local.inc_def y_def inc_closed by blast
then show ?thesis
using 6
by blast
qed
lemma eint_minus_ineq':
assumes "(a::eint) ≥ b"
shows "a -b ≥ 0"
by (metis assms eint_minus_ineq eint_ord_simps(3) idiff_infinity idiff_self order_trans top.extremum_unique top_eint_def)
lemma Qp_square_root_criterion:
assumes "p ≠ 2"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "ord b ≥ ord a"
assumes "a ≠ 𝟬"
assumes "b ≠ 𝟬"
shows "∃y ∈ carrier Q⇩p. a[^](2::nat) ⊕⇘Q⇩p⇙ 𝔭⊗b[^](2::nat) = (y [^] (2::nat))"
proof-
have "∃k::int. k ≤ min (ord a) (ord b) ∧ k mod 2 = 0"
proof-
let ?k = "if (min (ord a) (ord b)) mod 2 = 0 then min (ord a) (ord b) else (min (ord a) (ord b)) - 1"
have "?k ≤ min (ord a) (ord b) ∧ ?k mod 2 = 0"
apply(cases "(min (ord a) (ord b)) mod 2 = 0 ")
apply presburger
by presburger
then show ?thesis
by meson
qed
then obtain k where k_def: "k ≤ min (ord a) (ord b) ∧ k mod 2 = 0"
by meson
obtain a0 where a0_def: "a0 = (𝔭[^](-k)) ⊗ a"
by blast
obtain b0 where b0_def: "b0 = (𝔭[^](-k)) ⊗ b"
by blast
have 0: "a0 ∈ nonzero Q⇩p"
using Qp.cring_axioms Qp.field_axioms Ring.integral a0_def assms(2) assms(5) cring_simprules(5)
not_nonzero_Qp p_intpow_closed(1) p_nonzero
by (metis Qp_int_pow_nonzero cring.cring_simprules(5))
have 1: "val a0 = val a - k"
using a0_def assms(2) assms(5) val_mult p_nonzero p_intpow_closed(1)
by (metis Qp.m_comm Qp_int_pow_nonzero p_intpow_inv'' val_fract val_p_int_pow)
have 11: "val b0 = val b - k"
using assms(3) assms(6) b0_def val_mult p_nonzero p_intpow_closed(1)
by (metis Qp.m_lcomm Qp.one_closed Qp.r_one Qp_int_pow_nonzero p_intpow_inv'' val_fract val_p_int_pow)
have A: "val a ≥ k"
using k_def val_ord assms by (smt eint_ord_simps(1) not_nonzero_Qp)
have B: "val b ≥ k"
using k_def val_ord assms by (smt eint_ord_simps(1) not_nonzero_Qp)
then have 2: "val a0 ≥ 0"
using A 1 assms k_def eint_minus_ineq eint_ord_code(5) local.eint_minus_ineq' by presburger
have 3: "val a0 ≤ val b0"
using 1 11 assms
by (metis eint.distinct(2) eint_minus_ineq eint_ord_simps(1) val_def)
have 4: "a0 ≠ 𝟬"
using a0_def "0" Qp.nonzero_memE(2) by blast
have 5: "b0 ≠ 𝟬"
using b0_def
by (metis "4" Qp.integral_iff a0_def assms(2) assms(3) assms(6) p_intpow_closed(1))
have "∃y ∈ carrier Q⇩p. a0[^](2::nat) ⊕⇘Q⇩p⇙ 𝔭⊗b0[^](2::nat) = (y [^] (2::nat))"
using Qp_square_root_criterion0[of a0 b0] assms 2 3 4 5 b0_def a0_def Qp.m_closed p_intpow_closed(1)
by metis
then obtain y where y_def: " y ∈ carrier Q⇩p ∧ a0[^](2::nat) ⊕⇘Q⇩p⇙ 𝔭⊗b0[^](2::nat) = (y [^] (2::nat))"
by blast
then have 6: " (𝔭[^] (2 * k)) ⊗ (a0[^](2::nat) ⊕⇘Q⇩p⇙ 𝔭⊗b0[^](2::nat)) = (𝔭[^] (2 * k)) ⊗ (y [^] (2::nat))"
by presburger
then have 8: "((𝔭[^] (2 * k)) ⊗ (a0[^](2::nat))) ⊕⇘Q⇩p⇙((𝔭[^] (2 * k)) ⊗ (𝔭⊗b0[^](2::nat))) = (𝔭[^] (2 * k)) ⊗ (y [^] (2::nat))"
using 6 Qp.r_distr[of "(a0[^](2::nat))" " (𝔭⊗b0[^](2::nat))" "(𝔭[^] (2 * k))"]
by (metis Qp.add.int_pow_closed Qp.m_closed Qp.nat_pow_closed Qp.one_closed a0_def assms(2) assms(3) b0_def p_inc p_intpow_closed(1) y_def)
have 9: "(𝔭[^](int 2*k)) = (𝔭[^]k)[^](2::nat)"
using Qp_int_nat_pow_pow[of 𝔭 k 2]
by (metis mult_of_nat_commute p_nonzero)
then have "((𝔭[^]k)[^](2::nat) ⊗ (a0[^](2::nat))) ⊕⇘Q⇩p⇙ (𝔭[^]k)[^](2::nat) ⊗ (𝔭⊗b0[^](2::nat)) = (𝔭[^]k)[^](2::nat) ⊗ (y [^] (2::nat))"
by (metis "8" int_eq_iff_numeral)
then have "((𝔭[^]k) ⊗ a0)[^](2::nat) ⊕⇘Q⇩p⇙((𝔭[^]k)[^](2::nat)) ⊗ (𝔭⊗b0[^](2::nat)) = ((𝔭[^]k)[^](2::nat)) ⊗ (y [^] (2::nat))"
by (metis Qp.cring_axioms a0_def assms(2) comm_monoid.nat_pow_distrib cring.cring_simprules(5) cring_def p_intpow_closed(1))
then have 10: "((𝔭[^]k) ⊗ a0)[^](2::nat) ⊕⇘Q⇩p⇙((𝔭[^]k)[^](2::nat)) ⊗ (𝔭⊗b0[^](2::nat)) = ((𝔭[^]k) ⊗ y) [^] (2::nat)"
using comm_monoid.nat_pow_distrib y_def
by (metis Qp.comm_monoid_axioms p_intpow_closed(1))
then have "((𝔭[^]k) ⊗ a0)[^](2::nat) ⊕⇘Q⇩p⇙((((𝔭[^]k)[^](2::nat)) ⊗ 𝔭)⊗b0[^](2::nat)) = ((𝔭[^]k) ⊗ y) [^] (2::nat)"
using 10 monoid.m_assoc[of Q⇩p "((𝔭[^]k)[^](2::nat))" 𝔭 " b0[^](2::nat)"]
by (metis Qp.int_inc_closed Qp.m_assoc Qp.m_closed Qp.nat_pow_closed assms(3) b0_def p_intpow_closed(1))
then have "((𝔭[^]k) ⊗ a0)[^](2::nat) ⊕⇘Q⇩p⇙((𝔭 ⊗ ((𝔭[^]k)[^](2::nat)) )⊗b0[^](2::nat)) = ((𝔭[^]k) ⊗ y) [^] (2::nat)"
by (metis Qp.group_commutes_pow Qp.int_inc_closed Qp.m_comm p_intpow_closed(1))
then have "((𝔭[^]k) ⊗ a0)[^](2::nat) ⊕⇘Q⇩p⇙𝔭 ⊗ (((𝔭[^]k)[^](2::nat)) ⊗b0[^](2::nat)) = ((𝔭[^]k) ⊗ y) [^] (2::nat)"
by (metis "10" Qp.int_inc_closed Qp.m_closed Qp.m_lcomm Qp.nat_pow_closed assms(3) b0_def p_intpow_closed(1))
then have "((𝔭[^]k) ⊗ a0)[^](2::nat) ⊕⇘Q⇩p⇙𝔭 ⊗ ((𝔭[^]k) ⊗b0)[^](2::nat) = ((𝔭[^]k) ⊗ y) [^] (2::nat)"
by (metis Qp.m_closed Qp.nat_pow_distrib assms(3) b0_def p_intpow_closed(1))
then have "a[^](2::nat) ⊕⇘Q⇩p⇙𝔭 ⊗ b[^](2::nat) = ((𝔭[^]k) ⊗ y) [^] (2::nat)"
by (metis Qp.l_one Qp.m_assoc a0_def assms(2) assms(3) b0_def p_intpow_closed(1) p_intpow_inv)
then show ?thesis
by (meson Qp.cring_axioms cring.cring_simprules(5) p_intpow_closed(1) y_def)
qed
lemma Qp_val_ring_alt_def0:
assumes "a ∈ nonzero Q⇩p"
assumes "ord a ≥ 0"
shows "∃y ∈ carrier Q⇩p. 𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat))"
proof-
have "∃y ∈ carrier Z⇩p. 𝟭⇘Z⇩p⇙ ⊕⇘Z⇩p⇙ (𝗉 [^]⇘Z⇩p⇙ (3::nat))⊗⇘Z⇩p⇙ ((to_Zp a) [^]⇘Z⇩p⇙ (4::nat)) = (y [^]⇘Z⇩p⇙ (2::nat))"
using padic_integers.Zp_semialg_eq[of p "to_Zp a"] prime assms to_Zp_def
by (metis (no_types, lifting) Qp.nonzero_closed Qp.not_nonzero_memI Zp_def val_ring_ord_criterion not_nonzero_Zp padic_integers_axioms to_Zp_closed to_Zp_inc to_Zp_zero zero_in_val_ring)
then obtain y where y_def: "y ∈ carrier Z⇩p ∧ 𝟭⇘Z⇩p⇙ ⊕⇘Z⇩p⇙ (𝗉 [^]⇘Z⇩p⇙ (3::nat))⊗⇘Z⇩p⇙ ((to_Zp a) [^]⇘Z⇩p⇙ (4::nat)) = (y [^]⇘Z⇩p⇙ (2::nat))"
by blast
then have "𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = ((ι y)[^](2::nat))"
using Group.nat_pow_0 Group.nat_pow_Suc nonzero_def
val_ring_ord_criterion assms inc_of_nonzero inc_of_prod inc_of_sum inc_pow
m_closed nat_inc_closed nat_pow_closed not_nonzero_Zp
numeral_2_eq_2 p_natpow_inc to_Zp_closed to_Zp_inc
by (smt Qp.nonzero_closed Qp.nonzero_memE(2) Zp.monom_term_car p_pow_nonzero(1) pow_closed to_Zp_zero zero_in_val_ring)
then have "(ι y) ∈ carrier Q⇩p ∧ 𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = ((ι y)[^](2::nat))"
using y_def inc_closed by blast
then show ?thesis
by blast
qed
text‹Defining the valuation semialgebraically for odd primes›
lemma P_set_ord_semialg_odd_p:
assumes "p ≠ 2"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
shows "val a ≤ val b ⟷ (∃y ∈ carrier Q⇩p. (a[^](2::nat)) ⊕⇘Q⇩p⇙ (𝔭 ⊗ (b[^](2::nat))) = (y[^](2::nat)))"
proof(cases "a = 𝟬")
case True
show "val a ≤ val b ⟷ (∃y ∈ carrier Q⇩p. (a[^](2::nat)) ⊕⇘Q⇩p⇙ (𝔭 ⊗ (b[^](2::nat))) = (y[^](2::nat)))"
proof
show "val b ≥ val a ⟹ ∃y∈carrier Q⇩p. (a[^](2::nat)) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^](2::nat)) = (y[^](2::nat))"
proof-
assume A: "val b ≥ val a"
then have "val b ≥ ∞"
by (metis True local.val_zero)
then have "b = 𝟬"
using assms(3) local.val_zero val_ineq by presburger
then have "(a[^](2::nat)) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^](2::nat)) = (𝟬[^](2::nat))"
using True
by (metis Qp.int_inc_zero Qp.int_nat_pow_rep Qp.nonzero_closed Qp.r_null Qp.r_zero assms(3) p_nonzero zero_power2)
then show ?thesis
using ‹b = 𝟬› assms(3) by blast
qed
show "∃y∈carrier Q⇩p. (a[^](2::nat)) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^](2::nat)) = (y[^](2::nat)) ⟹ val b ≥ val a"
proof-
assume "∃y∈carrier Q⇩p. (a[^](2::nat)) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^](2::nat)) = (y[^](2::nat))"
then obtain y where y_def: "y ∈ carrier Q⇩p ∧(a[^](2::nat)) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^](2::nat)) = (y[^](2::nat))"
by blast
then have 0: "𝔭 ⊗ (b[^](2::nat)) = (y[^](2::nat))"
by (metis (no_types, lifting) Qp.add.r_cancel_one' Qp.int_inc_closed Qp.nat_pow_closed
Qp.not_nonzero_memI Qp_nonzero_nat_pow True assms(2) assms(3) local.monom_term_car not_nonzero_Qp zero_less_numeral)
have "b = 𝟬"
apply(rule ccontr)
using 0 assms y_def p_times_square_not_square[of b]
unfolding P_set_def
by (metis (no_types, opaque_lifting) P_set_memI Qp.nat_pow_closed True
‹b ∈ nonzero Q⇩p ⟹ 𝔭 ⊗ b [^] 2 ∉ P_set 2› not_nonzero_Qp p_times_square_not_square')
then show ?thesis
using eint_ord_code(3) local.val_zero by presburger
qed
qed
next
case False
then show ?thesis
proof(cases "b = 𝟬")
case True
then have "(a[^](2::nat)) ⊕⇘Q⇩p⇙ (𝔭 ⊗ (b[^](2::nat))) = (a[^](2::nat))"
by (metis Qp.add.l_cancel_one' Qp.int_inc_zero Qp.int_nat_pow_rep Qp.nat_pow_closed Qp.nonzero_closed Qp.r_null assms(2) assms(3) p_nonzero zero_power2)
then have 0: "(∃y ∈ carrier Q⇩p. (a[^](2::nat)) ⊕⇘Q⇩p⇙ (𝔭 ⊗ (b[^](2::nat))) = (y[^](2::nat)))"
using assms(2)
by blast
have 1: "val a ≤ val b"
using True assms local.val_zero eint_ord_code(3) by presburger
show "val a ≤ val b ⟷ (∃y ∈ carrier Q⇩p. (a[^](2::nat)) ⊕⇘Q⇩p⇙ (𝔭 ⊗ (b[^](2::nat))) = (y[^](2::nat)))"
using 0 1
by blast
next
case F: False
show "val a ≤ val b ⟷ (∃y ∈ carrier Q⇩p. (a[^](2::nat)) ⊕⇘Q⇩p⇙ (𝔭 ⊗ (b[^](2::nat))) = (y[^](2::nat)))"
proof
show "val b ≥ val a ⟹ ∃y∈carrier Q⇩p. (a[^](2::nat)) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^](2::nat)) = (y[^](2::nat))"
proof-
assume "val b ≥ val a "
then have "ord b ≥ ord a"
using F False
by (metis eint_ord_simps(1) val_def)
then show "∃y∈carrier Q⇩p. (a[^](2::nat)) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^](2::nat)) = (y[^](2::nat))"
using assms Qp_square_root_criterion[of a b] False F
by blast
qed
show "∃y∈carrier Q⇩p.(a[^](2::nat)) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^](2::nat)) = (y[^](2::nat)) ⟹ val b ≥ val a"
proof-
assume "∃y∈carrier Q⇩p. (a[^](2::nat)) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^](2::nat)) = (y[^](2::nat))"
then obtain y where y_def: "y ∈ carrier Q⇩p ∧(a[^](2::nat)) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^](2::nat)) = (y[^](2::nat))"
by blast
have 0: "ord (a[^](2::nat)) = 2* ord a"
by (metis (mono_tags, opaque_lifting) False Suc_1 assms(2) int_eq_iff_numeral nat_numeral
nonzero_nat_pow_ord not_nonzero_Qp)
have 1: "ord (𝔭 ⊗ (b[^](2::nat))) = 1 + 2* ord b"
proof-
have 0: "ord (𝔭 ⊗ (b[^](2::nat))) = ord 𝔭 + ord (b[^](2::nat))"
using F Qp_nat_pow_nonzero assms(3) not_nonzero_Qp ord_mult p_nonzero
by metis
have 1: "ord (b[^](2::nat)) = 2* ord b"
using F assms
by (metis (mono_tags, opaque_lifting) Suc_1 int_eq_iff_numeral nat_numeral
nonzero_nat_pow_ord not_nonzero_Qp)
then show ?thesis
using "0" ord_p
by linarith
qed
show "val b ≥ val a"
proof(rule ccontr)
assume "¬ val b ≥ val a"
then have "val b ≠ val a ∧ val a ≥ val b"
by (metis linear)
then have "ord a > ord b"
using F False assms
by (metis ‹¬ val a ≤ val b› eint_ord_simps(1) le_less not_less_iff_gr_or_eq val_def)
then have "ord (a[^](2::nat)) > ord (𝔭 ⊗ (b[^](2::nat)))"
using 0 1
by linarith
then have "ord ((a[^](2::nat)) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^](2::nat))) = ord (𝔭 ⊗ (b[^](2::nat)))"
by (meson F False Qp.int_inc_closed Qp_nat_pow_nonzero assms(2) assms(3)
local.monom_term_car not_nonzero_Qp ord_ultrametric_noteq p_times_square_not_square')
then have A0: "ord (y[^](2::nat)) = 1 + 2* ord b"
by (metis "1" ‹y ∈ carrier Q⇩p ∧ (a[^]2) ⊕⇘Q⇩p⇙ 𝔭 ⊗ (b[^]2) = (y[^]2)›)
have A1: "(y[^](2::nat)) ∈ nonzero Q⇩p"
using y_def 0 1
by (smt F False Qp.nonzero_closed Qp_nat_pow_nonzero assms(2) assms(3) diff_ord_nonzero
local.monom_term_car not_nonzero_Qp p_nonzero p_times_square_not_square')
have A2: "y ∈ nonzero Q⇩p"
using A1 Qp_nonzero_nat_pow pos2 y_def by blast
have A3: "ord (y[^](2::nat)) = 2* ord y"
using A2 nonzero_nat_pow_ord
by presburger
then show False using A0
by presburger
qed
qed
qed
qed
qed
text‹Defining the valuation ring semialgebraically for all primes›
lemma Qp_val_ring_alt_def:
assumes "a ∈ carrier Q⇩p"
shows "a ∈ 𝒪⇩p ⟷ (∃y ∈ carrier Q⇩p. 𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat)))"
proof(cases "a = 𝟬")
case True
then have "𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = 𝟭"
by (metis Qp.add.l_cancel_one' Qp.integral_iff Qp.nat_pow_closed Qp.not_nonzero_memI
Qp.one_closed Qp_nonzero_nat_pow assms not_nonzero_Qp p_natpow_closed(1) zero_less_numeral)
then have "𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (𝟭[^](2::nat))"
using Qp.nat_pow_one by blast
then show ?thesis
using True zero_in_val_ring by blast
next
case False
show "a ∈ 𝒪⇩p ⟷ (∃y ∈ carrier Q⇩p. 𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat)))"
proof
show "a ∈ 𝒪⇩p ⟹ (∃y ∈ carrier Q⇩p. 𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat)))"
using assms Qp_val_ring_alt_def0[of a] False
by (meson not_nonzero_Qp ord_nonneg)
show "(∃y ∈ carrier Q⇩p. 𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat))) ⟹ a ∈ 𝒪⇩p"
proof-
assume "(∃y ∈ carrier Q⇩p. 𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat)))"
then obtain y where y_def: "y ∈ carrier Q⇩p ∧𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat))"
by blast
then have "(𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat)) ⊖⇘Q⇩p⇙ 𝟭"
using Qp.ring_simprules
by (smt Qp.nat_pow_closed assms p_natpow_closed(1))
then have "ord ((𝔭[^](3::nat))⊗ (a[^](4::nat))) = ord ((y[^](2::nat)) ⊖⇘Q⇩p⇙ 𝟭)"
by presburger
then have "3 + ord (a[^](4::nat)) = ord ((y[^](2::nat)) ⊖⇘Q⇩p⇙ 𝟭)"
by (metis False Qp_nat_pow_nonzero assms not_nonzero_Qp of_nat_numeral ord_mult ord_p_pow_nat p_nonzero)
then have 0: "3 + 4* ord a = ord ((y[^](2::nat)) ⊖⇘Q⇩p⇙ 𝟭)"
using assms False nonzero_nat_pow_ord[of a "(4::nat)"]
by (metis nonzero_nat_pow_ord not_nonzero_Qp of_nat_numeral)
have "ord a ≥ 0"
proof(rule ccontr)
assume "¬ 0 ≤ ord a"
then have 00: "ord ((y[^](2::nat)) ⊖⇘Q⇩p⇙ 𝟭) < 0"
using 0
by linarith
have yn: "y ∈ nonzero Q⇩p"
apply(rule ccontr)
using y_def 0
by (metis "00" Qp.not_eq_diff_nonzero Qp.one_closed Qp.one_nonzero Qp.pow_zero
‹𝔭 [^] 3 ⊗ a [^] 4 = y [^] 2 ⊖ 𝟭› diff_ord_nonzero less_numeral_extra(3)
local.one_neq_zero not_nonzero_Qp ord_one zero_less_numeral)
then have "ord ((y[^](2::nat)) ⊖⇘Q⇩p⇙ 𝟭) = ord (y[^](2::nat))"
using y_def ord_ultrametric_noteq''[of "(y[^](2::nat))" "𝟭" ]
by (metis "00" False Qp.integral Qp.nat_pow_closed Qp.nonzero_closed Qp.nonzero_pow_nonzero
Qp.not_eq_diff_nonzero Qp.one_nonzero Qp.r_right_minus_eq ‹𝔭 [^] 3 ⊗ a [^] 4 = y [^] 2 ⊖ 𝟭›
assms ord_one ord_ultrametric_noteq p_nonzero)
then have "ord ((y[^](2::nat)) ⊖⇘Q⇩p⇙ 𝟭) = 2* ord y"
using y_def Qp_nat_pow_nonzero Qp_nonzero_nat_pow nonzero_nat_pow_ord[of y "(2::nat)"] yn
by linarith
then have "3 + (4* ord a) = 2* ord y"
using "00" "0"
by linarith
then show False
by presburger
qed
then show "a ∈ 𝒪⇩p"
using False val_ring_ord_criterion assms by blast
qed
qed
qed
lemma Qp_val_alt_def:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
shows "val b ≤ val a ⟷ (∃y ∈ carrier Q⇩p. (b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat)))"
proof
show "val a ≥ val b ⟹ ∃y∈carrier Q⇩p. (b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat))"
proof-
assume A: "val a ≥ val b"
show "∃y∈carrier Q⇩p. (b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat))"
proof(cases "b = 𝟬")
case True
then have "a = 𝟬"
using A assms(1) val_ineq
by blast
then have "(b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (𝟬[^](2::nat))"
by (metis Qp.nat_pow_zero Qp.r_null Qp.r_zero True assms(2) p_natpow_closed(1) zero_neq_numeral)
then show ?thesis
using True A assms(2)
by blast
next
case False
assume B: "b ≠ 𝟬"
show "∃y∈carrier Q⇩p. (b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat)) ⊗ (a[^](4::nat)) = (y[^](2::nat))"
proof(cases "a = 𝟬")
case True
then have "(b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (b[^](4::nat))"
using Qp.cring_axioms Qp.nat_pow_closed assms(2) cring_def p_natpow_closed(1) ring.pow_zero zero_less_numeral
by (metis Qp.add.l_cancel_one' Qp.integral_iff assms(1))
then have "(b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = ((b[^](2::nat))[^] (2::nat))"
by (metis Qp_nat_pow_pow assms(2) mult_2_right numeral_Bit0)
then have "(b[^](2::nat)) ∈ carrier Q⇩p ∧ (b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = ((b[^](2::nat))[^] (2::nat))"
using Qp.nat_pow_closed assms(2)
by blast
then show ?thesis
by blast
next
case False
have F0: "b ∈ nonzero Q⇩p"
using B assms(2) not_nonzero_Qp
by metis
have F1: "a ∈ nonzero Q⇩p"
using False assms(1) not_nonzero_Qp
by metis
then have "(a ÷ b) ∈ nonzero Q⇩p"
using B
by (meson Localization.submonoid.m_closed Qp.nonzero_is_submonoid assms(2) inv_in_frac(3))
then have "val a ≥ val b"
using F0 F1 A by blast
then have "val (a ÷ b) ≥ 0"
using F0 F1 val_fract assms(1) local.eint_minus_ineq' by presburger
obtain y where y_def: "y ∈ carrier Q⇩p ∧ 𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ ((a ÷ b)[^](4::nat)) = (y[^](2::nat))"
using Qp_val_ring_alt_def0
by (meson B False Qp.integral Qp.nonzero_closed ‹(a ÷ b) ∈ nonzero Q⇩p› ‹0 ≤ val (a ÷ b)›
assms(1) assms(2) inv_in_frac(1) inv_in_frac(2) ord_nonneg val_ringI)
then have "(b[^](4::nat)) ⊗ (𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ ((a ÷ b)[^](4::nat))) =
(b[^](4::nat)) ⊗ (y[^](2::nat))"
by presburger
then have F2: "(b[^](4::nat)) ⊗ (𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ ((a ÷ b)[^](4::nat))) =
((b[^](2::nat)) [^] (2::nat)) ⊗ (y[^](2::nat))"
by (metis Qp.nat_pow_pow assms(2) mult_2_right numeral_Bit0)
have F3: "((b[^](4::nat)) ⊗ 𝟭) ⊕⇘Q⇩p⇙ ((b[^](4::nat)) ⊗((𝔭[^](3::nat))⊗ ((a ÷ b)[^](4::nat)))) =
((b[^](2::nat))[^] (2::nat)) ⊗ (y[^](2::nat))"
proof-
have 0: "(𝔭[^](3::nat)) ⊗ (a ÷ b[^](4::nat)) ∈ carrier Q⇩p "
proof-
have "(a ÷ b[^](4::nat)) ∈ carrier Q⇩p"
using F0 Qp.nat_pow_closed assms(1) fract_closed Qp_nat_pow_nonzero by presburger
then show ?thesis
by (meson Qp.cring_axioms cring.cring_simprules(5) p_natpow_closed(1))
qed
have 1: "(b[^](4::nat)) ∈ carrier Q⇩p"
using Qp.nat_pow_closed assms(2)
by blast
then show ?thesis
using 0 F2 ring.ring_simprules(23)[of Q⇩p "𝟭" "(𝔭[^](3::nat))⊗ ((a ÷ b)[^](4::nat))" "(b[^](4::nat))"]
Qp.cring_axioms Qp.nonzero_mult_closed Qp.ring_axioms Qp_nat_pow_nonzero ‹(a ÷ b) ∈ nonzero Q⇩p› p_nonzero
by blast
qed
have F4: "(b[^](4::nat)) ∈ carrier Q⇩p"
using Qp.nat_pow_closed assms(2)
by blast
then have "((b[^](4::nat)) ⊗ 𝟭) = (b[^](4::nat))"
using Qp.r_one by blast
then have F5: "(b[^](4::nat))⊕⇘Q⇩p⇙ ((b[^](4::nat)) ⊗((𝔭[^](3::nat))⊗ ((a ÷ b)[^](4::nat)))) =
((b[^](2::nat)) [^] (2::nat)) ⊗ (y[^](2::nat))"
using F3
by presburger
have "((b[^](4::nat)) ⊗((𝔭[^](3::nat))⊗ ((a ÷ b)[^](4::nat)))) = (𝔭[^](3::nat))⊗((b[^](4::nat)) ⊗ ((a ÷ b)[^](4::nat)))"
proof-
have 0: "(b[^](4::nat)) ∈ carrier Q⇩p"
using F4 by blast
have 1: "(𝔭[^](3::nat)) ∈ carrier Q⇩p"
by blast
have 2: "((a ÷ b)[^](4::nat)) ∈ carrier Q⇩p"
using F0 Qp.nat_pow_closed assms(1) fract_closed
by blast
show ?thesis using 0 1 2 monoid.m_assoc[of Q⇩p] comm_monoid.m_comm[of Q⇩p]
using Qp.m_lcomm by presburger
qed
then have "(b[^](4::nat))⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗((b[^](4::nat)) ⊗ ((a ÷ b)[^](4::nat))) =
((b[^](2::nat)) [^] (2::nat)) ⊗ (y[^](2::nat))"
using F5 by presburger
then have "(b[^](4::nat))⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗((b ⊗(a ÷ b))[^](4::nat)) =
((b[^](2::nat)) [^] (2::nat)) ⊗ (y[^](2::nat))"
using F0 Qp.nat_pow_distrib assms(1) assms(2) fract_closed by presburger
then have "(b[^](4::nat))⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗(a[^](4::nat)) =
((b[^](2::nat)) [^] (2::nat)) ⊗ (y[^](2::nat))"
by (metis F0 assms(1) local.fract_cancel_right)
then have "(b[^](4::nat))⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗(a[^](4::nat)) =
(((b[^](2::nat))⊗ y)[^](2::nat))"
using Qp.nat_pow_closed Qp.nat_pow_distrib assms(2) y_def by blast
then have "((b[^](2::nat))⊗ y) ∈ carrier Q⇩p ∧ (b[^](4::nat))⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗(a[^](4::nat)) =
(((b[^](2::nat))⊗ y)[^](2::nat))"
by (meson Qp.cring_axioms Qp.nat_pow_closed assms(2) cring.cring_simprules(5) y_def)
then show ?thesis
by blast
qed
qed
qed
show "∃y ∈ carrier Q⇩p. (b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat)) ⟹ val a ≥ val b"
proof-
assume A: "∃y ∈ carrier Q⇩p. (b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat))"
show "val a ≥ val b"
proof(cases "a = 𝟬")
case True
then show ?thesis
using eint_ord_code(3) local.val_zero by presburger
next
case False
have "b ≠ 𝟬"
proof(rule ccontr)
assume "¬ b ≠ 𝟬"
then have "∃y ∈ carrier Q⇩p. (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat))"
using A
by (metis (no_types, lifting) Qp.add.r_cancel_one' Qp.nat_pow_closed Qp.nonzero_memE(2)
Qp_nonzero_nat_pow assms(1) assms(2) local.monom_term_car not_nonzero_Qp
p_natpow_closed(1) zero_less_numeral)
then obtain y where y_def: "y ∈ carrier Q⇩p ∧ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat))"
by blast
have 0: "ord ((𝔭[^](3::nat))⊗ (a[^](4::nat))) = 3 + 4* ord a"
proof-
have 00: "(𝔭[^](3::nat)) ∈ nonzero Q⇩p"
using Qp_nat_pow_nonzero p_nonzero by blast
have 01: "(a[^](4::nat)) ∈ nonzero Q⇩p"
using False Qp_nat_pow_nonzero assms(1) not_nonzero_Qp Qp.nonzero_memI by presburger
then show ?thesis using ord_mult[of "𝔭[^](3::nat)" "a[^](4::nat)"]
by (metis (no_types, lifting) "00" False assms(1) nonzero_nat_pow_ord
not_nonzero_Qp of_nat_numeral ord_p_pow_nat)
qed
have 1: "ord ((𝔭[^](3::nat))⊗ (a[^](4::nat))) = 2* (ord y)"
proof-
have "y ≠ 𝟬"
proof(rule ccontr)
assume " ¬ y ≠ 𝟬"
then have "(𝔭[^](3::nat))⊗ (a[^](4::nat)) = 𝟬"
using y_def Qp.cring_axioms cring_def pos2 ring.pow_zero by blast
then show False
by (metis False Qp.integral Qp.nat_pow_closed Qp.nonzero_pow_nonzero
Qp.not_nonzero_memI Qp_nat_pow_nonzero assms(1) p_natpow_closed(1) p_nonzero)
qed
then show ?thesis
using y_def
by (metis nonzero_nat_pow_ord not_nonzero_Qp of_nat_numeral)
qed
then show False
using 0
by presburger
qed
then have F0: "b ∈ nonzero Q⇩p"
using assms(2) not_nonzero_Qp by metis
have F1: "a ∈ nonzero Q⇩p"
using False assms(1) not_nonzero_Qp by metis
obtain y where y_def: "y ∈ carrier Q⇩p ∧ (b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat)) = (y[^](2::nat))"
using A by blast
show ?thesis
proof(rule ccontr)
assume " ¬ val a ≥ val b "
then have F2: "ord a < ord b"
using F0 F1 assms
by (metis False ‹b ≠ 𝟬› eint_ord_simps(1) leI val_def)
have 0: "ord ((𝔭[^](3::nat))⊗ (a[^](4::nat))) = 3 + 4* ord a"
using F0 ord_mult F1 Qp_nat_pow_nonzero nonzero_nat_pow_ord ord_p_pow_nat p_natpow_closed(2)
by presburger
have 1: " ord (b[^](4::nat)) = 4* ord b"
using F0 nonzero_nat_pow_ord
by presburger
have 2: "(4 * (ord b)) > 4 * (ord a)"
using F2 by linarith
have 3: "(4 * (ord b)) ≤ 3 + 4* ord a"
proof(rule ccontr)
assume "¬ (4 * (ord b)) ≤ 3 + 4* ord a"
then have "(4 * (ord b)) > 3 + 4* ord a"
by linarith
then have 30: "ord ((b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat))) = 3 + 4* ord a"
using "0" "1" F0 F1 Qp_nat_pow_nonzero Qp.nat_pow_closed assms(1) monom_term_car not_nonzero_Qp ord_ultrametric_noteq
p_natpow_closed(1) p_nonzero
by (metis Qp.integral)
have "y ∈ nonzero Q⇩p"
proof(rule ccontr)
assume A: "y ∉ nonzero Q⇩p"
then have "y = 𝟬"
using y_def Qp.nonzero_memI by blast
then have "b [^] 4 ⊕ 𝔭 [^] 3 ⊗ a [^] 4 = 𝟬"
by (smt "0" "1" A F0 False Qp.integral Qp.nat_pow_closed Qp.nonzero_closed
Qp.nonzero_mult_closed Qp.nonzero_pow_nonzero Qp.pow_zero assms(1) diff_ord_nonzero not_nonzero_Qp p_nonzero pos2 y_def)
then show False
by (smt "0" "1" A F0 F1 Qp.integral Qp.nat_pow_closed Qp.nonzero_mult_closed
Qp_nat_pow_nonzero assms(1) diff_ord_nonzero not_nonzero_Qp p_natpow_closed(1) p_nonzero y_def)
qed
then have 31: "ord ((b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat))) = 2* ord y"
using nonzero_nat_pow_ord y_def
by presburger
then show False using 30 by presburger
qed
show False
using 2 3
by presburger
qed
qed
qed
qed
text‹The polynomial in two variables which semialgebraically defines the valuation relation›
definition Qp_val_poly where
"Qp_val_poly = (pvar Q⇩p 1)[^]⇘Q⇩p[𝒳⇘2⇙]⇙(4::nat) ⊕⇘Q⇩p[𝒳⇘2⇙]⇙ (𝔭[^](3::nat) ⊙⇘Q⇩p[𝒳⇘2⇙]⇙ ((pvar Q⇩p 0)[^]⇘Q⇩p[𝒳⇘2⇙]⇙(4::nat)))"
lemma Qp_val_poly_closed:
"Qp_val_poly ∈ carrier (Q⇩p[𝒳⇘2⇙])"
proof-
have "(pvar Q⇩p 1) ∈ carrier (Q⇩p[𝒳⇘2⇙])"
using local.pvar_closed one_less_numeral_iff semiring_norm(76) by blast
then have 0: "(pvar Q⇩p 1)[^]⇘Q⇩p[𝒳⇘2⇙]⇙(4::nat) ∈ carrier (Q⇩p[𝒳⇘2⇙])"
using ring.Pring_is_ring[of Q⇩p "{0::nat..2-1}"]
monoid.nat_pow_closed[of "coord_ring Q⇩p 2"] Qp.cring_axioms cring.axioms(1) ring.Pring_is_monoid
by blast
have 1: "(pvar Q⇩p 0)[^]⇘Q⇩p[𝒳⇘2⇙]⇙(4::nat) ∈ carrier (Q⇩p[𝒳⇘2⇙])"
using local.pvar_closed pos2 by blast
have 2: "𝔭[^](3::nat) ⊙⇘Q⇩p[𝒳⇘2⇙]⇙(pvar Q⇩p 0)[^]⇘Q⇩p[𝒳⇘2⇙]⇙(4::nat) ∈ carrier (Q⇩p[𝒳⇘2⇙])"
using 1 local.smult_closed p_natpow_closed(1) by blast
then show ?thesis
unfolding Qp_val_poly_def
using 0 by blast
qed
lemma Qp_val_poly_eval:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
shows "Qp_ev Qp_val_poly [a, b] = (b[^](4::nat)) ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (a[^](4::nat))"
proof-
have 0: "[a,b] ∈ carrier (Q⇩p⇗2⇖)"
proof(rule cartesian_power_car_memI)
show "length [a, b] = 2"
by simp
have "set [a,b] = {a,b}"
by auto
then show "set [a, b] ⊆ carrier Q⇩p"
using assms
by (simp add: ‹a ∈ carrier Q⇩p› ‹b ∈ carrier Q⇩p›)
qed
obtain f where f_def: "f = ((pvar Q⇩p 1)[^]⇘Q⇩p[𝒳⇘2⇙]⇙(4::nat))"
by blast
obtain g where g_def: "g = (𝔭[^](3::nat) ⊙⇘Q⇩p[𝒳⇘2⇙]⇙ ((pvar Q⇩p 0)[^]⇘Q⇩p[𝒳⇘2⇙]⇙(4::nat)))"
by blast
have 1: "Qp_val_poly = f ⊕⇘Q⇩p[𝒳⇘2⇙]⇙ g"
unfolding Qp_val_poly_def
using f_def g_def by blast
have 1: "Qp_ev (pvar Q⇩p (0::nat)) [a,b] = a"
using eval_pvar
by (metis ‹[a, b] ∈ carrier (Q⇩p⇗2⇖)› nth_Cons_0 pos2)
have 2: "Qp_ev (pvar Q⇩p (1::nat)) [a,b] = b"
using eval_pvar
by (metis (no_types, lifting) "0" One_nat_def add_diff_cancel_right' assms(2)
cartesian_power_car_memE gr_zeroI less_numeral_extra(1) less_numeral_extra(4)
list.size(4) nth_Cons_pos Qp.to_R1_closed Qp.to_R_to_R1 zero_less_diff)
have 3: "Qp_ev ((pvar Q⇩p 1)[^]⇘Q⇩p[𝒳⇘2⇙]⇙(4::nat)) [a,b] = (b[^](4::nat))"
by (metis "0" "2" eval_at_point_nat_pow local.pvar_closed one_less_numeral_iff semiring_norm(76))
have 4: "Qp_ev ((pvar Q⇩p 0)[^]⇘Q⇩p[𝒳⇘2⇙]⇙(4::nat)) [a,b] = (a[^](4::nat))"
using "0" "1" eval_at_point_nat_pow local.pvar_closed pos2 by presburger
then have 5: "Qp_ev (poly_scalar_mult Q⇩p (𝔭[^](3::nat)) ((pvar Q⇩p 0)[^]⇘Q⇩p[𝒳⇘2⇙]⇙(4::nat))) [a,b] = (𝔭[^](3::nat))⊗ (a[^](4::nat))"
using eval_at_point_smult[of "[a,b]" 2 "(pvar Q⇩p 0)[^]⇘Q⇩p[𝒳⇘2⇙]⇙(4::nat)" "𝔭[^](3::nat)" ] 2
by (metis "0" MP.nat_pow_closed eval_at_point_scalar_mult local.pvar_closed p_natpow_closed(1) zero_less_numeral)
then show ?thesis
proof-
have 00: "[a, b] ∈ carrier (Q⇩p⇗2⇖)"
by (simp add: "0")
have 01: " pvar Q⇩p 1 [^]⇘Q⇩p[𝒳⇘2⇙]⇙ (4::nat) ∈ carrier (Q⇩p[𝒳⇘2⇙])"
by (meson MP.nat_pow_closed local.pvar_closed one_less_numeral_iff semiring_norm(76))
have 02: "𝔭[^](3::nat) ⊙⇘Q⇩p[𝒳⇘2⇙]⇙ (pvar Q⇩p 0 [^]⇘Q⇩p[𝒳⇘2⇙]⇙ (4::nat)) ∈ carrier (Q⇩p[𝒳⇘2⇙])"
by (meson MP.nat_pow_closed local.pvar_closed local.smult_closed p_natpow_closed(1) zero_less_numeral)
then show ?thesis
unfolding Qp_val_poly_def
using 00 01 02
by (metis (no_types, lifting) "3" "4" MP.nat_pow_closed eval_at_point_add eval_at_point_smult
local.pvar_closed p_natpow_closed(1) zero_less_numeral)
qed
qed
lemma Qp_2I:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
shows "[a,b] ∈ carrier (Q⇩p⇗2⇖)"
apply(rule cartesian_power_car_memI)
using assms
apply (simp add: assms(1) assms(2))
using assms
by (simp add: assms(1) assms(2))
lemma pair_id:
assumes "length as = 2"
shows "as = [as!0, as!1]"
using assms
by (smt One_nat_def diff_Suc_1 length_Cons less_Suc0 less_SucE list.size(3)
nth_Cons' nth_equalityI numeral_2_eq_2)
lemma Qp_val_semialg:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
shows "val b ≤ val a ⟷ [a,b] ∈ basic_semialg_set 2 (2::nat) Qp_val_poly"
proof
show "val a ≥ val b ⟹ [a, b] ∈ basic_semialg_set 2 2 Qp_val_poly"
using Qp_val_alt_def[of a b] Qp_2I[of a b] Qp_val_poly_eval[of a b]
unfolding basic_semialg_set_def
by (metis (mono_tags, lifting) assms(1) assms(2) mem_Collect_eq)
show "[a, b] ∈ basic_semialg_set 2 2 Qp_val_poly ⟹ val a ≥ val b"
using Qp_val_alt_def[of a b] Qp_2I[of a b] Qp_val_poly_eval[of a b]
unfolding basic_semialg_set_def
using assms(1) assms(2)
by blast
qed
definition val_relation_set where
"val_relation_set = {as ∈ carrier (Q⇩p⇗2⇖). val (as!1) ≤ val (as!0)}"
lemma val_relation_setE:
assumes "as ∈ val_relation_set"
shows "as!0 ∈ carrier Q⇩p ∧ as!1 ∈ carrier Q⇩p ∧ as = [as!0,as!1] ∧ val (as!1) ≤ val (as!0)"
using assms unfolding val_relation_set_def
by (smt cartesian_power_car_memE cartesian_power_car_memE' mem_Collect_eq one_less_numeral_iff pair_id pos2 semiring_norm(76))
lemma val_relation_setI:
assumes "as!0 ∈ carrier Q⇩p"
assumes "as!1 ∈ carrier Q⇩p"
assumes "length as = 2"
assumes "val (as!1) ≤ val(as!0)"
shows "as ∈ val_relation_set"
unfolding val_relation_set_def using assms Qp_2I[of "as!0" "as!1"]
by (metis (no_types, lifting) mem_Collect_eq pair_id)
lemma val_relation_semialg:
"val_relation_set = basic_semialg_set 2 (2::nat) Qp_val_poly"
proof
show "val_relation_set ⊆ basic_semialg_set 2 (2::nat) Qp_val_poly"
proof fix as
assume A: "as ∈ val_relation_set"
have 0: "length as = 2"
unfolding val_relation_set_def
by (metis (no_types, lifting) A cartesian_power_car_memE mem_Collect_eq val_relation_set_def)
have 1: "as = [as ! 0, as ! 1]"
by (metis (no_types, lifting) A cartesian_power_car_memE mem_Collect_eq pair_id val_relation_set_def)
show "as ∈ basic_semialg_set 2 (2::nat) Qp_val_poly"
using A 1 val_relation_setE[of as] Qp_val_semialg[of "as!0" "as!1"]
by presburger
qed
show "basic_semialg_set 2 (2::nat) Qp_val_poly ⊆ val_relation_set"
proof
fix as
assume "as ∈ basic_semialg_set 2 (2::nat) Qp_val_poly"
then show "as ∈ val_relation_set"
using val_relation_setI[of as]
by (smt cartesian_power_car_memE cartesian_power_car_memE' mem_Collect_eq
one_less_numeral_iff Qp_val_semialg basic_semialg_set_def
val_relation_set_def padic_fields_axioms pair_id pos2 semiring_norm(76))
qed
qed
lemma val_relation_is_semialgebraic:
"is_semialgebraic 2 val_relation_set"
proof -
have "{rs ∈ carrier (Q⇩p⇗2⇖). val (rs ! 0) ≥ val (rs ! 1)} = basic_semialg_set (Suc 1) (Suc 1) Qp_val_poly"
using Suc_1 val_relation_semialg val_relation_set_def by presburger
then show ?thesis
by (metis (no_types) Qp_val_poly_closed Suc_1 basic_semialg_is_semialgebraic' val_relation_set_def zero_neq_numeral)
qed
lemma Qp_val_ring_is_semialg:
obtains P where "P ∈ carrier Q⇩p_x ∧ 𝒪⇩p = univ_basic_semialg_set 2 P"
proof-
obtain P where P_def: "P = (𝔭[^](3::nat)) ⊙⇘Q⇩p_x ⇙(X_poly Q⇩p) [^]⇘Q⇩p_x⇙ (4::nat) ⊕⇘Q⇩p_x⇙ 𝟭⇘Q⇩p_x⇙"
by blast
have 0: "P ∈ carrier Q⇩p_x"
proof-
have 0: "(X_poly Q⇩p) ∈ carrier Q⇩p_x"
using UPQ.X_closed by blast
then show ?thesis
using P_def UPQ.P.nat_pow_closed p_natpow_closed(1) by blast
qed
have 1: "𝒪⇩p = univ_basic_semialg_set 2 P"
proof
show "𝒪⇩p ⊆ univ_basic_semialg_set 2 P"
proof
fix x
assume A: "x ∈ 𝒪⇩p"
show "x ∈ univ_basic_semialg_set 2 P"
proof-
have x_car: "x ∈ carrier Q⇩p"
using A val_ring_memE by blast
then have "(∃y ∈ carrier Q⇩p. 𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (x[^](4::nat)) = (y[^](2::nat)))"
using A Qp_val_ring_alt_def[of x]
by blast
then obtain y where y_def: "y ∈ carrier Q⇩p ∧ 𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (x[^](4::nat)) = (y[^](2::nat))"
by blast
have "y ∈ carrier Q⇩p ∧ P ∙ x = (y[^](2::nat))"
proof-
have "P ∙ x = 𝟭 ⊕⇘Q⇩p⇙ (𝔭[^](3::nat))⊗ (x[^](4::nat))"
proof-
have "((𝔭[^](3::nat)) ⊙⇘Q⇩p_x⇙ (X_poly Q⇩p) [^]⇘Q⇩p_x⇙ (4::nat)) ∈ carrier Q⇩p_x"
using UPQ.monom_closed p_natpow_closed(1) by blast
then have "P ∙ x = (((𝔭[^](3::nat)) ⊙⇘Q⇩p_x⇙ (X_poly Q⇩p) [^]⇘Q⇩p_x⇙ (4::nat))∙ x) ⊕⇘Q⇩p⇙ (𝟭⇘Q⇩p_x⇙ ∙ x)"
using P_def x_car UPQ.to_fun_plus by blast
then have 0: "P ∙ x = (𝔭[^](3::nat)) ⊗(( (X_poly Q⇩p) [^]⇘Q⇩p_x⇙ (4::nat))∙ x) ⊕⇘Q⇩p⇙ (𝟭⇘Q⇩p_x⇙ ∙ x)"
using UPQ.P.nat_pow_closed UPQ.X_closed UPQ.to_fun_smult p_natpow_closed(1) x_car by presburger
have "(( (X_poly Q⇩p) [^]⇘Q⇩p_x⇙ (4::nat))∙ x) = (x[^](4::nat))"
using UPQ.to_fun_X_pow x_car by blast
then have "P ∙ x = (𝔭[^](3::nat)) ⊗(x[^](4::nat)) ⊕⇘Q⇩p⇙ 𝟭"
using "0" UPQ.to_fun_one x_car by presburger
then show ?thesis
using y_def Qp.add.m_comm Qp.one_closed local.monom_term_car p_natpow_closed(1) x_car
by presburger
qed
then show ?thesis
using y_def
by blast
qed
then show ?thesis
unfolding univ_basic_semialg_set_def
using x_car
by blast
qed
qed
show "univ_basic_semialg_set 2 P ⊆ 𝒪⇩p"
proof fix x
assume A: "x ∈ univ_basic_semialg_set (2::nat) P"
then obtain y where y_def: "y ∈ carrier Q⇩p ∧ (P ∙ x) = (y[^](2::nat))"
unfolding univ_basic_semialg_set_def
by blast
have x_car: "x ∈ carrier Q⇩p"
using A
by (metis (no_types, lifting) mem_Collect_eq univ_basic_semialg_set_def)
have 0: "(P ∙ x) = (𝔭[^](3::nat)) ⊗ (x[^](4::nat)) ⊕⇘Q⇩p⇙ 𝟭"
using P_def x_car UPQ.UP_one_closed UPQ.monom_closed UPQ.monom_rep_X_pow UPQ.to_fun_monom
UPQ.to_fun_one UPQ.to_fun_plus p_natpow_closed(1) by presburger
have 1: "y ∈ carrier Q⇩p ∧ (𝔭[^](3::nat)) ⊗ (x[^](4::nat)) ⊕⇘Q⇩p⇙ 𝟭 = (y[^](2::nat))"
using "0" y_def
by blast
then show "x ∈ 𝒪⇩p"
using x_car Qp_val_ring_alt_def[of x] y_def
by (metis Qp.add.m_comm Qp.one_closed local.monom_term_car p_natpow_closed(1))
qed
qed
show ?thesis
using 0 1 that
by blast
qed
lemma Qp_val_ring_is_univ_semialgebraic:
"is_univ_semialgebraic 𝒪⇩p"
proof-
obtain P where "P ∈ carrier Q⇩p_x ∧ 𝒪⇩p = univ_basic_semialg_set 2 P"
using Qp_val_ring_is_semialg by blast
then show ?thesis
by (metis univ_basic_semialg_set_is_univ_semialgebraic zero_neq_numeral)
qed
lemma Qp_val_ring_is_semialgebraic:
"is_semialgebraic 1 (to_R1` 𝒪⇩p)"
using Qp_val_ring_is_univ_semialgebraic is_univ_semialgebraic_def by blast
subsubsection‹Inverse Images of Semialgebraic Sets by Polynomial Maps›
lemma basic_semialg_pullback:
assumes "f ∈ carrier (Q⇩p[𝒳⇘k⇙])"
assumes "is_poly_tuple n fs"
assumes "length fs = k"
assumes "S = basic_semialg_set k m f"
assumes "m ≠0"
shows "poly_map n fs ¯⇘n⇙ S = basic_semialg_set n m (Qp_poly_comp n fs f)"
proof
show "poly_map n fs ¯⇘n⇙ S ⊆ basic_semialg_set n m (Qp_poly_comp n fs f)"
proof
fix x
assume A: "x ∈ poly_map n fs ¯⇘n⇙ S"
then have 0: "poly_map n fs x ∈ S"
proof -
have "∃n f. {rs. rs ∈ S} ⊆ {rs ∈ carrier (Q⇩p⇗k⇖). ∃r. r ∈ carrier Q⇩p ∧ Qp_ev f rs = (r[^](n::nat))}"
by (metis (no_types) Collect_mem_eq ‹S = basic_semialg_set k m f› basic_semialg_set_def eq_iff)
then show ?thesis
using A by blast
qed
have 1: "x ∈ carrier (Q⇩p⇗n⇖)"
using A assms
by (meson evimage_eq)
have "∃y ∈ (carrier Q⇩p). Qp_ev f (poly_map n fs x) = (y[^]m)"
using A 0 assms basic_semialg_set_def
by blast
then have "∃y ∈ (carrier Q⇩p). Qp_ev (Qp_poly_comp n fs f) x = (y[^]m)"
using 1 assms Qp_poly_comp_eval
by blast
then show "x ∈ basic_semialg_set n m (Qp_poly_comp n fs f)"
using "1" basic_semialg_set_def
by blast
qed
show "basic_semialg_set n m (Qp_poly_comp n fs f) ⊆ poly_map n fs ¯⇘n⇙ S"
proof fix x
assume A: "x ∈ basic_semialg_set n m (Qp_poly_comp n fs f)"
have 0: "x ∈ carrier (Q⇩p⇗n⇖)"
using A basic_semialg_set_def
by blast
have 1: "(poly_map n fs x) ∈ carrier (Q⇩p⇗k⇖)"
using "0" poly_map_closed assms(2) assms(3) by blast
show "x ∈ poly_map n fs ¯⇘n⇙ S"
proof-
have "∃y ∈ carrier Q⇩p. Qp_ev (Qp_poly_comp n fs f) x = (y[^]m)"
using A basic_semialg_set_def
by blast
then have 2: "∃y ∈ carrier Q⇩p. Qp_ev f (poly_map n fs x) = (y[^]m)"
using assms Qp_poly_comp_eval
by (metis (no_types, lifting) A basic_semialg_set_def mem_Collect_eq)
have 3: "poly_map n fs x ∈ S"
using assms 0 1 basic_semialg_set_def[of k m f] "2"
by blast
show ?thesis
using "0" "3" by blast
qed
qed
qed
lemma basic_semialg_pullback':
assumes "is_poly_tuple n fs"
assumes "length fs = k"
assumes "A ∈ basic_semialgs k"
shows "poly_map n fs ¯⇘n⇙ A ∈ (basic_semialgs n)"
proof-
obtain f m where fm_def: "m ≠0 ∧f ∈ carrier (Q⇩p[𝒳⇘k⇙]) ∧ A = basic_semialg_set k m f"
using assms
by (metis is_basic_semialg_def mem_Collect_eq)
then have "poly_map n fs ¯⇘n⇙ A = basic_semialg_set n m (Qp_poly_comp n fs f)"
using assms basic_semialg_pullback[of f k n fs A m]
by linarith
then show ?thesis unfolding is_basic_semialg_def
by (metis (mono_tags, lifting) assms(1) assms(2) fm_def mem_Collect_eq poly_compose_closed)
qed
lemma semialg_pullback:
assumes "is_poly_tuple n fs"
assumes "length fs = k"
assumes "S ∈ semialg_sets k"
shows "poly_map n fs ¯⇘n⇙ S ∈ semialg_sets n"
unfolding semialg_sets_def
apply(rule gen_boolean_algebra.induct[of S "(carrier (Q⇩p⇗k⇖))" "basic_semialgs k"])
using assms semialg_sets_def apply blast
apply (metis assms(1) assms(2) carrier_is_semialgebraic evimageI2 extensional_vimage_closed is_semialgebraicE poly_map_closed semialg_sets_def subsetI subset_antisym)
apply (metis Int_absorb2 assms(1) assms(2) basic_semialg_is_semialg basic_semialg_is_semialgebraic basic_semialg_pullback' is_semialgebraic_closed mem_Collect_eq semialg_sets_def)
apply (metis evimage_Un semialg_sets_def semialg_union)
by (metis assms(1) assms(2) carrier_is_semialgebraic diff_is_semialgebraic evimage_Diff extensional_vimage_closed is_semialgebraicE is_semialgebraicI poly_map_closed poly_map_pullbackI semialg_sets_def subsetI subset_antisym)
lemma pullback_is_semialg:
assumes "is_poly_tuple n fs"
assumes "length fs = k"
assumes "S ∈ semialg_sets k"
shows "is_semialgebraic n (poly_map n fs ¯⇘n⇙ S)"
using assms(1) assms(2) assms(3) is_semialgebraicI padic_fields_axioms semialg_pullback
by blast
text‹Equality and inequality sets for a pair of polynomials›
definition val_ineq_set where
"val_ineq_set n f g = {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) ≤ val (Qp_ev g x)}"
lemma poly_map_length :
assumes "length fs = m"
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
shows "length (poly_map n fs as) = m"
using assms unfolding poly_map_def poly_tuple_eval_def
by (metis (no_types, lifting) length_map restrict_apply')
lemma val_ineq_set_pullback:
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "g ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "val_ineq_set n f g = poly_map n [g,f] ¯⇘n⇙ val_relation_set "
proof
show "val_ineq_set n f g ⊆ poly_map n [g,f] ¯⇘n⇙ val_relation_set"
proof
fix x
assume "x ∈ val_ineq_set n f g"
then have 0: "x ∈ carrier (Q⇩p⇗n⇖) ∧ val (Qp_ev f x) ≤ val (Qp_ev g x)"
by (metis (mono_tags, lifting) mem_Collect_eq val_ineq_set_def)
have 1: "poly_map n [g,f] x = [Qp_ev g x, Qp_ev f x]"
unfolding poly_map_def poly_tuple_eval_def using 0
by (metis (no_types, lifting) Cons_eq_map_conv list.simps(8) restrict_apply')
have 2: "poly_map n [g,f] x ∈ val_relation_set"
apply(rule val_relation_setI)
using 1 0 assms apply (metis eval_at_point_closed nth_Cons_0)
using 1 0 assms apply (metis One_nat_def eval_at_point_closed diff_Suc_1 less_numeral_extra(1) nth_Cons_pos Qp.to_R_to_R1)
using poly_map_length assms 0 apply (metis "1" Qp_2I cartesian_power_car_memE eval_at_point_closed)
by (metis "0" "1" One_nat_def nth_Cons_0 nth_Cons_Suc)
have 3: "is_poly_tuple n [g, f]"
using assms
by (smt One_nat_def diff_Suc_1 Qp_is_poly_tupleI length_Suc_conv less_SucE less_one list.size(3) nth_Cons')
then show "x ∈ poly_map n [g,f] ¯⇘n⇙ val_relation_set"
using 0 1 2
by blast
qed
show "poly_map n [g,f] ¯⇘n⇙ val_relation_set ⊆ val_ineq_set n f g"
proof fix x
have 0: "is_poly_tuple n [g, f]"
using Qp_is_poly_tupleI assms
by (metis (no_types, lifting) diff_Suc_1 length_Cons less_Suc0 less_SucE list.size(3) nth_Cons')
assume A: "x ∈ poly_map n [g,f] ¯⇘n⇙ val_relation_set"
then have 1: "x ∈ carrier (Q⇩p⇗n⇖) ∧ poly_map n [g,f] x ∈ val_relation_set"
using 0
by (meson evimageD extensional_vimage_closed subsetD)
have 2: "poly_map n [g,f] x = [Qp_ev g x, Qp_ev f x]"
by (metis "1" Qp_poly_mapE' length_0_conv poly_map_cons)
show "x ∈ val_ineq_set n f g"
using 0 1 2 unfolding val_ineq_set_def val_relation_set_def
by (metis (no_types, lifting) "1" list.inject mem_Collect_eq nth_Cons_0 poly_map_apply val_relation_setE)
qed
qed
lemma val_ineq_set_is_semialg:
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "g ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "val_ineq_set n f g ∈ semialg_sets n"
proof-
have 0: "val_relation_set ∈ semialg_sets 2"
using val_relation_semialg basic_semialg_is_semialg'
by (metis Qp_val_poly_closed zero_neq_numeral)
show ?thesis using val_ineq_set_pullback semialg_pullback[of n "[g,f]" 2 "val_relation_set" ]
by (metis (no_types, lifting) "0" assms(1) assms(2) diff_Suc_1 Qp_is_poly_tupleI
length_Cons less_Suc0 less_SucE list.size(3) nth_Cons_0 nth_Cons_pos numeral_2_eq_2
zero_neq_numeral)
qed
lemma val_ineq_set_is_semialgebraic:
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "g ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic n (val_ineq_set n f g)"
using assms(1) assms(2) is_semialgebraicI val_ineq_set_is_semialg by blast
lemma val_ineq_setI:
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "g ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "x ∈ (val_ineq_set n f g)"
shows "x ∈ carrier (Q⇩p⇗n⇖)"
"val (Qp_ev f x) ≤ val (Qp_ev g x)"
using assms unfolding val_ineq_set_def apply blast
using assms unfolding val_ineq_set_def by blast
lemma val_ineq_setE:
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "g ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "x ∈ carrier (Q⇩p⇗n⇖)"
assumes "val (Qp_ev f x) ≤ val (Qp_ev g x)"
shows "x ∈ (val_ineq_set n f g)"
using assms unfolding val_ineq_set_def
by blast
lemma val_ineq_set_is_semialgebraic':
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "g ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) ≤ val (Qp_ev g x)}"
using assms val_ineq_set_is_semialgebraic unfolding val_ineq_set_def by blast
lemma val_eq_set_is_semialgebraic:
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "g ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) = val (Qp_ev g x)}"
proof-
have 0: "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) ≤ val (Qp_ev g x)}"
using assms val_ineq_set_is_semialgebraic unfolding val_ineq_set_def
by blast
have 1: "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) ≤ val (Qp_ev f x)}"
using assms val_ineq_set_is_semialgebraic unfolding val_ineq_set_def
by blast
have 2: "{x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) = val (Qp_ev g x)} = {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) ≤ val (Qp_ev g x)} ∩
{x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) ≤ val (Qp_ev f x)}"
apply(rule equalityI, rule subsetI , rule IntI) unfolding mem_Collect_eq
using le_less apply blast apply (metis order_refl)
apply(rule subsetI, erule IntE) unfolding mem_Collect_eq
by (meson less_le_trans not_less_iff_gr_or_eq)
show ?thesis unfolding 2 apply(rule intersection_is_semialg)
using 0 apply blast using 1 by blast
qed
lemma equalityI'':
assumes "⋀x. A x ⟹ B x"
assumes "⋀x. B x ⟹ A x"
shows "{x. A x} = {x. B x}"
using assms by blast
lemma val_strict_ineq_set_is_semialgebraic:
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "g ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) < val (Qp_ev g x)}"
proof-
have 0: "{x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) < val (Qp_ev g x)} =
{x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) ≤ val (Qp_ev g x)} - {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) = val (Qp_ev g x)}"
apply(rule equalityI', rule DiffI) unfolding le_less mem_Collect_eq apply blast
unfolding mem_Collect_eq using neq_iff apply blast
apply(erule DiffE) unfolding mem_Collect_eq by blast
show ?thesis unfolding 0
apply(rule diff_is_semialgebraic)
using assms val_ineq_set_is_semialgebraic[of f n g] unfolding val_ineq_set_def apply blast
using assms val_eq_set_is_semialgebraic[of f n g] unfolding val_ineq_set_def by blast
qed
lemma constant_poly_val_exists:
shows "∃g ∈ carrier (Q⇩p[𝒳⇘n⇙]). (∀ x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) = c)"
proof-
obtain a where a_def: "a ∈ carrier Q⇩p ∧ val a = c"
by (meson Qp.minus_closed Qp.nonzero_closed dist_nonempty' p_nonzero)
obtain g where g_def: "g = coord_const a"
by blast
show ?thesis using a_def g_def Qp_to_IP_car
by (metis (no_types, opaque_lifting) Qp_to_IP_car a_def eval_at_point_const g_def le_less subset_iff)
qed
lemma val_ineq_set_is_semialgebraic'':
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) ≤ c}"
proof-
obtain g where g_def: "g ∈ carrier (Q⇩p[𝒳⇘n⇙]) ∧ (∀ x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) = c)"
using constant_poly_val_exists by blast
have 0: "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) ≤ val (Qp_ev g x)}"
apply(rule val_ineq_set_is_semialgebraic')
using assms apply blast using g_def by blast
have 1: "{x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) ≤ val (Qp_ev g x)} = {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) ≤ c}"
apply(rule equalityI'') using g_def apply fastforce using g_def by fastforce
show ?thesis using 0 unfolding 1 by blast
qed
lemma val_ineq_set_is_semialgebraic''':
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). c ≤ val (Qp_ev f x)}"
proof-
obtain g where g_def: "g ∈ carrier (Q⇩p[𝒳⇘n⇙]) ∧ (∀ x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) = c)"
using constant_poly_val_exists by blast
have 0: "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) ≤ val (Qp_ev f x)}"
apply(rule val_ineq_set_is_semialgebraic')
using g_def apply blast using assms by blast
have 1: "{x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) ≤ val (Qp_ev f x)} = {x ∈ carrier (Q⇩p⇗n⇖). c ≤ val (Qp_ev f x)}"
apply(rule equalityI'') using g_def apply fastforce using g_def by fastforce
show ?thesis using 0 unfolding 1 by blast
qed
lemma val_eq_set_is_semialgebraic':
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) = c}"
proof-
obtain g where g_def: "g ∈ carrier (Q⇩p[𝒳⇘n⇙]) ∧ (∀ x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) = c)"
using constant_poly_val_exists by blast
have 0: "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) = val (Qp_ev g x)}"
apply(rule val_eq_set_is_semialgebraic)
using assms apply blast using g_def by blast
have 1: "{x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) = val (Qp_ev g x)} = {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) = c}"
apply(rule equalityI'') using g_def apply fastforce using g_def by metis
show ?thesis using 0 unfolding 1 by blast
qed
lemma val_strict_ineq_set_is_semialgebraic':
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) < c}"
proof-
obtain g where g_def: "g ∈ carrier (Q⇩p[𝒳⇘n⇙]) ∧ (∀ x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) = c)"
using constant_poly_val_exists by blast
have 0: "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) < val (Qp_ev g x)}"
apply(rule val_strict_ineq_set_is_semialgebraic)
using assms apply blast using g_def by blast
have 1: "{x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) < val (Qp_ev g x)} = {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev f x) < c}"
apply(rule equalityI'') using g_def apply fastforce using g_def
by fastforce
show ?thesis using 0 g_def unfolding 1
by blast
qed
lemma val_strict_ineq_set_is_semialgebraic'':
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). c < val (Qp_ev f x)}"
proof-
obtain g where g_def: "g ∈ carrier (Q⇩p[𝒳⇘n⇙]) ∧ (∀ x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) = c)"
using constant_poly_val_exists by blast
have 0: "is_semialgebraic n {x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) < val (Qp_ev f x)}"
apply(rule val_strict_ineq_set_is_semialgebraic)
using g_def apply blast using assms by blast
have 1: "{x ∈ carrier (Q⇩p⇗n⇖). val (Qp_ev g x) < val (Qp_ev f x)} = {x ∈ carrier (Q⇩p⇗n⇖). c < val (Qp_ev f x)}"
apply(rule equalityI'') using assms g_def apply fastforce using assms g_def by fastforce
show ?thesis using 0 g_def unfolding 1
by blast
qed
lemma(in cring) R1_memE:
assumes "x ∈ carrier (R⇗1⇖)"
shows "x = [(hd x)]"
using assms cartesian_power_car_memE
by (metis diff_is_0_eq' hd_conv_nth le_eq_less_or_eq length_0_conv length_tl list.exhaust list.sel(3) normalize.cases nth_Cons_0 zero_neq_one)
lemma(in cring) R1_memE':
assumes "x ∈ carrier (R⇗1⇖)"
shows "hd x ∈ carrier R"
using R1_memE assms cartesian_power_car_memE[of x R 1] cartesian_power_car_memE'[of x R 1 0]
by (metis hd_conv_nth less_numeral_extra(1) list.size(3) zero_neq_one)
lemma univ_val_ineq_set_is_univ_semialgebraic:
"is_univ_semialgebraic {x ∈ carrier Q⇩p. val x ≤ c}"
proof-
have 0: "is_semialgebraic 1 {x ∈ carrier (Q⇩p⇗1⇖). val (Qp_ev (pvar Q⇩p 0) x) ≤ c}"
apply(rule val_ineq_set_is_semialgebraic'')
using pvar_closed by blast
have 1: "{x ∈ carrier (Q⇩p⇗1⇖). val (Qp_ev (pvar Q⇩p 0) x) ≤ c} = to_R1 ` {x ∈ carrier Q⇩p. val x ≤ c}"
proof(rule equalityI')
show " ⋀x. x ∈ {x ∈ carrier (Q⇩p⇗1⇖). val (eval_at_point Q⇩p x (pvar Q⇩p 0)) ≤ c} ⟹ x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x ≤ c}"
proof- fix x assume A: "x ∈ {x ∈ carrier (Q⇩p⇗1⇖). val (eval_at_point Q⇩p x (pvar Q⇩p 0)) ≤ c}"
then have 0: "x = [(hd x)] ∧ hd x ∈ carrier Q⇩p"
using Qp.R1_memE Qp.R1_memE' by blast
have 1: "eval_at_point Q⇩p x (pvar Q⇩p 0) = hd x"
using A 0
by (metis (no_types, lifting) One_nat_def eval_pvar lessI nth_Cons_0 Qp.to_R1_closed)
then show "x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x ≤ c}"
using A 0 unfolding mem_Collect_eq
by (metis (no_types, lifting) image_iff mem_Collect_eq)
qed
show "⋀x. x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x ≤ c} ⟹ x ∈ {x ∈ carrier (Q⇩p⇗1⇖). val (eval_at_point Q⇩p x (pvar Q⇩p 0)) ≤ c}"
proof fix x assume A: "x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x ≤ c} "
then obtain a where a_def: "x = [a] ∧ a ∈ carrier Q⇩p ∧ val a ≤ c"
by blast
then have 0: "x ∈ carrier (Q⇩p⇗1⇖)"
using cartesian_power_car_memI Qp.to_R1_closed by presburger
then have 1: "(eval_at_point Q⇩p x (pvar Q⇩p 0)) = a"
using a_def by (metis eval_pvar less_one Qp.to_R_to_R1)
show "x ∈ carrier (Q⇩p⇗1⇖) ∧ val (eval_at_point Q⇩p x (pvar Q⇩p 0)) ≤ c"
unfolding 1 using a_def 0 by blast
qed
qed
show ?thesis using 0 unfolding 1
using is_univ_semialgebraicI by blast
qed
lemma univ_val_strict_ineq_set_is_univ_semialgebraic:
"is_univ_semialgebraic {x ∈ carrier Q⇩p. val x < c}"
proof-
have 0: "is_semialgebraic 1 {x ∈ carrier (Q⇩p⇗1⇖). val (Qp_ev (pvar Q⇩p 0) x) <c}"
apply(rule val_strict_ineq_set_is_semialgebraic')
using pvar_closed by blast
have 1: "{x ∈ carrier (Q⇩p⇗1⇖). val (Qp_ev (pvar Q⇩p 0) x) < c} = to_R1 ` {x ∈ carrier Q⇩p. val x < c}"
proof(rule equalityI')
show " ⋀x. x ∈ {x ∈ carrier (Q⇩p⇗1⇖). val (eval_at_point Q⇩p x (pvar Q⇩p 0)) < c} ⟹ x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x < c}"
proof- fix x assume A: "x ∈ {x ∈ carrier (Q⇩p⇗1⇖). val (eval_at_point Q⇩p x (pvar Q⇩p 0)) < c}"
then have 0: "x = [(hd x)] ∧ hd x ∈ carrier Q⇩p"
using Qp.R1_memE Qp.R1_memE' by blast
have 1: "eval_at_point Q⇩p x (pvar Q⇩p 0) = hd x"
using A 0
by (metis (no_types, lifting) One_nat_def eval_pvar lessI nth_Cons_0 Qp.to_R1_closed)
then show "x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x < c}"
using A 0 unfolding mem_Collect_eq
by (metis (no_types, lifting) image_iff mem_Collect_eq)
qed
show "⋀x. x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x < c} ⟹ x ∈ {x ∈ carrier (Q⇩p⇗1⇖). val (eval_at_point Q⇩p x (pvar Q⇩p 0)) < c}"
proof fix x assume A: "x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x < c} "
then obtain a where a_def: "x = [a] ∧ a ∈ carrier Q⇩p ∧ val a < c"
by blast
then have 0: "x ∈ carrier (Q⇩p⇗1⇖)"
using cartesian_power_car_memI Qp.to_R1_closed by presburger
then have 1: "(eval_at_point Q⇩p x (pvar Q⇩p 0)) = a"
using a_def by (metis eval_pvar less_one Qp.to_R_to_R1)
show "x ∈ carrier (Q⇩p⇗1⇖) ∧ val (eval_at_point Q⇩p x (pvar Q⇩p 0)) < c"
unfolding 1 using a_def 0 by blast
qed
qed
show ?thesis using 0 unfolding 1
using is_univ_semialgebraicI by blast
qed
lemma univ_val_eq_set_is_univ_semialgebraic:
"is_univ_semialgebraic {x ∈ carrier Q⇩p. val x = c}"
proof-
have 0: "is_semialgebraic 1 {x ∈ carrier (Q⇩p⇗1⇖). val (Qp_ev (pvar Q⇩p 0) x) = c}"
apply(rule val_eq_set_is_semialgebraic')
using pvar_closed by blast
have 1: "{x ∈ carrier (Q⇩p⇗1⇖). val (Qp_ev (pvar Q⇩p 0) x) = c} = to_R1 ` {x ∈ carrier Q⇩p. val x = c}"
proof(rule equalityI')
show " ⋀x. x ∈ {x ∈ carrier (Q⇩p⇗1⇖). val (eval_at_point Q⇩p x (pvar Q⇩p 0)) = c} ⟹ x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x = c}"
proof- fix x assume A: "x ∈ {x ∈ carrier (Q⇩p⇗1⇖). val (eval_at_point Q⇩p x (pvar Q⇩p 0)) = c}"
then have 0: "x = [(hd x)] ∧ hd x ∈ carrier Q⇩p"
using Qp.R1_memE Qp.R1_memE' by blast
have 1: "eval_at_point Q⇩p x (pvar Q⇩p 0) = hd x"
using A 0
by (metis (no_types, lifting) One_nat_def eval_pvar lessI nth_Cons_0 Qp.to_R1_closed)
show "x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x = c}"
using A 0 unfolding mem_Collect_eq 1 by blast
qed
show "⋀x. x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x = c} ⟹ x ∈ {x ∈ carrier (Q⇩p⇗1⇖). val (eval_at_point Q⇩p x (pvar Q⇩p 0)) = c}"
proof fix x assume A: "x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. val x = c} "
then obtain a where a_def: "x = [a] ∧ a ∈ carrier Q⇩p ∧ val a = c"
by blast
then have 0: "x ∈ carrier (Q⇩p⇗1⇖)"
using cartesian_power_car_memI Qp.to_R1_closed by presburger
then have 1: "(eval_at_point Q⇩p x (pvar Q⇩p 0)) = a"
using a_def by (metis eval_pvar less_one Qp.to_R_to_R1)
show "x ∈ carrier (Q⇩p⇗1⇖) ∧ val (eval_at_point Q⇩p x (pvar Q⇩p 0)) = c"
unfolding 1 using a_def 0 by blast
qed
qed
show ?thesis using 0 unfolding 1
using is_univ_semialgebraicI by blast
qed
subsubsection‹One Dimensional $p$-adic Balls are Semialgebraic›
lemma coord_ring_one_def:
"Pring Q⇩p {(0::nat)} = (Q⇩p[𝒳⇘1⇙])"
proof-
have "{(0::nat)} = {..<1}"
by auto
thus ?thesis
unfolding coord_ring_def
by auto
qed
lemma times_p_pow_val:
assumes "a ∈ carrier Q⇩p"
assumes "b = 𝔭[^]n ⊗ a"
shows "val b = val a + n"
using val_mult[of "𝔭[^]n" a] assms unfolding assms(2) val_p_int_pow
by (metis add.commute p_intpow_closed(1))
lemma times_p_pow_neg_val:
assumes "a ∈ carrier Q⇩p"
assumes "b = 𝔭[^]-n ⊗ a"
shows "val b = val a - n"
by (metis Qp.m_comm Qp_int_pow_nonzero assms(1) assms(2) p_intpow_closed(1) p_intpow_inv'' p_nonzero val_fract val_p_int_pow)
lemma eint_minus_int_pos:
assumes "a - eint n ≥ 0"
shows "a ≥ n"
using assms apply(induction a)
apply (metis diff_ge_0_iff_ge eint_ord_simps(1) idiff_eint_eint zero_eint_def)
by simp
text‹‹p›-adic balls as pullbacks of polynomial maps›
lemma balls_as_pullbacks:
assumes "c ∈ carrier Q⇩p"
shows "∃P ∈ carrier (Q⇩p[𝒳⇘1⇙]). to_R1` B⇘n⇙[c] = poly_map 1 [P] ¯⇘1⇙ (to_R1 ` 𝒪⇩p)"
proof-
obtain P0 where P0_def: "P0 = (to_poly (𝔭[^](-n))) ⊗⇘Q⇩p_x⇙((X_poly Q⇩p) ⊖⇘Q⇩p_x⇙ to_poly c)"
by blast
have 0: "P0 ∈ carrier Q⇩p_x"
proof-
have P0: "(X_poly Q⇩p) ⊖⇘Q⇩p_x⇙ to_poly c ∈ carrier Q⇩p_x"
using UPQ.X_closed UPQ.to_poly_closed assms by blast
have P1: "(to_poly (𝔭[^](-n))) ∈ carrier Q⇩p_x"
using UPQ.to_poly_closed p_intpow_closed(1) by blast
then show ?thesis
using P0_def P0 P1
by blast
qed
have 1: "⋀x. x ∈ carrier Q⇩p ⟹ P0 ∙ x = (𝔭[^](-n)) ⊗ (x ⊖⇘Q⇩p⇙ c)"
proof- fix x assume A: "x ∈ carrier Q⇩p"
have P0: "(to_poly (𝔭[^](-n))) ∙ x = (𝔭[^](-n))"
using A UPQ.to_fun_to_poly p_intpow_closed(1) by blast
have P1: "((X_poly Q⇩p) ⊖⇘Q⇩p_x⇙ to_poly c) ∙ x = (x ⊖⇘Q⇩p⇙ c)"
by (metis A UPQ.to_fun_X_minus X_poly_minus_def assms)
have P2: "to_poly (𝔭[^](-n)) ∈ carrier Q⇩p_x"
using UPQ.to_poly_closed p_intpow_closed(1) by blast
have P3: "((X_poly Q⇩p) ⊖⇘Q⇩p_x⇙ to_poly c) ∈ carrier Q⇩p_x"
using UPQ.X_closed UPQ.to_poly_closed assms by blast
have "to_poly (𝔭[^]- n) ⊗⇘Q⇩p_x⇙ ((X_poly Q⇩p) ⊖⇘Q⇩p_x⇙ to_poly c) ∙ x = to_poly (𝔭[^]- n) ∙ x ⊗ (((X_poly Q⇩p) ⊖⇘Q⇩p_x⇙ to_poly c) ∙ x)"
using A P0_def P0 P1 P2 P3 to_fun_mult[of "to_poly (𝔭[^](-n))" "(X_poly Q⇩p) ⊖⇘Q⇩p_x⇙ to_poly c" x] UPQ.to_fun_mult
by blast
then have "to_poly (𝔭[^]- n) ⊗⇘Q⇩p_x⇙ ((X_poly Q⇩p) ⊖⇘Q⇩p_x⇙ to_poly c) ∙ x = (𝔭[^](-n)) ⊗ (x ⊖⇘Q⇩p⇙ c) "
by (metis P0 P1)
then show "P0 ∙ x = (𝔭[^](-n)) ⊗ (x ⊖⇘Q⇩p⇙ c)"
using P0_def by metis
qed
have 2: " (λa. [a]) ` B⇘n⇙[c] = poly_map 1 [from_Qp_x P0] ¯⇘1⇙ ((λa. [a]) ` 𝒪⇩p)"
proof
show "(λa. [a]) ` B⇘n⇙[c] ⊆ poly_map 1 [from_Qp_x P0] ¯⇘1⇙ ((λa. [a]) ` 𝒪⇩p)"
proof
fix x
assume A: "x ∈ (λa. [a]) ` B⇘n⇙[c]"
then obtain a where a_def: "x = [a] ∧ a ∈ B⇘n⇙[c]"
by blast
have P0: "P0 ∙ a ∈ 𝒪⇩p"
proof-
have "B⇘n⇙[c] ⊆ carrier Q⇩p"
using c_ball_in_Qp by blast
hence a_closed: "a ∈ carrier Q⇩p"
using a_def by blast
have P0: "P0 ∙ a = (𝔭[^](-n)) ⊗ (a ⊖ c)"
using 1 a_def c_ballE(1)
by blast
then have P1: "val (P0 ∙ a) = val (𝔭[^](-n)) + val (a ⊖ c)"
using val_mult[of "𝔭[^]-n" "a ⊖ c"] a_closed assms Qp.minus_closed p_intpow_closed(1)
by presburger
then have P2: "val (P0 ∙ a) = val (a ⊖⇘Q⇩p⇙ c) - n"
by (metis P0 Qp.m_comm Qp.minus_closed Qp_int_pow_nonzero assms local.a_closed
p_intpow_closed(1) p_intpow_inv'' p_nonzero val_fract val_p_int_pow)
have P3: "val (a ⊖⇘Q⇩p⇙ c) ≥ n"
using a_def c_ballE(2)
by blast
then have "val (P0 ∙ a) ≥ -n + n"
using P2 by (metis add.commute diff_conv_add_uminus diff_self local.eint_minus_ineq' zero_eint_def)
then have P4: "val (P0 ∙ a) ≥ 0"
by (metis add.commute add.right_inverse zero_eint_def)
have P5: "P0 ∙ a ∈ carrier Q⇩p"
using "0" UPQ.to_fun_closed local.a_closed by blast
then show ?thesis using P4
using val_ring_val_criterion
by blast
qed
have "poly_map 1 [from_Qp_x P0] x = [Qp_ev (from_Qp_x P0) [a]] "
using a_def poly_map_def[of 1 "[from_Qp_x P0]"] poly_tuple_eval_def[of ]
by (metis Qp_poly_mapE' c_ballE(1) length_0_conv poly_map_cons Qp.to_R1_closed)
then have "poly_map 1 [from_Qp_x P0] x = [P0 ∙ a] "
using Qp_x_Qp_poly_eval[of P0 a]
by (metis "0" a_def c_ballE(1))
then have P1: "poly_map 1 [from_Qp_x P0] x ∈ ((λa. [a]) ` 𝒪⇩p)"
using P0
by blast
have P2: "x ∈ carrier (Q⇩p⇗1⇖)"
using A c_ballE(1) Qp.to_R1_closed
by blast
have P3: "is_poly_tuple 1 [from_Qp_x P0]"
apply(rule Qp_is_poly_tupleI)
by (metis "0" Qp_is_poly_tupleI from_Qp_x_closed gr_implies_not0 is_poly_tupleE is_poly_tuple_Cons list.size(3) zero_neq_one)
show "x ∈ poly_map 1 [UP_to_IP Q⇩p 0 P0] ¯⇘1⇙ (λa. [a]) ` 𝒪⇩p"
using P3 P2 P1 unfolding evimage_def poly_map_def
by blast
qed
have 20: "is_poly_tuple 1 [from_Qp_x P0]"
using 0 UP_to_IP_closed[of P0 "0::nat"]
unfolding is_poly_tuple_def
by (metis (no_types, lifting) empty_set from_Qp_x_closed list.simps(15) singletonD subset_code(1))
show "poly_map 1 [UP_to_IP Q⇩p 0 P0] ¯⇘1⇙ (λa. [a]) ` 𝒪⇩p ⊆ (λa. [a]) ` B⇘n⇙[c]"
proof fix x assume A: "x ∈ poly_map 1 [UP_to_IP Q⇩p 0 P0] ¯⇘1⇙ ((λa. [a]) ` 𝒪⇩p)"
have A0: "(λa. [a]) ` 𝒪⇩p ⊆ carrier (Q⇩p⇗1⇖)"
using Qp_val_ring_is_univ_semialgebraic is_univ_semialgebraic_def Qp.to_R1_car_subset
Qp_val_ring_is_semialgebraic is_semialgebraic_closed by presburger
have "poly_map 1 [from_Qp_x P0] x ∈ ((λa. [a]) ` 𝒪⇩p)"
using A0 A 20 by blast
then obtain a where a_def: "a ∈ 𝒪⇩p ∧ (poly_map 1 [from_Qp_x P0] x) = [a]"
by blast
have x_closed: "x ∈ carrier (Q⇩p⇗1⇖)"
using A
by (meson evimage_eq)
then obtain y where y_def: "x = [y] ∧ y ∈ carrier Q⇩p"
using A
by (metis Qp.to_R1_to_R Qp.to_R_pow_closed)
have "(poly_map 1 [from_Qp_x P0] x) = [(Qp_ev (from_Qp_x P0) [y])]"
unfolding poly_map_def poly_tuple_eval_def using x_closed
by (smt "20" One_nat_def length_Suc_conv list.size(3) nth_Cons_0 nth_map
poly_tuple_eval_closed poly_tuple_eval_def restrict_apply' Qp.to_R1_to_R y_def zero_less_Suc)
then have "(poly_map 1 [from_Qp_x P0] x) = [P0 ∙ y]"
by (metis "0" Qp_x_Qp_poly_eval y_def)
then have "[a] = [P0 ∙ y]"
using a_def
by presburger
then have A1: "a = (𝔭[^](-n)) ⊗ (y ⊖⇘Q⇩p⇙ c)"
using 1[of y] y_def
by blast
have "y ∈ B⇘n⇙[c]"
proof-
have B0: "val a = val (y ⊖⇘Q⇩p⇙ c) - n"
using A1 y_def Qp.minus_closed assms times_p_pow_neg_val by blast
have B1: "val a ≥ 0"
using a_def val_ring_memE by blast
then have "val (y ⊖⇘Q⇩p⇙ c) - n ≥ 0"
using B0
by metis
then have "val (y ⊖⇘Q⇩p⇙ c) ≥ n"
using eint_minus_int_pos by blast
then show "y ∈ B⇘n⇙[c]"
using c_ballI y_def by blast
qed
then show "x ∈ (λa. [a]) ` B⇘n⇙[c]"
using y_def by blast
qed
qed
then show ?thesis
by (meson "0" from_Qp_x_closed)
qed
lemma ball_is_semialgebraic:
assumes "c ∈ carrier Q⇩p"
shows "is_semialgebraic 1 (to_R1` B⇘n⇙[c])"
proof-
obtain P where P_def: "P ∈ carrier (Q⇩p[𝒳⇘1⇙]) ∧ to_R1` B⇘n⇙[c] = poly_map 1 [P] ¯⇘1⇙ (to_R1 ` 𝒪⇩p) "
using assms balls_as_pullbacks[of c n] by meson
have "is_poly_tuple 1 [P]"
using P_def unfolding is_poly_tuple_def
by (metis (no_types, opaque_lifting) list.inject list.set_cases neq_Nil_conv subset_code(1))
then show ?thesis
using assms P_def pullback_is_semialg[of 1 "[P]" 1 "((λa. [a]) ` 𝒪⇩p) "]
by (metis (mono_tags, lifting) One_nat_def
Qp_val_ring_is_semialgebraic is_semialgebraic_def length_Suc_conv
list.distinct(1) list.size(3))
qed
lemma ball_is_univ_semialgebraic:
assumes "c ∈ carrier Q⇩p"
shows "is_univ_semialgebraic (B⇘n⇙[c])"
using assms ball_is_semialgebraic c_ball_in_Qp is_univ_semialgebraic_def
by presburger
abbreviation Qp_to_R1_set where
"Qp_to_R1_set S ≡ to_R1 ` S"
subsubsection‹Finite Unions and Intersections of Semialgebraic Sets›
definition are_semialgebraic where
"are_semialgebraic n Xs = (∀ x. x ∈ Xs ⟶ is_semialgebraic n x)"
lemma are_semialgebraicI:
assumes "⋀x. x ∈ Xs ⟹ is_semialgebraic n x "
shows "are_semialgebraic n Xs"
using are_semialgebraic_def assms by blast
lemma are_semialgebraicE:
assumes "are_semialgebraic n Xs"
assumes "x ∈ Xs"
shows "is_semialgebraic n x"
using are_semialgebraic_def assms(1) assms(2) by blast
definition are_univ_semialgebraic where
"are_univ_semialgebraic Xs = (∀ x. x ∈ Xs ⟶ is_univ_semialgebraic x)"
lemma are_univ_semialgebraicI:
assumes "⋀x. x ∈ Xs ⟹ is_univ_semialgebraic x "
shows "are_univ_semialgebraic Xs"
using are_univ_semialgebraic_def assms by blast
lemma are_univ_semialgebraicE:
assumes "are_univ_semialgebraic Xs"
assumes "x ∈ Xs"
shows "is_univ_semialgebraic x"
using are_univ_semialgebraic_def assms(1) assms(2) by blast
lemma are_univ_semialgebraic_semialgebraic:
assumes "are_univ_semialgebraic Xs"
shows "are_semialgebraic 1 (Qp_to_R1_set ` Xs)"
apply(rule are_semialgebraicI)
using are_univ_semialgebraicE assms image_iff is_univ_semialgebraicE
by (metis (no_types, lifting))
lemma to_R1_set_union:
"to_R1 ` (⋃ Xs) = ⋃ (Qp_to_R1_set ` Xs)"
using image_iff by blast
lemma to_R1_inter:
assumes "Xs ≠ {}"
shows "to_R1 ` (⋂ Xs) = ⋂ (Qp_to_R1_set ` Xs)"
proof
show "to_R1 ` (⋂ Xs) ⊆ ⋂ (Qp_to_R1_set ` Xs)"
by blast
show "⋂ (Qp_to_R1_set ` Xs) ⊆ to_R1 ` (⋂ Xs)"
proof fix x
assume A: "x ∈ ⋂ (Qp_to_R1_set ` Xs)"
then have 0: "⋀S. S ∈ Xs ⟹ x ∈ (Qp_to_R1_set S)"
by blast
obtain S where "S ∈ Xs ∧ x ∈ (Qp_to_R1_set S)"
using assms 0
by blast
then obtain b where b_def: "b ∈ S ∧ x = [b]"
by blast
have "b ∈ (⋂ Xs)"
using "0" b_def by blast
then show "x ∈ to_R1 ` (⋂ Xs)"
using b_def by blast
qed
qed
lemma finite_union_is_semialgebraic:
assumes "finite Xs"
shows "Xs ⊆ semialg_sets n ⟶ is_semialgebraic n (⋃ Xs)"
apply(rule finite.induct[of Xs])
apply (simp add: assms)
apply (simp add: empty_is_semialgebraic)
by (metis Sup_insert insert_subset is_semialgebraicI union_is_semialgebraic)
lemma finite_union_is_semialgebraic':
assumes "finite Xs"
assumes "Xs ⊆ semialg_sets n "
shows "is_semialgebraic n (⋃ Xs)"
using assms(1) assms(2) finite_union_is_semialgebraic by blast
lemma(in padic_fields) finite_union_is_semialgebraic'':
assumes "finite S"
assumes "⋀x. x ∈ S ⟹ is_semialgebraic m (F x)"
shows "is_semialgebraic m (⋃ x ∈ S. F x)"
using assms finite_union_is_semialgebraic[of "F`S" m] unfolding is_semialgebraic_def
by blast
lemma finite_union_is_univ_semialgebraic':
assumes "finite Xs"
assumes "are_univ_semialgebraic Xs"
shows "is_univ_semialgebraic (⋃ Xs)"
proof-
have "is_semialgebraic 1 (Qp_to_R1_set (⋃ Xs))"
using assms finite_union_is_semialgebraic'[of "((`) (λa. [a]) ` Xs)"] to_R1_set_union[of Xs]
by (metis (no_types, lifting) are_semialgebraicE are_univ_semialgebraic_semialgebraic
finite_imageI is_semialgebraicE subsetI)
then show ?thesis
using is_univ_semialgebraicI by blast
qed
lemma finite_intersection_is_semialgebraic:
assumes "finite Xs"
shows "Xs ⊆ semialg_sets n ∧ Xs ≠{} ⟶ is_semialgebraic n (⋂ Xs)"
apply(rule finite.induct[of Xs])
apply (simp add: assms)
apply auto[1]
proof fix A::"((nat ⇒ int) × (nat ⇒ int)) set list set set" fix a
assume 0: "finite A"
assume 1: "A ⊆ semialg_sets n ∧ A ≠ {} ⟶ is_semialgebraic n (⋂ A) "
assume 2: "insert a A ⊆ semialg_sets n ∧ insert a A ≠ {}"
show "is_semialgebraic n (⋂ (insert a A))"
proof(cases "A = {}")
case True
then have "insert a A = {a}"
by simp
then show ?thesis
by (metis "2" cInf_singleton insert_subset is_semialgebraicI)
next
case False
then have "A ⊆ semialg_sets n ∧ A ≠ {}"
using "2" by blast
then have "is_semialgebraic n (⋂ A) "
using "1" by linarith
then show ?thesis
using 0 1 2 intersection_is_semialg
by (metis Inf_insert insert_subset is_semialgebraicI)
qed
qed
lemma finite_intersection_is_semialgebraic':
assumes "finite Xs"
assumes "Xs ⊆ semialg_sets n ∧ Xs ≠{}"
shows " is_semialgebraic n (⋂ Xs)"
by (simp add: assms(1) assms(2) finite_intersection_is_semialgebraic)
lemma finite_intersection_is_semialgebraic'':
assumes "finite Xs"
assumes "are_semialgebraic n Xs ∧ Xs ≠{}"
shows " is_semialgebraic n (⋂ Xs)"
by (meson are_semialgebraicE assms(1) assms(2)
finite_intersection_is_semialgebraic' is_semialgebraicE subsetI)
lemma finite_intersection_is_univ_semialgebraic:
assumes "finite Xs"
assumes "are_univ_semialgebraic Xs"
assumes "Xs ≠ {}"
shows "is_univ_semialgebraic (⋂ Xs)"
proof-
have "are_semialgebraic 1 (Qp_to_R1_set ` Xs)"
using are_univ_semialgebraic_semialgebraic assms(2) by blast
then have "is_semialgebraic 1 (⋂ (Qp_to_R1_set ` Xs))"
using assms finite_intersection_is_semialgebraic''[of "Qp_to_R1_set ` Xs" 1]
by blast
then have "is_semialgebraic 1 (Qp_to_R1_set (⋂ Xs))"
using assms to_R1_inter[of Xs]
by presburger
then show ?thesis
using is_univ_semialgebraicI by blast
qed
subsection‹Cartesian Products of Semialgebraic Sets›
lemma Qp_times_basic_semialg_right:
assumes "a ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "cartesian_product (basic_semialg_set n k a) (carrier (Q⇩p⇗m⇖)) = basic_semialg_set (n+ m) k a"
proof
show "cartesian_product (basic_semialg_set n k a) (carrier (Q⇩p⇗m⇖)) ⊆ basic_semialg_set (n + m) k a"
proof fix x
assume "x ∈ cartesian_product (basic_semialg_set n k a) (carrier (Q⇩p⇗m⇖))"
then obtain as bs where as_bs_def: "as ∈ (basic_semialg_set n k a) ∧ bs ∈ (carrier (Q⇩p⇗m⇖)) ∧ x = as@bs"
using cartesian_product_memE[of x "basic_semialg_set n k a" "carrier (Q⇩p⇗m⇖)" Q⇩p n]
basic_semialg_set_def
by (metis (no_types, lifting) append_take_drop_id basic_semialg_set_memE(1) subsetI)
have 0: "x ∈ carrier (Q⇩p⇗n+m⇖)"
using as_bs_def basic_semialg_set_memE(1) cartesian_product_closed'
by blast
have 1: "(Qp_ev a x = Qp_ev a as)"
using as_bs_def poly_eval_cartesian_prod[of as n bs m a] assms basic_semialg_set_memE(1) by blast
obtain y where y_def: "y ∈ carrier Q⇩p ∧ (Qp_ev a as = (y[^]k))"
using as_bs_def using basic_semialg_set_memE(2)[of as n k a] by blast
show "x ∈ basic_semialg_set (n + m) k a"
apply(rule basic_semialg_set_memI[of _ _ y])
apply (simp add: "0")
apply (simp add: y_def)
using "1" y_def by blast
qed
show "basic_semialg_set (n + m) k a ⊆ cartesian_product (basic_semialg_set n k a) (carrier (Q⇩p⇗m⇖))"
proof fix x
assume A: "x ∈ basic_semialg_set (n + m) k a"
have A0: "x ∈ carrier (Q⇩p⇗n+m⇖)"
using A basic_semialg_set_memE(1) by blast
have A1: "set x ⊆ carrier Q⇩p"
using A0
by (metis (no_types, lifting) cartesian_power_car_memE cartesian_power_car_memE' in_set_conv_nth subsetI)
have A2: "length x = n + m"
using A0 cartesian_power_car_memE
by blast
obtain as where as_def: "as = take n x"
by blast
obtain bs where bs_def: "bs = drop n x"
by blast
have 0: "x = as@bs"
using A as_def bs_def
by (metis append_take_drop_id)
have 1: "as ∈ carrier (Q⇩p⇗n⇖)"
apply(rule cartesian_power_car_memI)
using as_def A2
apply (simp add: A2 min.absorb2)
by (metis (no_types, lifting) A1 as_def dual_order.trans set_take_subset)
have 2: "bs ∈ carrier (Q⇩p⇗m⇖)"
apply(rule cartesian_power_car_memI)
using bs_def A2
apply (simp add: A2)
by (metis A1 bs_def order.trans set_drop_subset)
obtain y where y_def: "y ∈ carrier Q⇩p ∧ Qp_ev a x = (y[^]k)"
using basic_semialg_set_memE A by meson
have 3: "as ∈ basic_semialg_set n k a"
apply(rule basic_semialg_set_memI[of _ _ y])
apply (simp add: "1")
using ‹y ∈ carrier Q⇩p ∧ Qp_ev a x = (y[^]k)› apply blast
using y_def A 1 0 2 assms(1) poly_eval_cartesian_prod by blast
show " x ∈ cartesian_product (basic_semialg_set n k a) (carrier (Q⇩p⇗m⇖))"
using 3 2 "0"
by (metis (mono_tags, lifting) as_def basic_semialg_set_memE(1) bs_def cartesian_product_memI subsetI)
qed
qed
lemma Qp_times_basic_semialg_right_is_semialgebraic:
assumes "k > 0"
assumes "a ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic (n + m) (cartesian_product (basic_semialg_set n k a) (carrier (Q⇩p⇗m⇖)))"
proof-
have 0: "cartesian_product (basic_semialg_set n k a) (carrier (Q⇩p⇗m⇖)) = basic_semialg_set (n+ m) k a"
using Qp_times_basic_semialg_right assms
by presburger
have 1: " a ∈ carrier (Q⇩p[𝒳⇘n+m⇙])"
using assms poly_ring_car_mono'(2) by blast
have 2: "is_semialgebraic (n + m) (basic_semialg_set (n + m) k a)"
using assms basic_semialg_is_semialgebraic'[of a "n+m" k "basic_semialg_set (n + m) k a"]
"1" by blast
show ?thesis
using 0 2
by metis
qed
lemma Qp_times_basic_semialg_right_is_semialgebraic':
assumes "A ∈ basic_semialgs n"
shows "is_semialgebraic (n + m) (cartesian_product A (carrier (Q⇩p⇗m⇖)))"
proof-
obtain k P where "k ≠ 0 ∧ P∈carrier (Q⇩p[𝒳⇘n⇙])∧ A = basic_semialg_set n k P"
using assms is_basic_semialg_def
by (metis mem_Collect_eq)
then show ?thesis using
Qp_times_basic_semialg_right_is_semialgebraic[of k P]
using assms(1) by blast
qed
lemma cartesian_product_memE':
assumes "x ∈ cartesian_product A B"
obtains a b where "a ∈ A ∧ b ∈ B ∧ x = a@b"
using assms unfolding cartesian_product_def by blast
lemma Qp_times_basic_semialg_left:
assumes "a ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "cartesian_product (carrier (Q⇩p⇗m⇖)) (basic_semialg_set n k a) = basic_semialg_set (n+m) k (shift_vars n m a)"
proof
show "cartesian_product (carrier (Q⇩p⇗m⇖)) (basic_semialg_set n k a) ⊆ basic_semialg_set (n + m) k (shift_vars n m a)"
proof fix x
assume A: "x ∈ cartesian_product (carrier (Q⇩p⇗m⇖)) (basic_semialg_set n k a)"
then obtain as bs where as_bs_def: "as ∈ (carrier (Q⇩p⇗m⇖)) ∧ bs ∈ (basic_semialg_set n k a) ∧ x = as@bs "
using cartesian_product_memE' by blast
have 0: "Qp_ev (shift_vars n m a) x = Qp_ev a bs"
using A as_bs_def assms shift_vars_eval[of a n as m bs ]
by (metis (no_types, lifting) basic_semialg_set_memE(1))
obtain y where y_def: "y ∈ carrier Q⇩p ∧ Qp_ev a bs = (y[^]k)"
using as_bs_def basic_semialg_set_memE(2)
by blast
have 1: "x ∈ carrier (Q⇩p⇗n+m⇖)"
using A as_bs_def
by (metis (no_types, lifting) add.commute basic_semialg_set_memE(1) cartesian_product_closed')
show "x ∈ basic_semialg_set (n + m) k (shift_vars n m a)"
apply(rule basic_semialg_set_memI[of _ _ y])
apply (simp add: "1")
using y_def apply blast
using "0" y_def by blast
qed
show "basic_semialg_set (n + m) k (shift_vars n m a) ⊆ cartesian_product (carrier (Q⇩p⇗m⇖)) (basic_semialg_set n k a) "
proof fix x
assume A: "x ∈ basic_semialg_set (n + m) k (shift_vars n m a)"
then obtain y where y_def: "y ∈ carrier Q⇩p ∧ Qp_ev (shift_vars n m a) x = (y[^]k)"
using assms basic_semialg_set_memE[of x "n + m" k "shift_vars n m a"]
shift_vars_closed[of a m] Qp.cring_axioms
by blast
have "x ∈ carrier (Q⇩p⇗m+n⇖)"
using A basic_semialg_set_memE(1)
by (metis add.commute)
then have "x ∈ cartesian_product (carrier (Q⇩p⇗m⇖)) (carrier (Q⇩p⇗n⇖))"
using cartesian_product_carrier by blast
then obtain as bs where as_bs_def: "x = as@bs ∧ as ∈ carrier (Q⇩p⇗m⇖) ∧ bs ∈ carrier (Q⇩p⇗n⇖)"
by (meson cartesian_product_memE')
have "bs ∈ (basic_semialg_set n k a)"
apply(rule basic_semialg_set_memI[of _ _ y])
using as_bs_def apply blast
apply (simp add: y_def)
using y_def shift_vars_eval[of a n as m bs ] as_bs_def assms(1)
by metis
then show "x ∈ cartesian_product (carrier (Q⇩p⇗m⇖)) (basic_semialg_set n k a)"
using as_bs_def unfolding cartesian_product_def
by blast
qed
qed
lemma Qp_times_basic_semialg_left_is_semialgebraic:
assumes "k > 0"
assumes "a ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗m⇖)) (basic_semialg_set n k a))"
using basic_semialg_is_semialgebraic'[of a "n+m" k] Qp_times_basic_semialg_left
by (metis assms(1) assms(2) basic_semialg_is_semialgebraic is_basic_semialg_def neq0_conv shift_vars_closed)
lemma Qp_times_basic_semialg_left_is_semialgebraic':
assumes "A ∈ basic_semialgs n"
shows "is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗m⇖)) A)"
proof-
obtain k P where "k ≠ 0 ∧ P∈carrier (Q⇩p[𝒳⇘n⇙])∧ A = basic_semialg_set n k P"
using assms is_basic_semialg_def
by (metis mem_Collect_eq)
then show ?thesis using
Qp_times_basic_semialg_left_is_semialgebraic[of k P]
using assms(1) by blast
qed
lemma product_of_basic_semialgs_is_semialg:
assumes "k > 0"
assumes "l > 0"
assumes "a ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "b ∈ carrier (Q⇩p[𝒳⇘m⇙])"
shows "is_semialgebraic (n + m) (cartesian_product (basic_semialg_set n k a) (basic_semialg_set m l b))"
proof-
have 0: "cartesian_product (basic_semialg_set n k a) (carrier (Q⇩p⇗m⇖)) = basic_semialg_set (n+ m) k a"
using Qp_times_basic_semialg_right assms by presburger
have 1: "cartesian_product (carrier (Q⇩p⇗n⇖)) (basic_semialg_set m l b) = basic_semialg_set (m + n) l (shift_vars m n b)"
using Qp_times_basic_semialg_left assms by blast
have 2: "(cartesian_product (basic_semialg_set n k a) (basic_semialg_set m l b)) =
cartesian_product (basic_semialg_set n k a) (carrier (Q⇩p⇗m⇖)) ∩
cartesian_product (carrier (Q⇩p⇗n⇖)) (basic_semialg_set m l b)"
proof-
have 0: "basic_semialg_set n k a ⊆ carrier (Q⇩p⇗n⇖)"
using basic_semialg_set_memE(1) by blast
have 1: "carrier (Q⇩p⇗m⇖) ⊆ carrier (Q⇩p⇗m⇖)"
by simp
have 2: "carrier (Q⇩p⇗n⇖) ⊆ carrier (Q⇩p⇗n⇖)"
by simp
have 3: "basic_semialg_set m l b ⊆ carrier (Q⇩p⇗m⇖)"
using basic_semialg_set_memE(1) by blast
show ?thesis
using 0 1 2 3 cartesian_product_intersection[of "(basic_semialg_set n k a)" Q⇩p n
"(carrier (Q⇩p⇗m⇖))" m
"(carrier (Q⇩p⇗n⇖))" "(basic_semialg_set m l b)"]
by (smt Collect_cong inf.absorb_iff1 inf.absorb_iff2)
qed
then show ?thesis
using Qp_times_basic_semialg_left_is_semialgebraic
Qp_times_basic_semialg_right_is_semialgebraic assms
by (metis (no_types, lifting) add.commute intersection_is_semialg)
qed
lemma product_of_basic_semialgs_is_semialg':
assumes "A ∈ (basic_semialgs n)"
assumes "B ∈ (basic_semialgs m)"
shows "is_semialgebraic (n + m) (cartesian_product A B)"
proof-
obtain k a where ka_def: "k > 0 ∧ a ∈ carrier (Q⇩p[𝒳⇘n⇙]) ∧ A = (basic_semialg_set n k a)"
using assms
by (metis is_basic_semialg_def mem_Collect_eq neq0_conv)
obtain l b where lb_def: "l > 0 ∧ b ∈ carrier (Q⇩p[𝒳⇘m⇙]) ∧ B = (basic_semialg_set m l b)"
by (metis assms(2) gr_zeroI is_basic_semialg_def mem_Collect_eq)
show ?thesis using ka_def lb_def assms product_of_basic_semialgs_is_semialg
by blast
qed
lemma car_times_semialg_is_semialg:
assumes "is_semialgebraic m B"
shows "is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) B)"
apply(rule gen_boolean_algebra.induct[of B "carrier (Q⇩p⇗m⇖)""basic_semialgs m"])
using assms is_semialgebraic_def semialg_sets_def apply blast
apply (simp add: carrier_is_semialgebraic cartesian_product_carrier)
proof-
show "⋀A. A ∈ basic_semialgs m ⟹ is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) (A ∩ carrier (Q⇩p⇗m⇖)))"
proof-
fix A assume A: "A ∈ basic_semialgs m "
then have " (A ∩ carrier (Q⇩p⇗m⇖)) = A"
by (metis basic_semialg_set_memE(1) inf_absorb1 is_basic_semialg_def mem_Collect_eq subsetI)
then show "is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) (A ∩ carrier (Q⇩p⇗m⇖)))"
using add.commute[of n m] assms A
Qp_times_basic_semialg_left_is_semialgebraic'
by (simp add: ‹n + m = m + n›)
qed
show "⋀A C. A ∈ gen_boolean_algebra (carrier (Q⇩p⇗m⇖)) (basic_semialgs m) ⟹
is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) A) ⟹
C ∈ gen_boolean_algebra (carrier (Q⇩p⇗m⇖)) (basic_semialgs m) ⟹
is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) C) ⟹
is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) (A ∪ C))"
proof- fix A C assume A: " A ∈ gen_boolean_algebra (carrier (Q⇩p⇗m⇖)) (basic_semialgs m)"
"is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) A)"
"C ∈ gen_boolean_algebra (carrier (Q⇩p⇗m⇖)) (basic_semialgs m)"
" is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) C)"
then have B: "is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) A ∪ cartesian_product (carrier (Q⇩p⇗n⇖)) C)"
using union_is_semialgebraic by blast
show "is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) (A ∪ C))"
proof-
have 0: "A ⊆ carrier (Q⇩p⇗m⇖)"
using A(1) gen_boolean_algebra_subset
by blast
have 1: " C ⊆ carrier (Q⇩p⇗m⇖)"
using A(3) gen_boolean_algebra_subset
by blast
then show ?thesis using 0 A B
using cartesian_product_binary_union_right[of A Q⇩p m C "(carrier (Q⇩p⇗n⇖))"]
unfolding is_semialgebraic_def semialg_sets_def
by presburger
qed
qed
show "⋀A. A ∈ gen_boolean_algebra (carrier (Q⇩p⇗m⇖)) (basic_semialgs m) ⟹
is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) A) ⟹
is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) (carrier (Q⇩p⇗m⇖) - A))"
proof- fix A assume A: "A ∈ gen_boolean_algebra (carrier (Q⇩p⇗m⇖)) (basic_semialgs m)"
"is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) A)"
then have "A ⊆ carrier (Q⇩p⇗m⇖)"
using gen_boolean_algebra_subset
by blast
then show "is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖)) (carrier (Q⇩p⇗m⇖) - A))"
using A cartesian_product_car_complement_right[of A Q⇩p m n]
unfolding is_semialgebraic_def semialg_sets_def
by (metis (mono_tags, lifting) semialg_complement semialg_sets_def)
qed
qed
lemma basic_semialg_times_semialg_is_semialg:
assumes "A ∈ basic_semialgs n"
assumes "is_semialgebraic m B"
shows " is_semialgebraic (n + m) (cartesian_product A B)"
apply(rule gen_boolean_algebra.induct[of B "carrier (Q⇩p⇗m⇖)""basic_semialgs m"])
using assms(2) is_semialgebraic_def semialg_sets_def apply blast
using Qp_times_basic_semialg_right_is_semialgebraic' assms(1) apply blast
apply (metis assms(1) basic_semialg_is_semialgebraic inf.absorb1 is_semialgebraic_closed mem_Collect_eq product_of_basic_semialgs_is_semialg')
apply (metis (no_types, lifting) cartesian_product_binary_union_right is_semialgebraicI is_semialgebraic_closed semialg_sets_def union_is_semialgebraic)
proof-
show "⋀Aa. Aa ∈ gen_boolean_algebra (carrier (Q⇩p⇗m⇖)) (basic_semialgs m) ⟹
is_semialgebraic (n + m) (cartesian_product A Aa) ⟹ is_semialgebraic (n + m) (cartesian_product A (carrier (Q⇩p⇗m⇖) - Aa))"
proof- fix B assume A: "B ∈ gen_boolean_algebra (carrier (Q⇩p⇗m⇖)) (basic_semialgs m)"
"is_semialgebraic (n + m) (cartesian_product A B)"
show "is_semialgebraic (n + m) (cartesian_product A (carrier (Q⇩p⇗m⇖) - B))"
using A assms cartesian_product_complement_right[of B Q⇩p m A n] add.commute[of n m]
proof -
have f1: "∀n B. ¬ is_semialgebraic n B ∨ B ⊆ carrier (Q⇩p⇗n⇖)"
by (meson is_semialgebraic_closed)
have "is_basic_semialg n A"
using ‹A ∈ {S. is_basic_semialg n S}› by blast
then have f2: "is_semialgebraic n A"
using padic_fields.basic_semialg_is_semialgebraic padic_fields_axioms by blast
have "B ∈ semialg_sets m"
using ‹B ∈ gen_boolean_algebra (carrier (Q⇩p⇗m⇖)) {S. is_basic_semialg m S}› semialg_sets_def by blast
then have "is_semialgebraic m B"
by (meson padic_fields.is_semialgebraicI padic_fields_axioms)
then show ?thesis
using f2 f1 by (metis (no_types) Qp_times_basic_semialg_right_is_semialgebraic' ‹A ∈ {S. is_basic_semialg n S}› ‹⟦B ⊆ carrier (Q⇩p⇗m⇖); A ⊆ carrier (Q⇩p⇗n⇖)⟧ ⟹ cartesian_product A (carrier (Q⇩p⇗m⇖)) - cartesian_product A B = cartesian_product A (carrier (Q⇩p⇗m⇖) - B)› ‹is_semialgebraic (n + m) (cartesian_product A B)› diff_is_semialgebraic)
qed
qed
qed
text‹Semialgebraic sets are closed under cartesian products›
lemma cartesian_product_is_semialgebraic:
assumes "is_semialgebraic n A"
assumes "is_semialgebraic m B"
shows "is_semialgebraic (n + m) (cartesian_product A B)"
apply(rule gen_boolean_algebra.induct[of A "carrier (Q⇩p⇗n⇖)""basic_semialgs n"])
using assms is_semialgebraicE semialg_sets_def apply blast
using assms car_times_semialg_is_semialg apply blast
using assms basic_semialg_times_semialg_is_semialg
apply (simp add: Int_absorb2 basic_semialg_is_semialgebraic is_semialgebraic_closed)
proof-
show "⋀A C. A ∈ gen_boolean_algebra (carrier (Q⇩p⇗n⇖)) (basic_semialgs n) ⟹
is_semialgebraic (n + m) (cartesian_product A B) ⟹
C ∈ gen_boolean_algebra (carrier (Q⇩p⇗n⇖)) (basic_semialgs n) ⟹
is_semialgebraic (n + m) (cartesian_product C B) ⟹ is_semialgebraic (n + m) (cartesian_product (A ∪ C) B)"
proof- fix A C assume A: "A ∈ gen_boolean_algebra (carrier (Q⇩p⇗n⇖)) (basic_semialgs n)"
"is_semialgebraic (n + m) (cartesian_product A B)"
"C ∈ gen_boolean_algebra (carrier (Q⇩p⇗n⇖)) (basic_semialgs n)"
"is_semialgebraic (n + m) (cartesian_product C B)"
show "is_semialgebraic (n + m) (cartesian_product (A ∪ C) B)"
using A cartesian_product_binary_union_left[of A Q⇩p n C B]
by (metis (no_types, lifting) gen_boolean_algebra_subset union_is_semialgebraic)
qed
show "⋀A. A ∈ gen_boolean_algebra (carrier (Q⇩p⇗n⇖)) (basic_semialgs n) ⟹
is_semialgebraic (n + m) (cartesian_product A B) ⟹ is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖) - A) B)"
proof- fix A assume A: "A ∈ gen_boolean_algebra (carrier (Q⇩p⇗n⇖)) (basic_semialgs n)"
"is_semialgebraic (n + m) (cartesian_product A B)"
show "is_semialgebraic (n + m) (cartesian_product (carrier (Q⇩p⇗n⇖) - A) B)"
using assms A cartesian_product_complement_left[of A Q⇩p n B m]
unfolding is_semialgebraic_def semialg_sets_def
by (metis car_times_semialg_is_semialg diff_is_semialgebraic is_semialgebraicE is_semialgebraicI
is_semialgebraic_closed semialg_sets_def)
qed
qed
subsection‹$N^{th}$ Power Residues›
definition nth_root_poly where
"nth_root_poly (n::nat) a = ((X_poly Q⇩p) [^]⇘Q⇩p_x⇙ n) ⊖⇘Q⇩p_x⇙ (to_poly a)"
lemma nth_root_poly_closed:
assumes "a ∈ carrier Q⇩p"
shows "nth_root_poly n a ∈ carrier Q⇩p_x"
using assms unfolding nth_root_poly_def
by (meson UPQ.P.minus_closed UPQ.P.nat_pow_closed UPQ.X_closed UPQ.to_poly_closed)
lemma nth_root_poly_eval:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
shows "(nth_root_poly n a) ∙ b = (b[^]n) ⊖⇘Q⇩p⇙ a"
using assms unfolding nth_root_poly_def
using UPQ.P.nat_pow_closed UPQ.X_closed UPQ.to_fun_X_pow UPQ.to_fun_diff UPQ.to_fun_to_poly UPQ.to_poly_closed by presburger
text‹Hensel's lemma gives us this criterion for the existence of ‹n›-th roots›
lemma nth_root_poly_root:
assumes "(n::nat) > 1"
assumes "a ∈ 𝒪⇩p"
assumes "a ≠ 𝟭"
assumes "val (𝟭 ⊖⇘Q⇩p⇙ a) > 2* val ([n]⋅𝟭)"
shows "(∃ b ∈ 𝒪⇩p. ((b[^]n) = a))"
proof-
obtain α where alpha_def: "α ∈ carrier Z⇩p ∧ ι α = a"
using assms(2) by blast
have 0: "α ∈ carrier Z⇩p"
by (simp add: alpha_def)
have 1: "α ≠ 𝟭⇘Z⇩p⇙"
using assms alpha_def inc_of_one
by blast
obtain N where N_def: "N = [n]⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙"
by blast
have N_closed: "N ∈ carrier Z⇩p"
using N_def Zp_nat_mult_closed
by blast
have 2: "ι ([n]⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙) = ([n]⋅ 𝟭)"
proof(induction n)
case 0
have 00: "[(0::nat)] ⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙ = 𝟬⇘Z⇩p⇙"
using Zp_nat_inc_zero by blast
have 01: "[(0::nat)] ⋅⇘Q⇩p⇙ 𝟭 = 𝟬"
using Qp.nat_inc_zero by blast
then show ?case
using 00 inc_of_nat by blast
next
case (Suc n)
then show ?case
using inc_of_nat by blast
qed
have 3: "val_Zp (𝟭⇘Z⇩p⇙ ⊖⇘Z⇩p⇙ α) = val (𝟭 ⊖⇘Q⇩p⇙ a)"
using alpha_def Zp.one_closed ring_hom_one[of ι Z⇩p Q⇩p] inc_is_hom Zp.ring_hom_minus[of Q⇩p ι "𝟭⇘Z⇩p⇙" α ]
Qp.ring_axioms
unfolding ι_def
by (metis Q⇩p_def Zp.minus_closed Zp_def padic_fields.val_of_inc padic_fields_axioms)
have 4: "([n]⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙) ∈ nonzero Z⇩p"
proof-
have 40: "int n ≥ 0"
using of_nat_0_le_iff by blast
have "nat (int n) = n"
using nat_int by blast
hence "[n]⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙ = [int n]⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙"
using 40 unfolding add_pow_def int_pow_def nat_pow_def
proof -
have "(if int n < 0 then inv⇘add_monoid Z⇩p⇙ rec_nat 𝟭⇘add_monoid Z⇩p⇙ (λn f. f ⊗⇘add_monoid Z⇩p⇙ 𝟭⇘Z⇩p⇙) 0 else rec_nat 𝟭⇘add_monoid Z⇩p⇙ (λn f. f ⊗⇘add_monoid Z⇩p⇙ 𝟭⇘Z⇩p⇙) n) = rec_nat 𝟭⇘add_monoid Z⇩p⇙ (λn f. f ⊗⇘add_monoid Z⇩p⇙ 𝟭⇘Z⇩p⇙) n"
by (meson of_nat_less_0_iff)
then show "rec_nat 𝟭⇘add_monoid Z⇩p⇙ (λn f. f ⊗⇘add_monoid Z⇩p⇙ 𝟭⇘Z⇩p⇙) n = (let f = rec_nat 𝟭⇘add_monoid Z⇩p⇙ (λn f. f ⊗⇘add_monoid Z⇩p⇙ 𝟭⇘Z⇩p⇙) in if int n < 0 then inv⇘add_monoid Z⇩p⇙ f (nat (- int n)) else f (nat (int n)))"
using ‹nat (int n) = n› by presburger
qed
thus ?thesis
using Zp_char_0[of n] Zp.not_nonzero_memE Zp_char_0' assms(1) gr_implies_not_zero by blast
qed
then have 5: "val_Zp ([n]⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙) = val ([n]⋅⇘Q⇩p⇙ (𝟭))"
using 2 ord_of_inc
by (metis N_closed N_def val_of_inc)
then have 6: "(val_Zp (𝟭⇘Z⇩p⇙ ⊖⇘Z⇩p⇙ α)) > 2*(val_Zp ([n]⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙))"
using assms 3 by presburger
have "∃ b ∈ carrier Z⇩p. (b[^]⇘Z⇩p⇙n= α)"
using Zp_nth_root_lemma[of α n] assms "0" "1" "6" by blast
then obtain b where b_def: "b ∈ carrier Z⇩p ∧ (b[^]⇘Z⇩p⇙n= α)"
by blast
then have "ι (b [^]⇘Z⇩p⇙n) = a"
using alpha_def by blast
then have "(ι b) [^] n = a"
by (metis Qp.nat_inc_zero Q⇩p_def Qp.nat_pow_zero Zp.nat_pow_0 Zp.nat_pow_zero
Zp_nat_inc_zero ι_def alpha_def assms(3) b_def frac_inc_of_nat inc_of_one inc_pow not_nonzero_Qp)
then show ?thesis
using b_def by blast
qed
text‹All points sufficiently close to 1 have nth roots›
lemma eint_nat_times_2:
"2*(n::nat) = 2*eint n"
using times_eint_simps(1)
by (metis mult.commute mult_2_right of_nat_add)
lemma P_set_of_one:
"P_set 1 = nonzero Q⇩p"
apply(rule equalityI) apply(rule subsetI)
unfolding P_set_def nonzero_def mem_Collect_eq apply blast
apply(rule subsetI) unfolding P_set_def nonzero_def mem_Collect_eq
using Qp.nat_pow_eone by blast
lemma nth_power_fact:
assumes "(n::nat) ≥ 1"
shows "∃ (m::nat) > 0. ∀ u ∈ carrier Q⇩p. ac m u = 1 ∧ val u = 0 ⟶ u ∈ P_set n"
proof(cases "n = 1")
case True
have "∀ u ∈ carrier Q⇩p. ac 1 u = 1 ∧ val u = 0 ⟶ u ∈ P_set n"
unfolding True P_set_of_one
by (metis iless_Suc_eq padic_fields.val_ring_memE padic_fields.zero_in_val_ring padic_fields_axioms val_nonzero zero_eint_def)
then show ?thesis by blast
next
case F: False
obtain m where m_def: "m = 1 + nat ( 2*(ord ([n]⋅⇘Q⇩p⇙ (𝟭))))"
by blast
then have m_pos: "m > 0"
by linarith
have "∀ u ∈ carrier Q⇩p. ac m u = 1 ∧ val u = 0 ⟶ u ∈ P_set n"
proof
fix u
assume A: "u ∈ carrier Q⇩p"
show " ac m u = 1 ∧ val u = 0 ⟶ u ∈ P_set n"
proof
assume B: "ac m u = 1 ∧ val u = 0"
then have 0: "val u = val 𝟭"
by (smt A ac_def not_nonzero_Qp val_one val_ord zero_eint_def)
have 1: "ac m u = ac m 𝟭"
by (metis B Qp.one_nonzero ac_p ac_p_int_pow_factor angular_component_factors_x angular_component_p inc_of_one m_pos p_nonzero)
have 2: "u ∈ nonzero Q⇩p"
proof-
have "ac m 𝟬 = 0"
by (meson ac_def)
then have "u ≠ 𝟬"
by (metis B zero_neq_one)
then show ?thesis
using A not_nonzero_Qp Qp.nonzero_memI by presburger
qed
then have 3: "val (𝟭 ⊖⇘Q⇩p⇙ u) ≥ m" using m_pos 0 1 ac_ord_prop[of "𝟭" u "0::int" m]
by (metis B Qp.one_nonzero add.right_neutral eint.inject val_ord zero_eint_def)
show "u ∈ P_set n"
proof(cases "u = 𝟭")
case True
then show ?thesis
by (metis P_set_one insert_iff zeroth_P_set)
next
case False
have F0: "u ∈ 𝒪⇩p"
apply(rule val_ring_memI, rule A)
unfolding 0 val_one by auto
have F1: "val (𝟭 ⊖⇘Q⇩p⇙ u) ≥ m"
using False 3 by blast
have "ord (𝟭 ⊖ u) ≥ m"
by (metis A F1 False Qp.not_eq_diff_nonzero Qp.one_closed eint_ord_simps(1) val_ord)
hence F2: "ord (𝟭 ⊖⇘Q⇩p⇙ u) > 2*(ord ([n]⋅ 𝟭))"
using m_def F1 A False Qp.not_eq_diff_nonzero Qp.one_closed eint_ord_simps(1)
int_nat_eq of_nat_1 of_nat_add val_ord[of "𝟭 ⊖ u"] eint_nat_times_2
by linarith
have "val (𝟭 ⊖⇘Q⇩p⇙ u) > 2*(val ([n]⋅ 𝟭))"
proof-
have 0: "val (𝟭 ⊖⇘Q⇩p⇙ u) > 2*(ord ([n]⋅ 𝟭))"
using F2 val_ord[of "𝟭 ⊖ u"] A False Qp.not_eq_diff_nonzero Qp.one_closed eint_ord_simps(2) by presburger
have "n > 0"
using assms by linarith
hence "eint (ord ([n] ⋅ 𝟭)) = val ([n] ⋅ 𝟭)"
using val_ord_nat_inc[of n]
by blast
hence "2*ord ([n]⋅ 𝟭) = 2*val ([n]⋅ 𝟭)"
by (metis inc_of_nat times_eint_simps(1))
thus ?thesis
using 0 val_ord[of "𝟭 ⊖ u"] assms
by presburger
qed
then have "(∃ b ∈ 𝒪⇩p. ((b[^]n) = u))"
using m_def False nth_root_poly_root[of n u] F0 assms F by linarith
then have "(∃ b ∈ carrier Q⇩p. ((b[^]n) = u))"
using val_ring_memE by blast
then show "u ∈ P_set n"
using P_set_def[of n] 2
by blast
qed
qed
qed
then show ?thesis using m_pos by blast
qed
definition pow_res where
"pow_res (n::nat) x = {a. a ∈ carrier Q⇩p ∧ (∃y ∈ nonzero Q⇩p. (a = x ⊗ (y[^]n)))}"
lemma nonzero_pow_res:
assumes "x ∈ nonzero Q⇩p"
shows "pow_res (n::nat) x ⊆ nonzero Q⇩p"
proof
fix a
assume "a ∈ pow_res n x"
then obtain y where y_def: "y ∈ nonzero Q⇩p ∧ (a = x ⊗ (y[^]n))"
using pow_res_def by blast
then show "a ∈ nonzero Q⇩p"
using assms Qp.Units_m_closed Qp_nat_pow_nonzero Units_eq_nonzero by blast
qed
lemma pow_res_of_zero:
shows "pow_res n 𝟬 = {𝟬}"
unfolding pow_res_def apply(rule equalityI)
apply(rule subsetI)
unfolding mem_Collect_eq
apply (metis Qp.integral_iff Qp.nat_pow_closed Qp.nonzero_closed Qp.zero_closed insertCI)
apply(rule subsetI) unfolding mem_Collect_eq
by (metis Qp.nat_pow_one Qp.one_nonzero Qp.r_one Qp.zero_closed equals0D insertE)
lemma equal_pow_resI:
assumes "x ∈ carrier Q⇩p"
assumes "y ∈ pow_res n x"
shows "pow_res n x = pow_res n y"
proof
have y_closed: "y ∈ carrier Q⇩p"
using assms unfolding pow_res_def by blast
obtain c where c_def: "c ∈ nonzero Q⇩p ∧ y = x ⊗ (c[^]n)"
using assms pow_res_def by blast
have "((inv c)[^]n) = inv (c[^]n)"
using c_def Qp.field_axioms Qp.nat_pow_of_inv Units_eq_nonzero by blast
then have "y ⊗ ((inv c)[^]n) = x"
using y_closed c_def assms Qp.inv_cancelL(2) Qp.nonzero_closed Qp_nat_pow_nonzero Units_eq_nonzero
by presburger
then have P0: "(inv c) ∈ nonzero Q⇩p ∧ x =y ⊗ ((inv c)[^]n) "
using c_def nonzero_inverse_Qp by blast
show "pow_res n x ⊆ pow_res n y"
proof
fix a
assume A: "a ∈ pow_res n x"
then have "a ∈ carrier Q⇩p"
by (metis (no_types, lifting) mem_Collect_eq pow_res_def)
obtain b where b_def: "b ∈ nonzero Q⇩p ∧ a = x ⊗ (b[^]n)"
using A pow_res_def by blast
then have 0: "b ∈ nonzero Q⇩p ∧ a = y ⊗ ((inv c)[^]n) ⊗ (b[^]n)"
using ‹y ⊗ inv c [^] n = x› by blast
have "b ∈ nonzero Q⇩p ∧ a = y ⊗ (((inv c) ⊗ b)[^]n)"
proof-
have "(inv c)[^]n ⊗ (b[^]n) = ((inv c) ⊗ b)[^]n"
using c_def b_def assms P0 Qp.nat_pow_distrib Qp.nonzero_closed by presburger
then have " y ⊗ (((inv c)[^]n) ⊗ (b[^]n)) = y ⊗ (((inv c) ⊗ b)[^]n)"
by presburger
then show ?thesis
using y_closed 0 P0 Qp.m_assoc Qp.nat_pow_closed Qp.nonzero_closed assms(1) by presburger
qed
then have "((inv c) ⊗ b) ∈ nonzero Q⇩p ∧ a = y ⊗ (((inv c) ⊗ b)[^]n)"
by (metis P0 Qp.integral_iff Qp.nonzero_closed Qp.nonzero_mult_closed not_nonzero_Qp)
then show "a ∈ pow_res n y" using pow_res_def ‹a ∈ carrier Q⇩p› by blast
qed
show "pow_res n y ⊆ pow_res n x"
proof
fix a
assume A: "a ∈ pow_res n y"
then have 0: "a ∈ carrier Q⇩p"
by (metis (no_types, lifting) mem_Collect_eq pow_res_def)
obtain b where b_def: "b ∈ nonzero Q⇩p ∧ a = y ⊗ (b[^]n)"
using A pow_res_def by blast
then have "a = (x ⊗ (c[^]n)) ⊗ (b[^]n)"
using c_def by blast
then have "a = x ⊗ ((c[^]n) ⊗ (b[^]n))"
by (meson Qp.m_assoc Qp.nat_pow_closed Qp.nonzero_closed assms(1) b_def c_def)
then have "a = x ⊗ ((c ⊗ b)[^]n)"
using Qp.nat_pow_distrib Qp.nonzero_closed b_def c_def by presburger
then have "(c ⊗ b) ∈ nonzero Q⇩p ∧ a = x ⊗ ((c ⊗ b)[^]n)"
by (metis Qp.integral_iff Qp.nonzero_closed Qp.nonzero_mult_closed b_def c_def not_nonzero_Qp)
then show "a ∈ pow_res n x"
using pow_res_def 0 by blast
qed
qed
lemma zeroth_pow_res:
assumes "x ∈ carrier Q⇩p"
shows "pow_res 0 x = {x}"
apply(rule equalityI)
apply(rule subsetI)
unfolding pow_res_def mem_Collect_eq
using assms apply (metis Qp.nat_pow_0 Qp.r_one singletonI)
apply(rule subsetI)
unfolding pow_res_def mem_Collect_eq
using assms by (metis Qp.nat_pow_0 Qp.one_nonzero Qp.r_one equals0D insertE)
lemma Zp_car_zero_res: assumes "x ∈ carrier Z⇩p"
shows "x 0 = 0"
using assms unfolding Zp_def
using Zp_def Zp_defs(3) padic_set_zero_res prime by blast
lemma zeroth_ac:
assumes "x ∈ carrier Q⇩p"
shows "ac 0 x = 0"
apply(cases "x = 𝟬 ")
unfolding ac_def apply presburger
using assms angular_component_closed[of x] Zp_car_zero_res unfolding nonzero_def mem_Collect_eq
by presburger
lemma nonzero_ac_imp_nonzero:
assumes "x ∈ carrier Q⇩p"
assumes "ac m x ≠ 0"
shows "x ∈ nonzero Q⇩p"
using assms unfolding ac_def nonzero_def mem_Collect_eq
by presburger
lemma nonzero_ac_val_ord:
assumes "x ∈ carrier Q⇩p"
assumes "ac m x ≠ 0"
shows "val x = ord x"
using nonzero_ac_imp_nonzero assms val_ord by blast
lemma pow_res_equal_ord:
assumes "n > 0"
shows "∃m > 0. ∀x y. x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y ⟶ pow_res n x = pow_res n y"
proof-
obtain m where m_def_0: "m > 0 ∧ ( ∀ u ∈ carrier Q⇩p. ac m u = 1 ∧ val u = 0 ⟶ u ∈ P_set n)"
using assms nth_power_fact[of n]
by (metis less_imp_le_nat less_one linorder_neqE_nat nat_le_linear zero_less_iff_neq_zero)
then have m_def: "m > 0 ∧ ( ∀ u ∈ carrier Q⇩p. ac m u = 1 ∧ ord u = 0 ⟶ u ∈ P_set n)"
by (smt nonzero_ac_val_ord zero_eint_def)
have "∀x y. x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y ⟶ pow_res n x = pow_res n y"
proof
fix x
show "∀y. x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y ⟶ pow_res n x = pow_res n y"
proof fix y
show "x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y ⟶ pow_res n x = pow_res n y"
proof
assume A: "x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y "
then have 0: "ac m (x ÷ y) = 1"
using ac_inv[of y m] ac_mult
by (metis ac_inv'''(1) ac_mult' m_def nonzero_inverse_Qp)
have 1: "ord (x ÷ y) = 0"
using A ord_fract by presburger
have 2: "(x ÷ y) ∈ nonzero Q⇩p"
using A
by (metis Qp.nonzero_closed Qp.nonzero_mult_closed local.fract_cancel_right nonzero_inverse_Qp not_nonzero_Qp zero_fract)
have 3: "(x ÷ y) ∈ P_set n"
using m_def 0 1 2 nonzero_def
by (smt Qp.nonzero_closed)
then obtain b where b_def: "b ∈ carrier Q⇩p ∧ (b[^]n) = (x ÷ y)"
using P_set_def
by blast
then have "(x ÷ y) ⊗ y = (b[^]n) ⊗ y"
by presburger
then have "x = (b[^]n) ⊗ y"
using A b_def
by (metis Qp.nonzero_closed local.fract_cancel_left)
then have "x = y ⊗(b[^]n)"
using A b_def
by (metis Qp.nonzero_closed local.fract_cancel_right)
then have "x ∈ pow_res n y"
unfolding pow_res_def using A b_def
by (metis (mono_tags, lifting) "2" Qp.nat_pow_0 Qp.nonzero_closed Qp_nonzero_nat_pow mem_Collect_eq not_gr_zero)
then show "pow_res n x = pow_res n y"
using A equal_pow_resI[of x y n] unfolding nonzero_def
by (metis (mono_tags, lifting) A Qp.nonzero_closed equal_pow_resI)
qed
qed
qed
then show ?thesis using m_def by blast
qed
lemma pow_res_equal:
assumes "n > 0"
shows "∃m> 0. ∀x y. x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = (ord y mod n) ⟶ pow_res n x = pow_res n y"
proof-
obtain m where m_def: "m > 0 ∧ (∀x y. x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y ⟶ pow_res n x = pow_res n y)"
using assms pow_res_equal_ord
by meson
have "∀x y. x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y mod int n ⟶ pow_res n x = pow_res n y"
proof fix x
show "∀y. x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y mod int n ⟶ pow_res n x = pow_res n y"
proof fix y
show "x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y mod int n ⟶ pow_res n x = pow_res n y"
proof
assume A: "x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y mod int n"
show "pow_res n x = pow_res n y"
proof-
have A0: "x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p"
using A by blast
have A1: "ac m x = ac m y"
using A by blast
have A2: "ord x = ord y mod int n"
using A by blast
obtain k where k_def: "k = ord x"
by blast
obtain l where l_def: "ord y = ord x + (l:: int)*(int n)"
using assms A2
by (metis A k_def mod_eqE mod_mod_trivial mult_of_nat_commute)
have m_def': "⋀x y. x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y ⟹ pow_res n x = pow_res n y"
using m_def
by blast
have 0: "ord (y ⊗ (𝔭[^](- l*n))) = ord x"
proof-
have 0: "ord (y ⊗ (𝔭[^](- l*n))) = ord y + (ord (𝔭[^](- l*n)))"
using ord_mult p_nonzero A0 Qp_int_pow_nonzero
by blast
have 1: "ord (𝔭[^](- l*n)) = - l*n"
using ord_p_pow_int[of "-l*n"]
by blast
then have "ord (y ⊗ (𝔭[^](- l*n))) = ord y - l*n"
using 0
by linarith
then show ?thesis
using k_def l_def by linarith
qed
have 1: "ac m (y ⊗ (𝔭[^](- l*n))) = ac m y"
using assms ac_p_int_pow_factor_right[of ] m_def A Qp.nonzero_closed by presburger
have 2: "y ⊗ (𝔭[^](- l*n)) ∈ nonzero Q⇩p"
using A0 Qp_int_pow_nonzero[of 𝔭 "- l*n"] Qp.cring_axioms nonzero_def cring.cring_simprules(5)
fract_cancel_left not_nonzero_Qp p_intpow_inv'' p_nonzero zero_fract Qp.integral_iff
Qp.nonzero_closed Qp.nonzero_memE(2) Qp.nonzero_memI Qp.nonzero_mult_closed
minus_mult_commute mult_minus_right p_intpow_closed(1) p_intpow_closed(2)
by presburger
then have 3: "pow_res n (y ⊗ (𝔭[^](- l*n))) = pow_res n x"
using 2 A0 m_def'[of "y ⊗ (𝔭[^](- l*n))" x] "0" "1" A1
by linarith
have 4: "(y ⊗ (𝔭[^](- l*n))) = (y ⊗ ((𝔭[^]- l)[^]n))"
using Qp_int_nat_pow_pow[of 𝔭 "-l" n] p_nonzero
by presburger
have "y ⊗ (𝔭[^](- l*n))∈ pow_res n y "
using "2" "4" Qp_int_pow_nonzero nonzero_def p_nonzero
unfolding pow_res_def nonzero_def
proof -
assume a1: "⋀x n. x ∈ {a ∈ carrier Q⇩p. a ≠ 𝟬} ⟹ x [^] (n::int) ∈ {a ∈ carrier Q⇩p. a ≠ 𝟬}"
assume a2: "𝔭 ∈ {a ∈ carrier Q⇩p. a ≠ 𝟬}"
assume a3: "y ⊗ 𝔭 [^] (- l * int n) ∈ {a ∈ carrier Q⇩p. a ≠ 𝟬}"
have f4: "𝔭 [^] (- 1 * l) ∈ {r ∈ carrier Q⇩p. r ≠ 𝟬}"
using a2 a1 by presburger
have f5: "- l = - 1 * l"
by linarith
then have f6: "y ⊗ 𝔭 [^] (- 1 * l * int n) = y ⊗ (𝔭 [^] (- 1 * l)) [^] n"
using ‹y ⊗ 𝔭 [^] (- l * int n) = y ⊗ (𝔭 [^] - l) [^] n› by presburger
then have "y ⊗ (𝔭 [^] (- 1 * l)) [^] n ∈ {r ∈ carrier Q⇩p. r ≠ 𝟬}"
using f5 a3 by presburger
then have "y ⊗ (𝔭 [^] (- 1 * l)) [^] n ∈ {r ∈ carrier Q⇩p. ∃ra. ra ∈ {r ∈ carrier Q⇩p. r ≠ 𝟬} ∧ r = y ⊗ ra [^] n}"
using f4 by blast
then have "y ⊗ 𝔭 [^] (- l * int n) ∈ {r ∈ carrier Q⇩p. ∃ra. ra ∈ {r ∈ carrier Q⇩p. r ≠ 𝟬} ∧ r = y ⊗ ra [^] n}"
using f6 f5 by presburger
then show "y ⊗ 𝔭 [^] (- l * int n) ∈ {r ∈ carrier Q⇩p. ∃ra∈{r ∈ carrier Q⇩p. r ≠ 𝟬}. r = y ⊗ ra [^] n}"
by meson
qed
then have "pow_res n (y ⊗ (𝔭[^](- l*n))) = pow_res n y"
using equal_pow_resI[of "(y ⊗ (𝔭[^](- l*n)))" y n] "2" A0 assms
Qp.nonzero_mult_closed p_intpow_closed(2)
by (metis (mono_tags, opaque_lifting) "3" A Qp.nonzero_closed equal_pow_resI)
then show ?thesis using 3 by blast
qed
qed
qed
qed
then show ?thesis
using m_def
by blast
qed
definition pow_res_classes where
"pow_res_classes n = {S. ∃x ∈ nonzero Q⇩p. S = pow_res n x }"
lemma pow_res_semialg_def:
assumes "x ∈ nonzero Q⇩p"
assumes "n ≥ 1"
shows "∃P ∈ carrier Q⇩p_x. pow_res n x = (univ_basic_semialg_set n P) - {𝟬}"
proof-
have 0: "pow_res n x = {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. (inv x) ⊗ a = (y[^]n)}"
proof
show "pow_res n x ⊆ {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. inv x ⊗ a = (y[^]n)}"
proof
fix a
assume A: "a ∈ pow_res n x"
then have "a ∈ carrier Q⇩p ∧ (∃y∈nonzero Q⇩p. a = x ⊗ (y[^]n))"
unfolding pow_res_def
by blast
then obtain y where y_def: "y ∈ nonzero Q⇩p ∧a = x ⊗ (y[^]n)"
by blast
then have "y ∈ nonzero Q⇩p ∧ inv x ⊗ a = (y[^]n)"
proof -
show ?thesis
by (metis (no_types, opaque_lifting) Qp.m_assoc Qp.m_comm Qp.nat_pow_closed Qp.nonzero_closed
‹a ∈ carrier Q⇩p ∧ (∃y∈nonzero Q⇩p. a = x ⊗ y [^] n)› assms(1) local.fract_cancel_right nonzero_inverse_Qp y_def)
qed
then show "a ∈ {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. inv x ⊗ a = (y[^]n)}"
using assms ‹a ∈ carrier Q⇩p ∧ (∃y∈nonzero Q⇩p. a = x ⊗ (y[^]n))›
by blast
qed
show "{a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. inv x ⊗ a = (y[^]n)} ⊆ pow_res n x"
proof
fix a
assume A: "a ∈ {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. inv x ⊗ a = (y[^]n)}"
show "a ∈ pow_res n x"
proof-
have "a ∈ carrier Q⇩p ∧ (∃y∈nonzero Q⇩p. inv x ⊗ a = (y[^]n))"
using A by blast
then obtain y where y_def: "y∈nonzero Q⇩p ∧ inv x ⊗ a = (y[^]n)"
by blast
then have "y∈nonzero Q⇩p ∧ a = x ⊗(y[^]n)"
by (metis Qp.l_one Qp.m_assoc Qp.nonzero_closed Qp.not_nonzero_memI
‹a ∈ carrier Q⇩p ∧ (∃y∈nonzero Q⇩p. inv x ⊗ a = y [^] n)› assms(1) field_inv(2) inv_in_frac(1))
then show ?thesis
by (metis (mono_tags, lifting) ‹a ∈ carrier Q⇩p ∧ (∃y∈nonzero Q⇩p. inv x ⊗ a = (y[^]n))› mem_Collect_eq pow_res_def)
qed
qed
qed
obtain P where P_def: "P = up_ring.monom Q⇩p_x (inv x) 1"
by blast
have P_closed: "P ∈ carrier Q⇩p_x"
using P_def Qp.nonzero_closed Qp.nonzero_memE(2) UPQ.is_UP_monomE(1) UPQ.is_UP_monomI assms(1) inv_in_frac(1) by presburger
have P_eval: "⋀a. a ∈ carrier Q⇩p ⟹ (P ∙ a) = (inv x) ⊗ a"
using P_def to_fun_monom[of ]
by (metis Qp.nat_pow_eone Qp.nonzero_closed Qp.not_nonzero_memI assms(1) inv_in_frac(1))
have 0: "pow_res n x = {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. (P ∙ a) = (y[^]n)}"
proof
show "pow_res n x ⊆ {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. P ∙ a = (y[^]n)}"
proof fix a
assume "a ∈ pow_res n x"
then have "a ∈ carrier Q⇩p ∧ (∃y∈nonzero Q⇩p. inv x ⊗ a = (y[^]n))"
using 0
by blast
then show "a ∈ {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. P ∙ a = (y[^]n)}"
using P_eval
by (metis (mono_tags, lifting) mem_Collect_eq)
qed
show "{a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. P ∙ a = (y[^]n)} ⊆ pow_res n x"
proof fix a
assume "a ∈ {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. P ∙ a = (y[^]n)}"
then obtain y where y_def: "y∈nonzero Q⇩p ∧ P ∙ a = (y[^]n)"
by blast
then have "y∈nonzero Q⇩p ∧ inv x ⊗ a = (y[^]n)"
using P_eval ‹a ∈ {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. P ∙ a = (y[^]n)}›
by blast
then have "a ∈ carrier Q⇩p ∧ (∃y∈nonzero Q⇩p. inv x ⊗ a = (y[^]n))"
using ‹a ∈ {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. P ∙ a = (y[^]n)}› by blast
then show "a ∈ pow_res n x"
using 0
by blast
qed
qed
have 1: "univ_basic_semialg_set n P - {𝟬} = {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. (P ∙ a) = (y[^]n)}"
proof
show "univ_basic_semialg_set n P - {𝟬} ⊆ {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. P ∙ a = (y[^]n)}"
proof
fix a
assume A: "a ∈ univ_basic_semialg_set n P - {𝟬}"
then have A0: "a ∈ carrier Q⇩p ∧ (∃y∈carrier Q⇩p. P ∙ a = (y[^]n))"
unfolding univ_basic_semialg_set_def by blast
then have A0': "a ∈ nonzero Q⇩p ∧ (∃y∈carrier Q⇩p. P ∙ a = (y[^]n))"
using A
by (metis DiffD2 not_nonzero_Qp singletonI)
then obtain y where y_def: "y∈carrier Q⇩p ∧ P ∙ a = (y[^]n)"
by blast
have A1: "(P ∙ a) ≠ 𝟬"
using P_eval A0' Qp.integral_iff Qp.nonzero_closed Qp.nonzero_memE(2) assms(1) inv_in_frac(1) inv_in_frac(2) by presburger
have A2: "y ∈ nonzero Q⇩p"
proof-
have A20: "(y[^]n) ≠𝟬"
using A1 y_def
by blast
have "y ≠ 𝟬"
apply(rule ccontr) using A20 assms
by (metis Qp.nat_pow_eone Qp.semiring_axioms Qp.zero_closed le_zero_eq semiring.nat_pow_zero)
then show ?thesis
using y_def A1 not_nonzero_Qp Qp.not_nonzero_memE by blast
qed
then have "y ∈ nonzero Q⇩p ∧ P ∙ a = (y[^]n)" using y_def
by blast
then show "a ∈ {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. P ∙ a = (y[^]n)}"
using A0 nonzero_def
by blast
qed
show "{a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. P ∙ a = (y[^]n)} ⊆ univ_basic_semialg_set n P - {𝟬}"
proof
fix a
assume A: "a ∈ {a ∈ carrier Q⇩p. ∃y∈nonzero Q⇩p. P ∙ a = (y[^]n)}"
then obtain y where y_def: "y∈nonzero Q⇩p ∧ P ∙ a = (y[^]n)"
by blast
then have "y ≠𝟬 ∧ y∈ carrier Q⇩p ∧ P ∙ a = (y[^]n)"
by (metis (mono_tags, opaque_lifting) Qp.nonzero_closed Qp.not_nonzero_memI)
then have "a ≠𝟬"
using P_eval
by (metis Qp.m_comm Qp.nonzero_closed Qp.nonzero_memE(2) Qp.nonzero_pow_nonzero Qp.zero_closed assms(1) inv_in_frac(1) zero_fract)
then show "a ∈ univ_basic_semialg_set n P - {𝟬}"
unfolding univ_basic_semialg_set_def
using A ‹y ≠ 𝟬 ∧ y ∈ carrier Q⇩p ∧ P ∙ a = (y[^]n)›
by blast
qed
qed
show ?thesis using 0 1
by (metis (no_types, lifting) P_closed)
qed
lemma pow_res_is_univ_semialgebraic:
assumes "x ∈ carrier Q⇩p"
shows "is_univ_semialgebraic (pow_res n x)"
proof(cases "n = 0")
case True
have T0: "pow_res n x = {x}"
unfolding True using assms
by (simp add: assms zeroth_pow_res)
have "[x] ∈ carrier (Q⇩p⇗1⇖)"
using assms Qp.to_R1_closed by blast
hence "is_semialgebraic 1 {[x]}"
using is_algebraic_imp_is_semialg singleton_is_algebraic by blast
thus ?thesis unfolding T0 using assms
by (simp add: ‹x ∈ carrier Q⇩p› finite_is_univ_semialgebraic)
next
case False
show ?thesis
proof(cases "x = 𝟬")
case True
then show ?thesis using finite_is_univ_semialgebraic False pow_res_of_zero
by (metis Qp.zero_closed empty_subsetI finite.emptyI finite.insertI insert_subset)
next
case F: False
then show ?thesis
using False pow_res_semialg_def[of x n] diff_is_univ_semialgebraic[of _ "{𝟬}"] finite_is_univ_semialgebraic[of "{𝟬}"]
by (metis Qp.zero_closed assms empty_subsetI finite.emptyI finite.insertI insert_subset less_one less_or_eq_imp_le linorder_neqE_nat not_nonzero_Qp univ_basic_semialg_set_is_univ_semialgebraic)
qed
qed
lemma pow_res_is_semialg:
assumes "x ∈ carrier Q⇩p"
shows "is_semialgebraic 1 (to_R1 ` (pow_res n x))"
using assms pow_res_is_univ_semialgebraic is_univ_semialgebraicE
by blast
lemma pow_res_refl:
assumes "x ∈ carrier Q⇩p"
shows "x ∈ pow_res n x"
proof-
have "x = x ⊗ (𝟭 [^]n)"
using assms Qp.nat_pow_one Qp.r_one by presburger
thus ?thesis
using assms unfolding pow_res_def mem_Collect_eq
using Qp.one_nonzero by blast
qed
lemma equal_pow_resE:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "n > 0"
assumes "pow_res n a = pow_res n b"
shows "∃ s ∈ P_set n. a = b ⊗ s"
proof-
have "a ∈ pow_res n b"
using assms pow_res_refl by blast
then obtain y where y_def: " y ∈ nonzero Q⇩p ∧ a = b ⊗ y[^]n"
unfolding pow_res_def by blast
thus ?thesis unfolding P_set_def
using Qp.nonzero_closed Qp_nat_pow_nonzero by blast
qed
lemma pow_res_one:
assumes "x ∈ nonzero Q⇩p"
shows "pow_res 1 x = nonzero Q⇩p"
proof show "pow_res 1 x ⊆ nonzero Q⇩p"
using assms nonzero_pow_res[of x 1] by blast
show "nonzero Q⇩p ⊆ pow_res 1 x"
proof fix y assume A: "y ∈ nonzero Q⇩p"
then have 0: "𝟭 ∈ nonzero Q⇩p ∧ y = x ⊗ ((inv x)⊗ y)[^](1::nat)"
using assms Qp.m_comm Qp.nat_pow_eone Qp.nonzero_closed Qp.nonzero_mult_closed
Qp.one_nonzero local.fract_cancel_right nonzero_inverse_Qp by presburger
have 1: "(inv x)⊗ y ∈ nonzero Q⇩p"
using A assms by (metis Qp.Units_m_closed Units_eq_nonzero nonzero_inverse_Qp)
then show "y ∈ pow_res 1 x"
unfolding pow_res_def using 0 1 A Qp.nonzero_closed by blast
qed
qed
lemma pow_res_zero:
assumes "n > 0"
shows "pow_res n 𝟬 = {𝟬}"
proof
show "pow_res n 𝟬 ⊆ {𝟬}"
unfolding pow_res_def
using Qp.l_null Qp.nat_pow_closed Qp.nonzero_closed by blast
show "{𝟬} ⊆ pow_res n 𝟬"
using assms unfolding pow_res_def
using Qp.l_null Qp.one_closed Qp.one_nonzero empty_subsetI insert_subset by blast
qed
lemma equal_pow_resI':
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "c ∈ P_set n"
assumes "a = b ⊗ c"
assumes "n > 0"
shows "pow_res n a = pow_res n b"
proof-
obtain y where y_def: "c = y[^]n ∧ y ∈ carrier Q⇩p"
using assms unfolding P_set_def by blast
have c_nonzero: "c ∈ nonzero Q⇩p"
using P_set_nonzero'(1) assms(3) by blast
have y_nonzero: "y ∈ nonzero Q⇩p"
using y_def c_nonzero Qp_nonzero_nat_pow assms(5) by blast
have 0: "a ∈ pow_res n b"
using assms y_nonzero y_def unfolding pow_res_def
by blast
show ?thesis
apply(cases "b = 𝟬")
using pow_res_zero Qp.l_null Qp.nonzero_closed assms(4) c_nonzero apply presburger
by (metis "0" assms(1) assms(2) assms(5) not_nonzero_Qp equal_pow_resI)
qed
lemma equal_pow_resI'':
assumes "n > 0"
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ nonzero Q⇩p"
assumes "a ⊗ inv b ∈ P_set n"
shows "pow_res n a = pow_res n b"
using assms equal_pow_resI'[of a b "a ⊗ inv b" n] Qp.nonzero_closed local.fract_cancel_right
by blast
lemma equal_pow_resI''':
assumes "n > 0"
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ nonzero Q⇩p"
assumes "c ∈ nonzero Q⇩p"
assumes "pow_res n (c ⊗ a) = pow_res n (c ⊗ b)"
shows "pow_res n a = pow_res n b"
proof-
have 0: "c ⊗a ∈ nonzero Q⇩p"
by (meson Localization.submonoid.m_closed Qp.nonzero_is_submonoid assms(2) assms(4))
have 1: "c ⊗b ∈ nonzero Q⇩p"
by (meson Localization.submonoid.m_closed Qp.nonzero_is_submonoid assms(3) assms(4))
have "c⊗a ∈ pow_res n (c⊗b)"
proof(cases "n = 1")
case True
then show ?thesis
using assms 0 1 pow_res_one[of "c⊗b"] by blast
next
case False
then have "n ≥ 2"
using assms(1) by linarith
then show ?thesis
using assms 0 1 pow_res_refl[of "c⊗a" n] unfolding nonzero_def
by blast
qed
then obtain y where y_def: "y ∈ nonzero Q⇩p ∧ (c ⊗ a) = (c ⊗ b)⊗y[^]n"
using assms unfolding pow_res_def by blast
then have "a = b⊗y[^]n"
using assms
by (metis Qp.m_assoc Qp.m_lcancel Qp.nonzero_closed Qp.nonzero_mult_closed Qp.not_nonzero_memI Qp_nat_pow_nonzero)
then show ?thesis
by (metis P_set_memI Qp.nonzero_closed Qp.nonzero_mult_closed Qp.not_nonzero_memI Qp_nat_pow_nonzero assms(1) assms(3) equal_pow_resI' y_def)
qed
lemma equal_pow_resI'''':
assumes "n > 0"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "a = b ⊗ u"
assumes "u ∈ P_set n"
shows "pow_res n a = pow_res n b"
proof(cases "a = 𝟬")
case True
then have "b = 𝟬"
using assms unfolding P_set_def
by (metis (no_types, lifting) Qp.integral Qp.nonzero_closed Qp.not_nonzero_memI mem_Collect_eq)
then show ?thesis using pow_res_zero
using True by blast
next
case False
then have 0: "a ∈ nonzero Q⇩p"
using Qp.not_nonzero_memE assms(2) by blast
have 1: "b ∈ nonzero Q⇩p"
using 0 assms unfolding P_set_def
by (metis (no_types, lifting) Qp.integral_iff Qp.nonzero_closed mem_Collect_eq not_nonzero_Qp)
have 2: "a ⊗ (inv b)∈ P_set n"
using assms 0 1
by (metis P_set_nonzero'(2) Qp.inv_cancelR(1) Qp.m_comm Qp.nonzero_memE(2) Units_eq_nonzero inv_in_frac(1))
then show ?thesis using equal_pow_resI''
by (meson "0" "1" assms(1) equal_pow_resI)
qed
lemma Zp_Units_ord_zero:
assumes "a ∈ Units Z⇩p"
shows "ord_Zp a = 0"
proof-
have "inv⇘Z⇩p⇙ a ∈ nonzero Z⇩p"
apply(rule Zp.nonzero_memI, rule Zp.Units_inv_closed, rule assms)
using assms Zp.Units_inverse in_Units_imp_not_zero by blast
then have "ord_Zp (a ⊗⇘Z⇩p⇙ inv ⇘Z⇩p⇙ a) = ord_Zp a + ord_Zp (inv ⇘Z⇩p⇙ a)"
using assms ord_Zp_mult Zp.Units_nonzero zero_not_one
by (metis Zp.zero_not_one)
then show ?thesis
by (smt Zp.Units_closed Zp.Units_r_inv Zp.integral_iff Zp.nonzero_closed ‹inv⇘Z⇩p⇙ a ∈ nonzero Z⇩p› assms ord_Zp_one ord_pos)
qed
lemma pow_res_nth_pow:
assumes "a ∈ nonzero Q⇩p"
assumes "n > 0"
shows "pow_res n (a[^]n) = pow_res n 𝟭"
proof
show "pow_res n (a [^] n) ⊆ pow_res n 𝟭"
proof fix x assume A: "x ∈ pow_res n (a [^] n)"
then show "x ∈ pow_res n 𝟭"
by (metis P_set_memI Qp.l_one Qp.nat_pow_closed Qp.nonzero_closed Qp.nonzero_memE(2)
Qp.nonzero_pow_nonzero Qp.one_closed assms(1) assms(2) equal_pow_resI')
qed
show "pow_res n 𝟭 ⊆ pow_res n (a [^] n)"
proof fix x assume A: "x ∈ pow_res n 𝟭"
then obtain y where y_def: "y ∈ nonzero Q⇩p ∧ x = 𝟭⊗y[^]n"
unfolding pow_res_def by blast
then have 0: "x = y[^]n"
using Qp.l_one Qp.nonzero_closed by blast
have "y[^]n = a[^]n ⊗ (inv a ⊗ y)[^]n"
proof-
have "a[^]n ⊗ (inv a ⊗ y)[^]n = a[^]n ⊗ (inv a)[^]n ⊗ y[^]n"
using Qp.Units_inv_closed Qp.m_assoc Qp.nat_pow_closed Qp.nat_pow_distrib Qp.nonzero_closed Units_eq_nonzero assms(1) y_def by presburger
then show ?thesis
by (metis Qp.Units_inv_inv Qp.inv_cancelR(1) Qp.nat_pow_distrib Qp.nonzero_closed Qp.nonzero_mult_closed Units_eq_nonzero assms(1) nonzero_inverse_Qp y_def)
qed
then show "x ∈ pow_res n (a [^] n)"
using y_def A assms unfolding pow_res_def mem_Collect_eq
by (metis "0" Qp.integral Qp.m_closed Qp.nonzero_closed Qp.not_nonzero_memI inv_in_frac(1) inv_in_frac(2) not_nonzero_Qp)
qed
qed
lemma pow_res_of_p_pow:
assumes "n > 0"
shows "pow_res n (𝔭[^]((l::int)*n)) = pow_res n 𝟭"
proof-
have 0: "𝔭[^]((l::int)*n) = (𝔭[^]l)[^]n"
using Qp_p_int_nat_pow_pow by blast
have "𝔭[^]((l::int)*n) ∈ P_set n"
using P_set_memI[of _ "𝔭[^]l"]
by (metis "0" Qp.not_nonzero_memI Qp_int_pow_nonzero p_intpow_closed(1) p_nonzero)
thus ?thesis
using "0" assms p_intpow_closed(2) pow_res_nth_pow by presburger
qed
lemma pow_res_nonzero:
assumes "n > 0"
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "pow_res n a = pow_res n b"
shows "b ∈ nonzero Q⇩p"
using assms nonzero_pow_res[of a n] pow_res_zero[of n]
by (metis insert_subset not_nonzero_Qp)
lemma pow_res_mult:
assumes "n > 0"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "d ∈ carrier Q⇩p"
assumes "pow_res n a = pow_res n c"
assumes "pow_res n b = pow_res n d"
shows "pow_res n (a ⊗ b) = pow_res n (c ⊗ d)"
proof(cases "a ∈ nonzero Q⇩p")
case True
then have "c ∈ nonzero Q⇩p"
using assms pow_res_nonzero by blast
then obtain α where alpha_def: "α ∈ nonzero Q⇩p ∧ a = c ⊗ α[^]n"
using assms True pow_res_refl[of a n] unfolding assms unfolding pow_res_def
by blast
show ?thesis
proof(cases "b ∈ nonzero Q⇩p")
case T: True
then have "d ∈ nonzero Q⇩p"
using assms pow_res_nonzero by blast
then obtain β where beta_def: "β ∈ nonzero Q⇩p ∧ b = d ⊗ β[^]n"
using T pow_res_refl[of b n] unfolding assms unfolding pow_res_def
using assms by blast
then have "a ⊗ b = (c ⊗ d) ⊗ (α[^]n ⊗ β[^] n)"
using Qp.m_assoc Qp.m_lcomm Qp.nonzero_closed Qp.nonzero_mult_closed Qp_nat_pow_nonzero alpha_def assms(3) assms(4) assms(5) by presburger
then have 0: "a ⊗ b = (c ⊗ d) ⊗ ((α ⊗ β)[^] n)"
by (metis Qp.nat_pow_distrib Qp.nonzero_closed alpha_def beta_def)
show ?thesis
apply(intro equal_pow_resI'[of _ _ "(α ⊗ β)[^] n"] Qp.ring_simprules assms
P_set_memI[of _ "α ⊗ β"] Qp.nat_pow_closed nonzero_memE 0 Qp_nat_pow_nonzero
)
using alpha_def beta_def apply auto
apply(intro nonzero_memI Qp.nonzero_mult_closed)
using alpha_def beta_def nonzero_memE apply auto
by (meson Qp.integral_iff)
next
case False
then have "b = 𝟬"
by (meson assms not_nonzero_Qp)
then have "d = 𝟬"
using assms by (metis False not_nonzero_Qp pow_res_nonzero)
then show ?thesis
using Qp.r_null ‹b = 𝟬› assms by presburger
qed
next
case False
then have "a = 𝟬"
by (meson assms not_nonzero_Qp)
then have "c = 𝟬"
using assms by (metis False not_nonzero_Qp pow_res_nonzero)
then show ?thesis
using Qp.r_null ‹a = 𝟬› assms Qp.l_null by presburger
qed
lemma pow_res_p_pow_factor:
assumes "n > 0"
assumes "a ∈ carrier Q⇩p"
shows "pow_res n a = pow_res n (𝔭[^]((l::int)*n) ⊗ a)"
proof(cases "a = 𝟬")
case True
then show ?thesis
using Qp.r_null p_intpow_closed(1) by presburger
next
case False
then show ?thesis using assms pow_res_of_p_pow
using Qp.m_comm Qp.one_closed Qp.r_one p_intpow_closed(1) pow_res_mult by presburger
qed
lemma pow_res_classes_finite:
assumes "n ≥ 1"
shows "finite (pow_res_classes n)"
proof(cases "n = 1")
case True
have "pow_res_classes n = {(nonzero Q⇩p)}"
using True pow_res_one unfolding pow_res_classes_def
using Qp.one_nonzero by blast
then show ?thesis by auto
next
case False
then have n_bound: "n ≥ 2"
using assms by linarith
obtain m where m_def: "m > 0 ∧ (∀x y. x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p ∧ ac m x = ac m y ∧ ord x = ord y ⟶ pow_res n x = pow_res n y)"
using assms False pow_res_equal_ord n_bound
by (metis gr_zeroI le_numeral_extra(2))
obtain f where f_def: "f = (λ η ν. (SOME y. y ∈ (pow_res_classes n) ∧ (∃ x ∈ y. ac m x = η ∧ ord x = ν)))"
by blast
have 0: "⋀x. x ∈ nonzero Q⇩p ⟹ pow_res n x = f (ac m x) (ord x)"
proof- fix x assume A: "x ∈ nonzero Q⇩p"
obtain η where eta_def: "η = ac m x"
by blast
obtain ν where nu_def: "ν = ord x"
by blast
have "∃y ∈pow_res n x. ac m y = ac m x ∧ ord y = ord x"
using pow_res_refl A assms neq0_conv Qp.nonzero_closed by blast
hence "pow_res n x ∈ (pow_res_classes n) ∧ (∃ y ∈ (pow_res n x). ac m y = η ∧ ord y = ν)"
unfolding nu_def eta_def using assms unfolding pow_res_classes_def
using A by blast
then have 0: "(∃ y. y ∈ (pow_res_classes n) ∧ (∃ x ∈ y. ac m x = η ∧ ord x = ν))"
by blast
have "f η ν = (SOME y. y ∈ (pow_res_classes n) ∧ (∃ x ∈ y. ac m x = η ∧ ord x = ν))"
using f_def by blast
then have 1: "f η ν ∈ (pow_res_classes n) ∧ ((∃ y ∈ (f η ν). ac m y = η ∧ ord y = ν))"
using 0 someI_ex[of "λ y. y ∈ (pow_res_classes n) ∧ (∃ x ∈ y. ac m x = η ∧ ord x = ν)"]
unfolding f_def by blast
then obtain y where y_def: "y ∈ (f η ν) ∧ ac m y = ac m x ∧ ord y = ord x"
unfolding nu_def eta_def by blast
obtain a where a_def: "a ∈ nonzero Q⇩p ∧ (f η ν) = pow_res n a"
using 1 unfolding pow_res_classes_def by blast
then have 2: "y ∈ pow_res n a"
using y_def by blast
have 3: "y ∈ nonzero Q⇩p"
using y_def nonzero_pow_res[of a n] a_def by blast
then have 4: "pow_res n y = pow_res n a"
using 3 y_def a_def equal_pow_resI[of y a n] n_bound Qp.nonzero_closed
by (metis equal_pow_resI)
have 5: "pow_res n y = f η ν"
using 4 a_def by blast
then show "pow_res n x = f (ac m x) (ord x)"
unfolding eta_def nu_def
using "3" A m_def y_def by blast
qed
obtain N where N_def: "N > 0 ∧ (∀ u ∈ carrier Q⇩p. ac N u = 1 ∧ val u = 0 ⟶ u ∈ P_set n)"
using n_bound nth_power_fact assms by blast
have 1: "⋀x. x ∈ nonzero Q⇩p ⟹ (∃y ∈ nonzero Q⇩p. ord y ≥ 0 ∧ ord y < n ∧ pow_res n x = pow_res n y)"
proof- fix x assume x_def: "x ∈ nonzero Q⇩p"
then obtain k where k_def: "k = ord x mod n"
by blast
then obtain l where l_def: "ord x = (int n)*l + k"
using cancel_div_mod_rules(2)[of n "ord x"0] unfolding k_def
by (metis group_add_class.add.right_cancel)
have "x = (𝔭[^](ord x)) ⊗ ι (angular_component x)"
using x_def angular_component_factors_x by blast
then have "x = (𝔭[^](n*l + k)) ⊗ ι (angular_component x)"
unfolding l_def by blast
hence "x = 𝔭[^](int n*l) ⊗ (𝔭[^] k) ⊗ ι (angular_component x)"
by (metis p_intpow_add)
hence 0: "x = (𝔭[^]l)[^]n ⊗ (𝔭[^] k) ⊗ ι (angular_component x)"
using p_pow_factor[of n l k] ‹x = 𝔭 [^] (int n * l + k) ⊗ ι (angular_component x)› by presburger
have 1: "ι (angular_component x) ∈ carrier Q⇩p"
using x_def angular_component_closed inc_closed by blast
hence 2: "x = (𝔭[^]l)[^]n ⊗ ((𝔭[^] k) ⊗ ι (angular_component x))"
using 0 by (metis Qp.m_assoc Qp.nat_pow_closed p_intpow_closed(1))
obtain a where a_def: "a = (𝔭[^] k) ⊗ ι (angular_component x)"
by blast
have 30: "angular_component x ∈ Units Z⇩p"
using angular_component_unit x_def by blast
then have 3: "ι (angular_component x) ∈ Units Q⇩p"
by (metis Units_eq_nonzero Zp.Units_closed in_Units_imp_not_zero inc_of_nonzero not_nonzero_Qp)
have 4: "ι (angular_component x) ∈ nonzero Q⇩p"
using 3 Units_nonzero_Qp by blast
have a_nonzero: "a ∈ nonzero Q⇩p"
unfolding a_def 4
by (meson "3" Qp.UnitsI(1) Qp.Units_m_closed Units_nonzero_Qp p_intpow_closed(1) p_intpow_inv)
have 5: "x = a ⊗(𝔭[^]l)[^]n"
using 2 a_nonzero unfolding a_def
using Qp.m_comm Qp.nat_pow_closed Qp.nonzero_closed p_intpow_closed(1) by presburger
hence "x ∈ pow_res n a"
unfolding pow_res_def
using Qp.nonzero_closed Qp_int_pow_nonzero p_nonzero x_def by blast
hence 6:"pow_res n a = pow_res n x"
using x_def a_def equal_pow_resI[of x a n] a_nonzero n_bound Qp.nonzero_closed equal_pow_resI
by blast
have 7: "ord (ι (angular_component x)) = 0"
proof-
have "ord_Zp (angular_component x) = 0" using 30 Zp_Units_ord_zero by blast
then have "val_Zp (angular_component x) = 0"
using "30" unit_imp_val_Zp0 by blast
then have "val (ι (angular_component x)) = 0"
by (metis angular_component_closed val_of_inc x_def)
then show ?thesis using angular_component_closed x_def
by (metis "30" Zp.Units_closed ‹ord_Zp (angular_component x) = 0› in_Units_imp_not_zero not_nonzero_Qp ord_of_inc)
qed
have 8: "ord a = k"
unfolding a_def using 3 4 7 ord_mult[of "𝔭 [^] k" "ι (angular_component x)"] ord_p_pow_int[of k]
p_pow_nonzero
using Qp_int_pow_nonzero p_nonzero by presburger
have 9: "k < n"
unfolding k_def
using assms by auto
from 6 8 9 assms have ‹0 ≤ ord a› ‹ord a < int n› ‹pow_res n x = pow_res n a›
by (auto simp add: k_def)
with a_nonzero show "∃y∈nonzero Q⇩p. 0 ≤ ord y ∧ ord y < int n ∧ pow_res n x = pow_res n y"
by auto
qed
have 2: "⋀x. x ∈ (pow_res_classes n) ⟹ ∃ η ν. η ∈ Units (Zp_res_ring m) ∧ ν ∈ {0..<int n} ∧ x = f η ν"
proof- fix a assume A: "a ∈ (pow_res_classes n)"
then obtain x where x_def: "x ∈ nonzero Q⇩p ∧ a = pow_res n x"
unfolding pow_res_classes_def by blast
then obtain x' where x'_def: "x' ∈ nonzero Q⇩p ∧ ord x' ≥ 0 ∧ ord x' < n ∧ pow_res n x' = a"
using 1[of x] unfolding x_def by blast
hence 20: "f (ac m x') (ord x') = a"
using 0 by blast
have 21: "ac m x' ∈ Units (Zp_res_ring m)"
using x'_def ac_units m_def by presburger
then have 22: "ac m x' ∈ Units (Zp_res_ring m) ∧ (ord x') ∈ ({0..<n}::int set ) ∧ a = f (ac m x') (ord x')"
using x'_def 20 atLeastLessThan_iff by blast
then show "∃ η ν. η ∈ Units (Zp_res_ring m) ∧ ν ∈ {0..<int n} ∧ a = f η ν" by blast
qed
obtain F where F_def: "F = (λps. f (fst ps) (snd ps))"
by blast
have 3: "⋀x. x ∈ (pow_res_classes n) ⟹ ∃ ps ∈ Units (Zp_res_ring m) × {0..<int n}. x = f (fst ps) (snd ps)"
proof- fix x assume A: "x ∈ pow_res_classes n"
obtain η ν where eta_nu_def: " η ∈ Units (Zp_res_ring m) ∧ ν ∈ {0..<int n} ∧ x = f η ν"
using 2 A by blast
then have "F (η, ν) = x"
unfolding F_def by (metis fst_conv snd_conv)
then show " ∃ ps ∈ Units (Zp_res_ring m) × {0..<int n}. x = f (fst ps) (snd ps)"
using eta_nu_def local.F_def by blast
qed
have 4: "pow_res_classes n ⊆ F ` (Units (Zp_res_ring m) × {0..<int n})"
unfolding F_def using 3
by blast
have "finite (Units (Zp_res_ring m))"
using m_def residues.finite_Units unfolding residues_def
by (metis Qp.one_nonzero ac_in_res_ring ac_one' p_res_ring_one p_residue_ring_car_memE(1))
hence "finite (Units (Zp_res_ring m) × {0..<int n})"
by blast
then show "finite (pow_res_classes n)"
using 4 by (meson finite_surj)
qed
lemma pow_res_classes_univ_semialg:
assumes "S ∈ pow_res_classes n"
shows "is_univ_semialgebraic S"
proof-
obtain x where x_def: "x∈nonzero Q⇩p ∧ S = pow_res n x"
using assms unfolding pow_res_classes_def by blast
then show ?thesis using pow_res_is_univ_semialgebraic
using Qp.nonzero_closed by blast
qed
lemma pow_res_classes_semialg:
assumes "S ∈ pow_res_classes n"
shows "is_semialgebraic 1 (to_R1` S)"
using pow_res_classes_univ_semialg
assms(1) is_univ_semialgebraicE by blast
definition nth_pow_wits where
"nth_pow_wits n = (λ S. (SOME x. x ∈ (S ∩ 𝒪⇩p)))` (pow_res_classes n)"
lemma nth_pow_wits_finite:
assumes "n > 0"
shows "finite (nth_pow_wits n)"
proof-
have "n ≥ 1"
by (simp add: assms leI)
thus ?thesis
unfolding nth_pow_wits_def using assms pow_res_classes_finite[of n] by blast
qed
lemma nth_pow_wits_covers:
assumes "n > 0"
assumes "x ∈ nonzero Q⇩p"
shows "∃y ∈ (nth_pow_wits n). y ∈ nonzero Q⇩p ∧ y ∈ 𝒪⇩p ∧ x ∈ pow_res n y"
proof-
have PP: "(pow_res n x) ∈ pow_res_classes n"
unfolding pow_res_classes_def using assms by blast
obtain k where k_def: "val x = eint k"
using assms val_ord by blast
obtain N::int where N_def: "N = (if k < 0 then -k else k)" by blast
then have N_nonneg: "N ≥ 0"
unfolding N_def
by presburger
have 0: "int n ≥ 1"
using assms by linarith
have "N*(int n) + k ≥ 0"
proof(cases "k<0")
case True then have "N = -k" unfolding N_def
by presburger
then have "N*n + k = k*(1- int n)"
using distrib_left[of k 1 "-int n"] mult_cancel_left2 mult_minus_left
by (metis add.inverse_inverse diff_minus_eq_add minus_mult_minus neg_equal_iff_equal uminus_add_conv_diff)
then show ?thesis using 0 True zero_less_mult_iff[of k "1 - int n"]
proof -
have "0 ≤ N * (int n - 1)"
by (meson "0" N_nonneg diff_ge_0_iff_ge zero_le_mult_iff)
then show ?thesis
by (metis (no_types) ‹N = - k› add.commute distrib_left minus_add_cancel mult_minus1_right uminus_add_conv_diff)
qed
next
case False
then have "N = k" unfolding N_def
by presburger
then show ?thesis using 0 False
by (metis N_nonneg add_increasing2 mult_nonneg_nonneg of_nat_0_le_iff)
qed
then have 1: "ord (𝔭[^](N*n)⊗x) ≥ 0"
using ord_mult k_def val_ord assms
by (metis Qp_int_pow_nonzero eint.inject ord_p_pow_int p_nonzero)
have 2: "𝔭[^](N*n)⊗x ∈ pow_res n x"
proof-
have "𝔭[^](N*n) = (𝔭[^]N)[^]n"
using Qp_p_int_nat_pow_pow by blast
then have "𝔭[^]N ∈ nonzero Q⇩p ∧ 𝔭[^](N*n)⊗x = x ⊗ (𝔭[^]N)[^]n"
by (metis Qp.m_comm Qp.nonzero_closed Qp_int_pow_nonzero assms(2) p_nonzero)
then show ?thesis unfolding pow_res_def
by (metis (mono_tags, lifting) Qp.m_closed Qp.nonzero_closed assms(2) mem_Collect_eq p_intpow_closed(1))
qed
have 3: "𝔭[^](N*n)⊗x ∈ 𝒪⇩p"
using 1 assms
by (metis Q⇩p_def Qp.nonzero_mult_closed Qp_int_pow_nonzero Z⇩p_def val_ring_ord_criterion ι_def p_nonzero padic_fields.zero_in_val_ring padic_fields_axioms)
have 4: "x ∈ pow_res n (𝔭[^](N*n)⊗x)"
using 2 equal_pow_resI[of x "𝔭[^](N*n)⊗x" n] pow_res_refl[of "𝔭[^](N*n)⊗x" n] assms
Qp.nonzero_mult_closed p_intpow_closed(2) pow_res_refl Qp.nonzero_closed by metis
have 5: "𝔭[^](N*n)⊗x ∈ (pow_res n x ∩ 𝒪⇩p)"
using 2 3 by blast
have 6: "(SOME z. z ∈ (pow_res n x) ∩ 𝒪⇩p) ∈ pow_res n x ∩ 𝒪⇩p" using 5
by (meson someI)
obtain y where y_def: "y = (SOME z. z ∈ (pow_res n x) ∩ 𝒪⇩p)"
by blast
then have A: "y ∈ pow_res n x"
using "6" by blast
then have "pow_res n x = pow_res n y"
using equal_pow_resI[of x y n] assms y_def Qp.nonzero_closed nonzero_pow_res by blast
then have 7: "x ∈ pow_res n y"
using pow_res_refl[of x n] assms unfolding nonzero_def by blast
have 8: "y ∈ nonzero Q⇩p "
using y_def PP 6 A nonzero_pow_res[of x n] assms
by blast
have 9: "y ∈ 𝒪⇩p"
using y_def "6" by blast
have "y∈(λS. SOME x. x ∈ S ∩ 𝒪⇩p) ` pow_res_classes n ∧ y ∈ nonzero Q⇩p ∧ y ∈ 𝒪⇩p ∧ x ∈ pow_res n y"
using y_def PP 6 7 8 9 A nonzero_pow_res[of x n] assms
by blast
then show ?thesis unfolding nth_pow_wits_def by blast
qed
lemma nth_pow_wits_closed:
assumes "n > 0"
assumes "x ∈ nth_pow_wits n"
shows "x ∈ carrier Q⇩p" "x ∈ 𝒪⇩p" "x ∈ nonzero Q⇩p" "∃ y ∈ pow_res_classes n. y = pow_res n x"
proof-
obtain c where c_def: "c ∈ pow_res_classes n ∧ x = (SOME x. x ∈ (c ∩ 𝒪⇩p))"
by (metis (no_types, lifting) assms(2) image_iff nth_pow_wits_def)
then obtain y where y_def: "y ∈ nonzero Q⇩p ∧ c = pow_res n y"
unfolding pow_res_classes_def by blast
then obtain a where a_def: "a ∈ (nth_pow_wits n) ∧ a ∈ nonzero Q⇩p ∧ a ∈ 𝒪⇩p ∧ y ∈ pow_res n a"
using nth_pow_wits_covers[of n y] assms(1) by blast
have 00: "pow_res n a = c"
using equal_pow_resI[of a y n] y_def assms a_def unfolding nonzero_def by blast
then have P :"a ∈ c ∩ 𝒪⇩p"
using pow_res_refl[of a n] assms a_def unfolding 00 nonzero_def by blast
then show 0: "x ∈ 𝒪⇩p" using c_def
by (metis Collect_mem_eq Int_Collect tfl_some)
then show "x ∈ carrier Q⇩p"
using val_ring_memE by blast
have 1: "c ⊆ nonzero Q⇩p"
using c_def nonzero_pow_res[of y n] unfolding pow_res_classes_def
using assms(1) y_def by blast
have "(SOME x. x ∈ (c ∩ 𝒪⇩p)) ∈ (c ∩ 𝒪⇩p)"
using P tfl_some
by (smt Int_def someI_ex)
then have 2: "x ∈ c"
using c_def by blast
thus "x ∈ nonzero Q⇩p"
using 1 by blast
show "∃ y ∈ pow_res_classes n. y = pow_res n x"
using 00 2 c_def P a_def equal_pow_resI[of a x n] 0 val_ring_memE assms(1) by blast
qed
lemma finite_extensional_funcset:
assumes "finite A"
assumes "finite (B::'b set)"
shows "finite (A →⇩E B)"
using finite_PiE[of A "λ_. B"] assms by blast
lemma nth_pow_wits_exists:
assumes "m > 0"
assumes "c ∈ pow_res_classes m"
shows "∃x. x ∈ c ∩ 𝒪⇩p"
proof-
obtain x where x_def: "x ∈ nonzero Q⇩p ∧ pow_res m x = c"
using assms unfolding pow_res_classes_def by blast
obtain y where y_def: "y ∈ (nth_pow_wits m) ∧ y ∈ nonzero Q⇩p ∧ y ∈ 𝒪⇩p ∧ x ∈ pow_res m y"
using nth_pow_wits_covers assms x_def
by blast
have 0: "pow_res m x = pow_res m y"
using x_def y_def equal_pow_resI Qp.nonzero_closed assms(1) by blast
then have 1: "y ∈ pow_res m x"
using pow_res_refl[of y m ] y_def assms unfolding nonzero_def by blast
thus ?thesis using x_def y_def assms
by blast
qed
lemma pow_res_classes_mem_eq:
assumes "m > 0"
assumes "a ∈ pow_res_classes m"
assumes "x ∈ a"
shows "a = pow_res m x"
proof-
obtain y where y_def: "y ∈ nonzero Q⇩p ∧ a = pow_res m y"
using assms unfolding pow_res_classes_def by blast
then show ?thesis using assms equal_pow_resI[of y x m]
by (meson Qp.nonzero_closed nonzero_pow_res equal_pow_resI subsetD)
qed
lemma nth_pow_wits_neq_pow_res:
assumes "m > 0"
assumes "x ∈ nth_pow_wits m"
assumes "y ∈ nth_pow_wits m"
assumes "x ≠ y"
shows "pow_res m x ≠ pow_res m y"
proof-
obtain a where a_def: "a ∈ pow_res_classes m ∧ x = (λ S. (SOME x. x ∈ (S ∩ 𝒪⇩p))) a"
using assms unfolding nth_pow_wits_def by blast
obtain b where b_def: "b ∈ pow_res_classes m ∧ y = (λ S. (SOME x. x ∈ (S ∩ 𝒪⇩p))) b"
using assms unfolding nth_pow_wits_def by blast
have a_neq_b: "a ≠ b"
using assms a_def b_def by blast
have 0: "x ∈ a ∩ 𝒪⇩p"
using a_def nth_pow_wits_exists[of m a] assms
by (meson someI_ex)
have 1: "y ∈ b ∩ 𝒪⇩p"
using b_def nth_pow_wits_exists[of m b] assms
by (meson someI_ex)
have 2: "pow_res m x = a"
using a_def pow_res_classes_mem_eq[of m a x] assms 0
by blast
have 3: "pow_res m y = b"
using b_def pow_res_classes_mem_eq[of m b y] assms 1
by blast
show ?thesis
by (simp add: "2" "3" a_neq_b)
qed
lemma nth_pow_wits_disjoint_pow_res:
assumes "m > 0"
assumes "x ∈ nth_pow_wits m"
assumes "y ∈ nth_pow_wits m"
assumes "x ≠ y"
shows "pow_res m x ∩ pow_res m y = {}"
using assms nth_pow_wits_neq_pow_res disjoint_iff_not_equal
by (metis (no_types, opaque_lifting) nth_pow_wits_closed(4) pow_res_classes_mem_eq)
lemma nth_power_fact':
assumes "0 < (n::nat)"
shows "∃m>0. ∀u∈carrier Q⇩p. ac m u = 1 ∧ val u = 0 ⟶ u ∈ P_set n"
using nth_power_fact[of n] assms
by (metis less_one less_or_eq_imp_le linorder_neqE_nat neq0_conv)
lemma equal_pow_res_criterion:
assumes "N > 0"
assumes "n > 0"
assumes "∀ u ∈ carrier Q⇩p. ac N u = 1 ∧ val u = 0 ⟶ u ∈ P_set n"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "a = b ⊗ (𝟭 ⊕ c)"
assumes "val c ≥ N"
shows "pow_res n a = pow_res n b"
proof(cases "b = 𝟬")
case True
then have "a = 𝟬"
using assms Qp.add.m_closed Qp.l_null Qp.one_closed by presburger
then show ?thesis using True
by blast
next
case False
then have F0: "a ÷ b = 𝟭 ⊕ c"
by (metis Qp.Units_one_closed Qp.add.m_closed Qp.inv_cancelR(2) Qp.one_closed Qp.unit_factor assms(4) assms(5) assms(6) assms(7) field_inv(2) inv_in_frac(1))
have "0 < eint N"
using assms by (metis eint_ord_simps(2) of_nat_0_less_iff zero_eint_def)
hence F1: "val 𝟭 < val c"
using assms less_le_trans[of 0 N "val c"] unfolding val_one
by blast
hence F2: " val 𝟭 = val (𝟭 ⊕ c)"
using assms val_one one_nonzero Qp.add.m_comm Qp.one_closed val_ultrametric_noteq by metis
have "val 𝟭 + eint (int N) ≤ val (𝟭 ⊖ (𝟭 ⊕ c))"
proof-
have "val (𝟭 ⊖ (𝟭 ⊕ c)) = val c"
using Qp.add.inv_closed Qp.minus_eq Qp.minus_sum Qp.one_closed Qp.r_neg2 assms(6) val_minus by presburger
thus ?thesis
unfolding val_one using assms F1 by (metis add.left_neutral)
qed
hence F3: "ac N 𝟭 = ac N (𝟭 ⊕ c)"
using F2 F1 assms ac_val[of 𝟭 "𝟭 ⊕ c" N]
by (metis Qp.add.m_closed Qp.one_closed val_nonzero)
have F4: "𝟭 ⊕ c ∈ P_set n"
using assms F1 F2 F3 val_one ac_one
by (metis Qp.add.m_closed Qp.one_closed Qp.one_nonzero ac_inv'' ac_inv'''(1) ac_one')
then show ?thesis
using assms(2) assms(4) assms(5) assms(7) equal_pow_resI' by blast
qed
lemma pow_res_nat_pow:
assumes "n > 0"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "pow_res n a = pow_res n b"
shows "pow_res n (a[^](k::nat)) = pow_res n (b[^]k)"
apply(induction k)
using assms apply (metis Group.nat_pow_0)
using assms pow_res_mult by (smt Qp.nat_pow_Suc2 Qp.nat_pow_closed)
lemma pow_res_mult':
assumes "n > 0"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "d ∈ carrier Q⇩p"
assumes "e ∈ carrier Q⇩p"
assumes "f ∈ carrier Q⇩p"
assumes "pow_res n a = pow_res n d"
assumes "pow_res n b = pow_res n e"
assumes "pow_res n c = pow_res n f"
shows "pow_res n (a ⊗ b ⊗ c) = pow_res n (d ⊗ e ⊗ f)"
proof-
have "pow_res n (a ⊗ b) = pow_res n (d ⊗ e)"
using pow_res_mult assms by meson
then show ?thesis using pow_res_mult assms
by (meson Qp.m_closed)
qed
lemma pow_res_disjoint:
assumes "n > 0"
assumes "a ∈ nonzero Q⇩p"
assumes "a ∉ pow_res n 𝟭"
shows "¬ (∃y ∈ nonzero Q⇩p. a = y[^]n)"
using assms unfolding pow_res_def
using Qp.l_one Qp.nonzero_closed by blast
lemma pow_res_disjoint':
assumes "n > 0"
assumes "a ∈ nonzero Q⇩p"
assumes "pow_res n a ≠ pow_res n 𝟭"
shows "¬ (∃y ∈ nonzero Q⇩p. a = y[^]n)"
using assms pow_res_disjoint pow_res_refl
by (metis pow_res_nth_pow)
lemma pow_res_one_imp_nth_pow:
assumes "n > 0"
assumes "a ∈ pow_res n 𝟭"
shows "∃y ∈ nonzero Q⇩p. a = y[^]n"
using assms unfolding pow_res_def
using Qp.l_one Qp.nat_pow_closed Qp.nonzero_closed by blast
lemma pow_res_eq:
assumes "n > 0"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ pow_res n a"
shows "pow_res n b = pow_res n a"
proof(cases "a = 𝟬")
case True
then show ?thesis using assms by (metis pow_res_zero singletonD)
next
case False
then have a_nonzero: "a ∈ nonzero Q⇩p" using Qp.not_nonzero_memE assms(2) by blast
show ?thesis
proof(cases "n = 1")
case True
then show ?thesis using a_nonzero assms
using pow_res_one Q⇩p_def Zp_def padic_fields_axioms by blast
next
case False
then have "n ≥ 2"
using assms(1) by linarith
then show ?thesis using False a_nonzero assms Qp.nonzero_closed nonzero_pow_res equal_pow_resI
by blast
qed
qed
lemma pow_res_classes_n_eq_one:
"pow_res_classes 1 = {nonzero Q⇩p}"
unfolding pow_res_classes_def using pow_res_one Qp.one_nonzero by blast
lemma nth_pow_wits_closed':
assumes "n > 0"
assumes "x ∈ nth_pow_wits n"
shows "x ∈ 𝒪⇩p ∧ x ∈ nonzero Q⇩p" using nth_pow_wits_closed
assms by blast
subsection‹Semialgebraic Sets Defined by Congruences›
subsubsection‹$p$-adic ord Congruence Sets›
lemma carrier_is_univ_semialgebraic:
"is_univ_semialgebraic (carrier Q⇩p)"
apply(rule is_univ_semialgebraicI)
using Qp.to_R1_carrier carrier_is_semialgebraic
by presburger
lemma nonzero_is_univ_semialgebraic:
"is_univ_semialgebraic (nonzero Q⇩p)"
proof-
have "nonzero Q⇩p = carrier Q⇩p - {𝟬}"
unfolding nonzero_def by blast
then show ?thesis using diff_is_univ_semialgebraic[of "carrier Q⇩p" "{𝟬}"]
by (metis Diff_empty Diff_insert0 carrier_is_univ_semialgebraic empty_subsetI
finite.emptyI finite.insertI finite_is_univ_semialgebraic insert_subset)
qed
definition ord_congruence_set where
"ord_congruence_set n a = {x ∈ nonzero Q⇩p. ord x mod n = a}"
lemma ord_congruence_set_nonzero:
"ord_congruence_set n a ⊆ nonzero Q⇩p"
by (metis (no_types, lifting) mem_Collect_eq ord_congruence_set_def subsetI)
lemma ord_congruence_set_closed:
"ord_congruence_set n a ⊆ carrier Q⇩p"
using nonzero_def ord_congruence_set_nonzero
unfolding nonzero_def
by (meson Qp.nonzero_closed ord_congruence_set_nonzero subset_iff)
lemma ord_congruence_set_memE:
assumes "x ∈ ord_congruence_set n a"
shows "x ∈ nonzero Q⇩p"
"ord x mod n = a"
using assms ord_congruence_set_nonzero apply blast
by (metis (mono_tags, lifting) assms mem_Collect_eq ord_congruence_set_def)
lemma ord_congruence_set_memI:
assumes "x ∈ nonzero Q⇩p"
assumes "ord x mod n = a"
shows "x ∈ ord_congruence_set n a"
using assms
by (metis (mono_tags, lifting) mem_Collect_eq ord_congruence_set_def)
text‹
We want to prove that ord\_congruence\_set is a finite union of semialgebraic sets,
hence is also semialgebraic.
›
lemma pow_res_ord_cong:
assumes "x ∈ carrier Q⇩p"
assumes "x ∈ ord_congruence_set n a"
shows "pow_res n x ⊆ ord_congruence_set n a"
proof fix y
assume A: "y ∈ pow_res n x"
show "y ∈ ord_congruence_set (int n) a"
proof-
obtain a where a_def: "a ∈ nonzero Q⇩p ∧ y = x ⊗ (a[^]n)"
using A pow_res_def[of n x] by blast
have 0: "x ∈ nonzero Q⇩p"
using assms(2) ord_congruence_set_memE(1)
by blast
have 1: "y ∈ nonzero Q⇩p"
using A
by (metis "0" Qp.integral Qp.nonzero_closed Qp.nonzero_mult_closed Qp_nat_pow_nonzero a_def not_nonzero_Qp)
have 2: "ord y = ord x + n* ord a"
using a_def 0 1 Qp_nat_pow_nonzero nonzero_nat_pow_ord ord_mult
by presburger
show ?thesis
apply(rule ord_congruence_set_memI)
using assms ord_congruence_set_memE 2 1
apply blast
using "2" assms(2) ord_congruence_set_memE(2)
by presburger
qed
qed
lemma pow_res_classes_are_univ_semialgebraic:
shows "are_univ_semialgebraic (pow_res_classes n)"
apply(rule are_univ_semialgebraicI)
using pow_res_classes_univ_semialg by blast
lemma ord_congruence_set_univ_semialg:
assumes "n ≥ 0"
shows "is_univ_semialgebraic (ord_congruence_set n a)"
proof(cases "n = 0")
case True
have T0: "ord_congruence_set n a = {x ∈ nonzero Q⇩p. ord x = a}"
unfolding ord_congruence_set_def True by presburger
have T1: "{x ∈ nonzero Q⇩p. ord x = a} = {x ∈ nonzero Q⇩p. val x = a}"
apply(rule equalityI'')
using val_ord apply blast
using val_ord
by (metis eint.inject)
have T2: "{x ∈ nonzero Q⇩p. val x = a} = {x ∈ carrier Q⇩p. val x = a}"
apply(rule equalityI'')
using Qp.nonzero_closed apply blast
by (metis iless_Suc_eq val_nonzero val_val_ring_prod zero_in_val_ring)
show ?thesis unfolding T0 T1 T2 using univ_val_eq_set_is_univ_semialgebraic by blast
next
case False
obtain F where F_def: "F = {S ∈ (pow_res_classes (nat n)). S ⊆(ord_congruence_set n a) }"
by blast
have 0: "F ⊆ pow_res_classes (nat n)"
using F_def by blast
have 1: "finite F"
using 0 False nat_mono[of 1 n] nat_numeral[] pow_res_classes_finite[of "nat n"] rev_finite_subset
by (smt assms nat_one_as_int)
have 2: "are_univ_semialgebraic F"
apply(rule are_univ_semialgebraicI) using 0 pow_res_classes_are_univ_semialgebraic
by (metis (mono_tags) are_univ_semialgebraicE are_univ_semialgebraic_def assms nat_mono nat_numeral subset_iff)
have 3: "⋃ F = (ord_congruence_set n a)"
proof
show "⋃ F ⊆ ord_congruence_set n a"
using F_def
by blast
show "ord_congruence_set n a ⊆ ⋃ F"
proof fix x
assume A: "x ∈ ord_congruence_set n a"
have x_nonzero: "x ∈ nonzero Q⇩p"
using A ord_congruence_set_memE(1) by blast
have 0: "pow_res (nat n) x ∈ F"
using A pow_res_classes_def F_def
by (smt nonzero_def assms mem_Collect_eq nat_0_le ord_congruence_set_memE(1) pow_res_ord_cong)
have 1: "x ∈ pow_res (nat n) x" using False x_nonzero assms pow_res_refl[of x "nat n"]
using Qp.nonzero_closed by blast
show "x ∈ ⋃ F"
using 0 1
by blast
qed
qed
then show ?thesis
using "1" "2" finite_union_is_univ_semialgebraic'
by fastforce
qed
lemma ord_congruence_set_is_semialg:
assumes "n ≥ 0"
shows "is_semialgebraic 1 (Qp_to_R1_set (ord_congruence_set n a))"
using assms is_univ_semialgebraicE ord_congruence_set_univ_semialg
by blast
subsubsection‹Congruence Sets for the order of the Evaluation of a Polynomial›
lemma poly_map_singleton:
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "x ∈ carrier (Q⇩p⇗n⇖)"
shows "poly_map n [f] x = [(Qp_ev f x)]"
unfolding poly_map_def poly_tuple_eval_def
using assms
by (metis (no_types, lifting) Cons_eq_map_conv list.simps(8) restrict_apply')
definition poly_cong_set where
"poly_cong_set n f m a = {x ∈ carrier (Q⇩p⇗n⇖). (Qp_ev f x) ≠ 𝟬 ∧ (ord (Qp_ev f x) mod m = a)}"
lemma poly_cong_set_as_pullback:
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "poly_cong_set n f m a = poly_map n [f] ¯⇘n⇙(Qp_to_R1_set (ord_congruence_set m a))"
proof
show "poly_cong_set n f m a ⊆ poly_map n [f] ¯⇘n⇙ ((λa. [a]) ` ord_congruence_set m a)"
proof fix x
assume A: "x ∈ poly_cong_set n f m a"
then have 0: "x ∈ carrier (Q⇩p⇗n⇖)"
by (metis (no_types, lifting) mem_Collect_eq poly_cong_set_def)
have 1: "(Qp_ev f x) ≠ 𝟬 "
by (metis (mono_tags, lifting) A mem_Collect_eq poly_cong_set_def)
have 2: "(ord (Qp_ev f x) mod m = a)"
by (metis (mono_tags, lifting) A mem_Collect_eq poly_cong_set_def)
have 3: "(Qp_ev f x) ∈ (ord_congruence_set m a)"
using "0" "1" "2" eval_at_point_closed assms not_nonzero_Qp ord_congruence_set_memI
by metis
show "x ∈ poly_map n [f] ¯⇘n⇙ ((λa. [a]) ` ord_congruence_set m a)"
proof-
have 00: "poly_map n [f] x = [(Qp_ev f x)]"
using "0" assms poly_map_singleton by blast
have 01: "[eval_at_point Q⇩p x f] ∈ carrier (Q⇩p⇗1⇖)"
using "0" assms eval_at_point_closed Qp.to_R1_closed by blast
hence 02: "poly_map n [f] x ∈ (λa. [a]) ` ord_congruence_set m a"
using 3 "00" by blast
then show "x ∈ poly_map n [f] ¯⇘n⇙ ((λa. [a]) ` ord_congruence_set m a)"
using 0 unfolding evimage_def
by blast
qed
qed
show "poly_map n [f] ¯⇘n⇙ (λa. [a]) ` ord_congruence_set m a
⊆ poly_cong_set n f m a"
proof fix x
assume A: "x ∈ poly_map n [f] ¯⇘n⇙ ((λa. [a]) ` (ord_congruence_set m a))"
have 0: "((λa. [a]) ` ord_congruence_set m a) ⊆ carrier (Q⇩p⇗1⇖)"
using ord_congruence_set_closed Qp.to_R1_carrier by blast
have "is_poly_tuple n [f]"
using assms unfolding is_poly_tuple_def
by (simp add: assms)
then have 1:"poly_map n [f] ¯⇘n⇙((λa. [a]) ` ord_congruence_set m a) ⊆ carrier (Q⇩p⇗n⇖)"
using 0 A assms One_nat_def
by (metis extensional_vimage_closed)
then have 2: "x ∈ carrier (Q⇩p⇗n⇖)"
using A unfolding evimage_def by blast
then have 3: "poly_map n [f] x ∈ ((λa. [a]) ` ord_congruence_set m a)"
using A assms 0 One_nat_def
by blast
have "poly_map n [f] x = [(Qp_ev f x)]"
using "2" assms poly_map_singleton by blast
then have "Qp_ev f x ∈ ord_congruence_set m a"
using 3
by (metis (mono_tags, lifting) image_iff list.inject)
then show "x ∈ poly_cong_set n f m a"
unfolding poly_cong_set_def
by (metis (mono_tags, lifting) "2" Qp.nonzero_memE(2)
mem_Collect_eq ord_congruence_set_memE(1) ord_congruence_set_memE(2))
qed
qed
lemma singleton_poly_tuple:
"is_poly_tuple n [f] ⟷ f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
unfolding is_poly_tuple_def
by (metis (no_types, lifting) list.distinct(1) list.set_cases list.set_intros(1) set_ConsD subset_code(1))
lemma poly_cong_set_is_semialgebraic:
assumes "m ≥ 0"
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialgebraic n (poly_cong_set n f m a)"
proof-
have 0: "(λa. [a]) ` ord_congruence_set m a ∈ semialg_sets 1"
using assms
ord_congruence_set_is_semialg[of m a]
unfolding is_semialgebraic_def
by blast
have 1: "length [f] = 1"
by simp
hence " poly_map n [f] ¯⇘n⇙ (λa. [a]) ` ord_congruence_set m a ∈ semialg_sets n"
using 0 singleton_poly_tuple[of n f] zero_neq_one assms
pullback_is_semialg[of n "[f]" 1 "(λa. [a]) ` ord_congruence_set m a"]
unfolding is_semialgebraic_def
by blast
thus ?thesis using assms poly_cong_set_as_pullback[of f n m a]
unfolding is_semialgebraic_def
by presburger
qed
subsubsection‹Congruence Sets for Angular Components›
text‹If a set is a union of ‹n›-th power residues, then it is semialgebraic.›
lemma pow_res_union_imp_semialg:
assumes "n ≥ 1"
assumes "S ⊆ nonzero Q⇩p"
assumes "⋀x. x ∈ S ⟹ pow_res n x ⊆ S"
shows "is_univ_semialgebraic S"
proof-
obtain F where F_def: "F = {T. T ∈ pow_res_classes n ∧ T ⊆ S}"
by blast
have 0: "F ⊆ pow_res_classes n"
using F_def by blast
have 1: "finite F"
using 0 pow_res_classes_finite[of n] assms(1) finite_subset
by auto
have 2: "are_univ_semialgebraic F"
using 0
by (meson are_univ_semialgebraicE are_univ_semialgebraicI assms(1)
pow_res_classes_are_univ_semialgebraic padic_fields_axioms subsetD)
have 3: "S = ⋃ F"
proof
show "S ⊆ ⋃ F"
proof fix x
assume A: "x ∈ S"
then have "pow_res n x ⊆ S"
using assms(3) by blast
then have "pow_res n x ∈ F"
using A assms(2) F_def pow_res_classes_def
by (smt mem_Collect_eq subsetD)
then have "pow_res n x ⊆ ⋃ F"
by blast
then show "x ∈ ⋃ F"
using A assms(1) assms(2) pow_res_refl[of x n] unfolding nonzero_def by blast
qed
show "⋃ F ⊆ S"
using F_def
by blast
qed
show ?thesis
using 1 2 3 finite_union_is_univ_semialgebraic'
by blast
qed
definition ac_cong_set1 where
"ac_cong_set1 n y = {x ∈ carrier Q⇩p. x ≠ 𝟬 ∧ ac n x = ac n y}"
lemma ac_cong_set1_is_univ_semialg:
assumes "n > 0"
assumes "b ∈ nonzero Q⇩p"
assumes "b ∈ 𝒪⇩p"
shows "is_univ_semialgebraic (ac_cong_set1 n b)"
proof(cases "n = 1 ∧ p = 2")
case True
have "(ac_cong_set1 n b) = nonzero Q⇩p"
proof
have 0: "Units (Zp_res_ring n) = {1}"
proof show "Units (Zp_res_ring n) ⊆ {1}"
proof fix x assume A: "x ∈ Units (Zp_res_ring n)"
have 0: "carrier (Zp_res_ring n) = {0..(int 2) - 1}"
using True
by (metis assms(1) int_ops(3) p_residues power_one_right residues.res_carrier_eq)
have 1: "carrier (Zp_res_ring n) = {0..(1::int)}"
proof- have "int 2 - 1 = (1::int)"
by linarith
then show ?thesis
using 0
by presburger
qed
have 15: "{0..(1::int)} = {0, (1::int)}"
using atLeastAtMostPlus1_int_conv [of 0 "0::int"]
by (smt atLeastAtMost_singleton insert_commute)
have 2: "carrier (Zp_res_ring n) = {0,(1::int)}"
using "1" "15"
by blast
have 3: "0 ∉ Units (Zp_res_ring n)"
using True zero_not_in_residue_units by blast
have "x ∈ carrier (Zp_res_ring n)"
using A unfolding Units_def by blast
then have "x = 1" using A 2 3
by (metis "1" atLeastAtMost_iff atLeastatMost_empty
atLeastatMost_empty_iff2 linorder_neqE_linordered_idom mod_by_1 mod_pos_pos_trivial )
then show "x ∈ {1}"
by simp
qed
show "{1} ⊆ Units (Zp_res_ring n)"
by (meson assms(1) empty_subsetI insert_subset residue_1_unit(1))
qed
show "ac_cong_set1 n b ⊆ nonzero Q⇩p"
by (metis (mono_tags, lifting) ac_cong_set1_def mem_Collect_eq not_nonzero_Qp subsetI)
show "nonzero Q⇩p ⊆ ac_cong_set1 n b"
proof fix x
assume A: "x ∈ nonzero Q⇩p"
then have P0: "ac n x = 1"
using 0 ac_units assms(1) by blast
have P1: "ac n b = 1"
using assms 0 ac_units assms(1) by blast
then have "ac n x = ac n b"
using P0 by metis
then show " x ∈ ac_cong_set1 n b"
unfolding ac_cong_set1_def using A
proof -
have "x ∈ {r ∈ carrier Q⇩p. r ≠ 𝟬}"
by (metis (no_types) ‹x ∈ nonzero Q⇩p› nonzero_def )
then show "x ∈ {r ∈ carrier Q⇩p. r ≠ 𝟬 ∧ ac n r = ac n b}"
using ‹ac n x = ac n b› by force
qed
qed
qed
then show "is_univ_semialgebraic (ac_cong_set1 n b)"
by (simp add: nonzero_is_univ_semialgebraic)
next
case F: False
have F0: "2 ≤ card (Units (Zp_res_ring n))"
proof(cases "n = 1")
case True
then have "field (Zp_res_ring n)"
using p_res_ring_1_field by blast
then have F00: "Units (Zp_res_ring n) = carrier (Zp_res_ring n) - {𝟬⇘Zp_res_ring n⇙}"
using field.field_Units by blast
have F01: "𝟬⇘Zp_res_ring n⇙ ∈ carrier (Zp_res_ring n)"
using assms(1) cring.cring_simprules(2) padic_integers.R_cring padic_integers_axioms by blast
have F02: "card (carrier (Zp_res_ring n)) = p ∧ finite (carrier (Zp_res_ring n))"
by (smt F01 True nat_eq_iff2 p_res_ring_zero p_residue_ring_car_memE(1) power_one_right residue_ring_card)
have F03: "𝟬⇘residue_ring (p ^ n)⇙ ∈ carrier (residue_ring (p ^ n)) "
using F01 by blast
have F04: "int (card (carrier (residue_ring (p ^ n)))) ≥ int (card {𝟬⇘residue_ring (p ^ n)⇙}) "
by (smt F02 F03 nat_int of_nat_0_le_iff of_nat_1 of_nat_power p_res_ring_0 p_res_ring_zero
p_residue_ring_car_memE(1) power_increasing power_one_right residue_ring_card)
have "card (carrier (residue_ring (p ^ n))) - 1 = p - 1"
using F02 prime
by (metis Totient.of_nat_eq_1_iff True less_imp_le_nat less_one nat_int nat_less_eq_zless
of_nat_1 of_nat_diff of_nat_zero_less_power_iff p_residues pos_int_cases
power_0 power_one_right residue_ring_card residues.m_gt_one zero_le_one)
hence F05: "card (carrier (residue_ring (p ^ n)) - {𝟬⇘residue_ring (p ^ n)⇙}) = p - 1"
using F02 F03 F04 card_Diff_singleton_if[of "(carrier (Zp_res_ring n))" "𝟬⇘residue_ring (p^n)⇙"]
True int_ops(6)[of "card (carrier (residue_ring (p ^ n)))" "card {𝟬⇘residue_ring (p ^ n)⇙}"]
p_res_ring_zero p_residue_ring_car_memE(1)
by (metis)
hence F06: "card (Units (Zp_res_ring n)) = p -1"
using True F02 F01 F00
by (metis p_res_ring_zero)
have F04: "p - 1 ≥2 "
using F prime
by (meson True linorder_cases not_less prime_ge_2_int zle_diff1_eq)
then show ?thesis
using F03 F06
by linarith
next
case False
then show ?thesis
by (metis assms(1) less_imp_le_nat mod2_gr_0 mod_less nat_le_linear nat_neq_iff residue_units_card_geq_2)
qed
show ?thesis
apply(rule pow_res_union_imp_semialg[of "card (Units (Zp_res_ring n))"])
using F0 assms apply linarith
apply (metis (mono_tags, lifting) ac_cong_set1_def mem_Collect_eq not_nonzero_Qp subsetI)
proof-
fix x
assume AA: "x ∈ ac_cong_set1 n b"
show "pow_res (card (Units (Zp_res_ring n))) x ⊆ ac_cong_set1 n b"
proof
fix y
assume A: "y ∈ pow_res (card (Units (Zp_res_ring n))) x"
show "y ∈ ac_cong_set1 n b"
proof-
obtain k where k_def: "k = card (Units (Zp_res_ring n))"
by blast
have "k ≥2"
using assms k_def F F0 by blast
then obtain a where a_def: "a ∈ nonzero Q⇩p ∧ y = x ⊗ (a[^]k)"
using k_def A pow_res_def[of k x]
by blast
have 0: "x ∈ nonzero Q⇩p"
using AA ac_cong_set1_def
by (metis (mono_tags, lifting) mem_Collect_eq not_nonzero_Qp)
have 1: "y ∈ nonzero Q⇩p"
by (metis "0" Qp.Units_m_closed Qp_nat_pow_nonzero Units_eq_nonzero ‹⋀thesis. (⋀a. a ∈ nonzero Q⇩p ∧ y = x ⊗ a [^] k ⟹ thesis) ⟹ thesis›)
have "ac n y = ac n x ⊗⇘Zp_res_ring n⇙ ac n (a[^]k)"
using a_def 0 1 Qp_nat_pow_nonzero ac_mult'
by blast
then have 2: "ac n y = ac n x ⊗⇘Zp_res_ring n⇙ (ac n a)[^]⇘Zp_res_ring n⇙ k"
proof-
have "ac n (a[^]k) = ac n a [^]⇘Zp_res_ring n⇙ k"
using a_def assms(1) ac_nat_pow'[of a n k]
by linarith
then show ?thesis
using ‹ac n y = ac n x ⊗⇘Zp_res_ring n⇙ ac n (a[^]k)›
by presburger
qed
then have "ac n y = ac n x"
proof-
have "(ac n a) ∈ Units (Zp_res_ring n)"
by (metis (mono_tags, opaque_lifting) a_def ac_units assms(1) )
then have "(ac n a)^k mod (p^n) = 1"
using k_def a_def ac_nat_pow ac_nat_pow' assms(1) residue_units_nilpotent
using neq0_conv by presburger
then have 00: "(ac n a)[^]⇘Zp_res_ring n⇙ k = 1"
by (metis a_def ac_nat_pow ac_nat_pow' mod_by_1 power_0
zero_neq_one)
have "ac n x ⊗⇘residue_ring (p ^ n)⇙ ac n a [^]⇘residue_ring (p ^ n)⇙ k = ac n x ⊗⇘Zp_res_ring n⇙ 𝟭⇘Zp_res_ring n⇙"
using 00 assms(1) p_res_ring_one by presburger
hence "ac n x ⊗⇘residue_ring (p ^ n)⇙ ac n a [^]⇘residue_ring (p ^ n)⇙ k = ac n x"
by (metis "0" Qp.nonzero_closed Qp.one_nonzero Qp.r_one ac_mult' ac_one' assms(1))
then show ?thesis
using 2 "0" 00
by linarith
qed
then show ?thesis
using "1" AA nonzero_def
ac_cong_set1_def[of n b] mem_Collect_eq
by smt
qed
qed
qed
qed
definition ac_cong_set where
"ac_cong_set n k = {x ∈ carrier Q⇩p. x ≠ 𝟬 ∧ ac n x = k}"
lemma ac_cong_set_is_univ_semialg:
assumes "n >0 "
assumes "k ∈ Units (Zp_res_ring n)"
shows "is_univ_semialgebraic (ac_cong_set n k)"
proof-
have "k ∈ carrier (Zp_res_ring n)"
using assms(2) Units_def[of "Zp_res_ring n"]
by blast
then have k_n: "([k]⋅⇘Z⇩p⇙𝟭⇘Z⇩p⇙) n = k"
using assms
by (metis Zp_int_inc_res mod_pos_pos_trivial p_residue_ring_car_memE(1) p_residue_ring_car_memE(2))
obtain b where b_def: "b = ι ([k]⋅⇘Z⇩p⇙𝟭⇘Z⇩p⇙)"
by blast
have 0: "k mod p ≠ 0"
using assms residue_UnitsE[of n k]
by (metis le_eq_less_or_eq le_refl less_one nat_le_linear p_residues power_0
power_one_right residues.mod_in_res_units residues_def zero_less_one
zero_neq_one zero_not_in_residue_units zero_power)
then have "val_Zp ([k]⋅⇘Z⇩p⇙𝟭⇘Z⇩p⇙) = 0"
using val_Zp_p_int_unit by blast
then have 1: "val b = 0"
by (metis Zp_int_inc_closed b_def val_of_inc)
have 2: "b ∈ 𝒪⇩p"
using b_def Zp_int_mult_closed
by blast
have "ord_Zp ([k] ⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙) = 0"
using 0 ord_Zp_p_int_unit by blast
have "ac_Zp ([k]⋅⇘Z⇩p⇙𝟭⇘Z⇩p⇙) = ([k]⋅⇘Z⇩p⇙𝟭⇘Z⇩p⇙)"
using "0" Zp_int_inc_closed ac_Zp_of_Unit ord_Zp_p_int_unit ‹val_Zp ([k] ⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙) = 0›
by blast
then have "(angular_component b) = ([k]⋅⇘Z⇩p⇙𝟭⇘Z⇩p⇙)"
using b_def 1 2 angular_component_ord_zero[of b]
by (metis Qp.int_inc_zero Qp.one_closed val_ring_memE Zp.int_inc_zero Zp.one_closed
Zp.one_nonzero Zp_int_inc_closed angular_component_of_inclusion inc_closed inc_of_int
inc_of_one inc_to_Zp local.val_zero not_nonzero_Qp val_ineq val_one zero_in_val_ring)
then have "ac n b = k"
using ac_def[of n b] k_n
by (metis Qp_char_0_int Zp_defs(1) ac_def b_def inc_of_int inc_of_one)
then have 3: "(ac_cong_set n k) = (ac_cong_set1 n b)"
unfolding ac_cong_set_def ac_cong_set1_def
by meson
have 4: "b ∈ nonzero Q⇩p"
using 1 2 val_nonzero
by (metis Qp.one_closed val_ring_memE Zp_def ι_def local.one_neq_zero
not_nonzero_Qp padic_fields.val_ring_memE padic_fields_axioms val_ineq val_one)
then show ?thesis
using 1 2 3 assms ac_cong_set1_is_univ_semialg[of n b] val_nonzero[of b 1]
by presburger
qed
definition val_ring_constant_ac_set where
"val_ring_constant_ac_set n k = {a ∈ 𝒪⇩p. val a = 0 ∧ ac n a = k}"
lemma val_nonzero':
assumes "a ∈ carrier Q⇩p"
assumes "val a = eint k"
shows "a ∈ nonzero Q⇩p"
using val_nonzero[of a "k + 1"]
by (metis Suc_ile_eq assms(1) assms(2) eint_ord_code(3) val_nonzero)
lemma val_ord':
assumes "a ∈ carrier Q⇩p"
assumes "a ≠𝟬"
shows "val a = ord a"
by (meson assms(1) assms(2) not_nonzero_Qp val_ord)
lemma val_ring_constant_ac_set_is_univ_semialgebraic:
assumes "n > 0"
assumes "k ≠ 0"
shows "is_univ_semialgebraic (val_ring_constant_ac_set n k)"
proof(cases "val_ring_constant_ac_set n k = {}")
case True
then show ?thesis
by (metis equals0D order_refl pow_res_union_imp_semialg subsetI)
next
case False
then obtain b where b_def: "b ∈ val_ring_constant_ac_set n k"
by blast
have 0: "val_ring_constant_ac_set n k = q_ball n k 0 𝟬"
proof
show "val_ring_constant_ac_set n k ⊆ q_ball n k 0 𝟬"
proof fix x assume A: "x ∈ val_ring_constant_ac_set n k" then
show "x ∈ q_ball n k 0 𝟬"
proof-
have 0: "x ∈ 𝒪⇩p ∧ val x = 0 ∧ ac n x = k"
using A
unfolding val_ring_constant_ac_set_def
by blast
then have x_car: "x ∈ carrier Q⇩p"
using val_ring_memE
by blast
then have 00: "x = x ⊖ 𝟬"
using Qp.ring_simprules by metis
then have 1: "ac n (x ⊖⇘Q⇩p⇙ 𝟬) = k"
using 0
by presburger
have 2: "val (x ⊖⇘Q⇩p⇙ 𝟬) = 0"
using 0 00
by metis
have 3: "x ∈ nonzero Q⇩p"
proof(rule ccontr)
assume " x ∉ nonzero Q⇩p "
then have "x = 𝟬"
using Qp.nonzero_memI x_car by blast
then show False
using 0 val_zero
by (metis ac_def assms(2))
qed
have 4: "ord (x ⊖⇘Q⇩p⇙ 𝟬) = 0"
proof(rule ccontr)
assume "ord (x ⊖ 𝟬) ≠ 0"
then have "val (x ⊖ 𝟬) ≠ 0"
by (metis "00" "3" Qp.one_closed equal_val_imp_equal_ord(1) ord_one val_one)
then show False
using "2"
by blast
qed
show ?thesis
using 0 1 4
unfolding q_ball_def
using x_car by blast
qed
qed
show "q_ball n k 0 𝟬 ⊆ val_ring_constant_ac_set n k"
proof fix x
assume A: "x ∈ q_ball n k 0 𝟬"
then have 0: "ac n (x ⊖⇘Q⇩p⇙ 𝟬) = k"
using q_ballE'(1) by blast
have 1: "ord (x ⊖⇘Q⇩p⇙ 𝟬) = 0"
using q_ball_def A
by blast
have 2: "x ∈ carrier Q⇩p"
using A q_ball_def by blast
have 3: "ord x = 0"
using 2 1 ring.ring_simprules[of Q⇩p]
by (metis Qp.ring_axioms)
have 4: "ac n x = k"
using 0 2 1 cring.axioms(1)[of Q⇩p] ring.ring_simprules[of Q⇩p]
by (metis Qp.ring_axioms)
have 5: "x ∈ 𝒪⇩p"
using Qp_val_ringI[of x] 2 3 val_ord val_nonzero'
by (metis Qp.integral_iff val_ring_memE Zp.nonzero_closed angular_component_closed
angular_component_ord_zero image_eqI local.numer_denom_facts(1) local.numer_denom_facts(2)
local.numer_denom_facts(4) not_nonzero_Qp)
have 6: "x ≠ 𝟬"
using 4 assms ac_def[of n x]
by meson
have 7: "val x = 0"
using 6 3 2 assms val_ord' zero_eint_def by presburger
show " x ∈ val_ring_constant_ac_set n k"
unfolding val_ring_constant_ac_set_def
using 7 6 5 4
by blast
qed
qed
obtain b where b_def: "b ∈ q_ball n k (0::int) 𝟬"
using "0" b_def by blast
have 1: "b ∈ carrier Q⇩p ∧ ac n b = k"
using b_def unfolding q_ball_def
by (metis (mono_tags, lifting) "0" b_def mem_Collect_eq val_ring_constant_ac_set_def)
then have 2: "b ∈ nonzero Q⇩p"
using 1 assms
by (metis ac_def not_nonzero_Qp)
have "q_ball n k 0 𝟬 = B⇘0 + int n⇙[b]"
using 1 b_def nonzero_def [of Q⇩p] assms 0 2 c_ball_q_ball[of b n k "𝟬" b 0]
by (meson Qp.cring_axioms cring.cring_simprules(2))
then have "is_univ_semialgebraic (q_ball n k (0::int) 𝟬) "
using 1 ball_is_univ_semialgebraic[of b "0 + int n"]
by metis
then show ?thesis
using 0 by presburger
qed
definition val_ring_constant_ac_sets where
"val_ring_constant_ac_sets n = val_ring_constant_ac_set n ` (Units (Zp_res_ring n))"
lemma val_ring_constant_ac_sets_are_univ_semialgebraic:
assumes "n > 0"
shows "are_univ_semialgebraic (val_ring_constant_ac_sets n)"
proof(rule are_univ_semialgebraicI)
have 0: "¬ coprime 0 p"
using coprime_0_right_iff[of p] coprime_commute[of p 0] coprime_int_iff[of "nat p" 0]
nat_dvd_1_iff_1 prime_gt_1_nat zdvd1_eq
by (metis not_prime_unit prime)
have "(0::int) ∉(Units (Zp_res_ring n))"
apply(rule ccontr)
using 0 assms residues.cring[of "p ^ n"] unfolding residues_def
by (smt less_one not_gr_zero power_le_imp_le_exp power_less_imp_less_exp residue_UnitsE)
fix x
assume A: "x ∈ val_ring_constant_ac_sets n"
then obtain k where k_def: "x = val_ring_constant_ac_set n k ∧ k ∈ Units (Zp_res_ring n)"
by (metis image_iff val_ring_constant_ac_sets_def)
then show "is_univ_semialgebraic x"
using assms
by (metis ‹0 ∉ Units (Zp_res_ring n)› val_ring_constant_ac_set_is_univ_semialgebraic)
qed
definition ac_cong_set3 where
"ac_cong_set3 n = {as. ∃ a b. a ∈ nonzero Q⇩p ∧ b ∈ 𝒪⇩p ∧ val b = 0 ∧ (ac n a = ac n b) ∧ as = [a, b] }"
definition ac_cong_set2 where
"ac_cong_set2 n k = {as. ∃ a b. a ∈ nonzero Q⇩p ∧ b ∈ 𝒪⇩p ∧ val b = 0 ∧ (ac n a = k) ∧ (ac n b) = k ∧ as = [a, b] }"
lemma ac_cong_set2_cartesian_product:
assumes "k ∈ Units (Zp_res_ring n)"
assumes "n > 0"
shows "ac_cong_set2 n k = cartesian_product (to_R1` (ac_cong_set n k)) (to_R1` (val_ring_constant_ac_set n k))"
proof
show "ac_cong_set2 n k ⊆ cartesian_product ((λa. [a]) ` ac_cong_set n k) ((λa. [a]) ` val_ring_constant_ac_set n k)"
proof fix x
assume A: "x ∈ ac_cong_set2 n k"
show "x ∈ (cartesian_product ((λa. [a]) ` ac_cong_set n k) ((λa. [a]) ` val_ring_constant_ac_set n k))"
unfolding ac_cong_set_def val_ring_constant_ac_set_def ac_cong_set2_def
apply(rule cartesian_product_memI[of _ Q⇩p 1 _ 1])
apply (metis (mono_tags, lifting) mem_Collect_eq subsetI Qp.to_R1_car_subset)
apply (metis (no_types, lifting) val_ring_memE mem_Collect_eq subsetI Qp.to_R1_car_subset)
proof-
obtain a b where ab_def: "x = [a,b] ∧ a ∈ nonzero Q⇩p ∧ b ∈ 𝒪⇩p ∧ val b = 0 ∧ (ac n a = k) ∧ (ac n b) = k"
using A
unfolding ac_cong_set_def val_ring_constant_ac_set_def ac_cong_set2_def
by blast
have 0: "take 1 x = [a]"
by (simp add: ab_def)
have 1: "drop 1 x = [b]"
by (simp add: ab_def)
have 2: "a ∈ {x ∈ carrier Q⇩p. x ≠ 𝟬 ∧ ac n x = k}"
using ab_def nonzero_def
by (smt mem_Collect_eq)
have 3: "b ∈ {a ∈ 𝒪⇩p. val a = 0 ∧ ac n a = k}"
using ab_def
by blast
show "take 1 x ∈ (λa. [a]) ` {x ∈ carrier Q⇩p. x ≠ 𝟬 ∧ ac n x = k}"
using 0 2 by blast
show "drop 1 x ∈ (λa. [a]) ` {a ∈ 𝒪⇩p. val a = 0 ∧ ac n a = k}"
using 1 3 by blast
qed
qed
show "cartesian_product ((λa. [a]) ` ac_cong_set n k) ((λa. [a]) ` val_ring_constant_ac_set n k) ⊆ ac_cong_set2 n k"
proof fix x
have 0: "(λa. [a]) ` ac_cong_set n k ⊆ carrier (Q⇩p⇗1⇖)"
using assms
by (metis (no_types, lifting) ac_cong_set_def mem_Collect_eq subsetI Qp.to_R1_car_subset)
have 1: "((λa. [a]) ` val_ring_constant_ac_set n k) ⊆ carrier (Q⇩p⇗1⇖)"
by (smt val_ring_memE mem_Collect_eq subsetI Qp.to_R1_carrier Qp.to_R1_subset val_ring_constant_ac_set_def)
assume A: "x ∈ cartesian_product ((λa. [a]) ` ac_cong_set n k) ((λa. [a]) ` val_ring_constant_ac_set n k)"
then have "length x = 2"
using 0 1 A cartesian_product_closed[of "((λa. [a]) ` ac_cong_set n k)" Q⇩p 1 "((λa. [a]) ` val_ring_constant_ac_set n k)" 1]
by (metis (no_types, lifting) cartesian_power_car_memE one_add_one subset_iff)
then obtain a b where ab_def: "take 1 x = [a] ∧ drop 1 x = [b]"
by (metis One_nat_def add_diff_cancel_left' drop0 drop_Cons_numeral numerals(1) pair_id plus_1_eq_Suc take0 take_Cons_numeral)
have 2: " a ∈ (ac_cong_set n k) ∧ b ∈ (val_ring_constant_ac_set n k)"
proof-
have P0: "take 1 x ∈ (λa. [a]) ` ac_cong_set n k"
using 0 A cartesian_product_memE[of x "((λa. [a]) ` ac_cong_set n k) " " ((λa. [a]) ` val_ring_constant_ac_set n k)" Q⇩p 1]
by blast
have P1: "drop 1 x ∈ (λa. [a]) ` val_ring_constant_ac_set n k"
using 0 A cartesian_product_memE[of x "((λa. [a]) ` ac_cong_set n k) " " ((λa. [a]) ` val_ring_constant_ac_set n k)" Q⇩p 1]
by blast
have P2: "[a] ∈ (λa. [a]) ` ac_cong_set n k"
using P0 ab_def
by metis
have P3: "[b] ∈ (λa. [a]) ` val_ring_constant_ac_set n k"
using P1 ab_def by metis
show ?thesis
using P2 P3
by blast
qed
have 3: "a ∈ nonzero Q⇩p"
using 2 assms nonzero_def [of Q⇩p] ac_cong_set_def[of n k]
by blast
have 4: "x = [a,b]"
by (metis (no_types, lifting) ‹length x = 2› ab_def less_numeral_extra(1) nth_Cons_0 nth_take nth_via_drop pair_id)
then have "∃a b. a ∈ nonzero Q⇩p ∧ b ∈ 𝒪⇩p ∧ val b = 0 ∧ ac n a = k ∧ ac n b = k ∧ x = [a, b]"
using 2 3 ab_def unfolding val_ring_constant_ac_set_def ac_cong_set_def
by blast
then show "x ∈ ac_cong_set2 n k"
unfolding ac_cong_set2_def val_ring_constant_ac_set_def ac_cong_set_def
by blast
qed
qed
lemma ac_cong_set2_is_semialg:
assumes "k ∈ Units (Zp_res_ring n)"
assumes "n > 0"
shows "is_semialgebraic 2 (ac_cong_set2 n k)"
using ac_cong_set_is_univ_semialg ac_cong_set2_cartesian_product[of k n]
cartesian_product_is_semialgebraic[of 1 "((λa. [a]) ` ac_cong_set n k)" 1 " ((λa. [a]) ` val_ring_constant_ac_set n k)"]
by (metis assms(1) assms(2) is_univ_semialgebraicE less_one less_or_eq_imp_le nat_neq_iff
one_add_one val_ring_constant_ac_set_is_univ_semialgebraic zero_not_in_residue_units)
lemma ac_cong_set3_as_union:
assumes "n > 0"
shows "ac_cong_set3 n = ⋃ (ac_cong_set2 n ` (Units (Zp_res_ring n)) )"
proof
show "ac_cong_set3 n ⊆ ⋃ (ac_cong_set2 n ` Units (Zp_res_ring n))"
proof fix x assume A: "x ∈ ac_cong_set3 n"
then have 0: "x ∈ (ac_cong_set2 n (ac n (x!0)))"
unfolding ac_cong_set2_def ac_cong_set3_def
by (smt mem_Collect_eq nth_Cons_0)
have 1: "(ac n (x!0)) ∈ Units (Zp_res_ring n)"
using A unfolding ac_cong_set3_def
by (smt ac_units assms mem_Collect_eq nth_Cons_0)
then show "x ∈ ⋃ (ac_cong_set2 n ` Units (Zp_res_ring n))"
using 0
by blast
qed
show "⋃ (ac_cong_set2 n ` Units (Zp_res_ring n)) ⊆ ac_cong_set3 n"
proof fix x assume A: "x ∈ ⋃ (ac_cong_set2 n ` Units (Zp_res_ring n))"
obtain k where k_def: "x ∈ (ac_cong_set2 n k) ∧ k ∈ (Units (Zp_res_ring n))"
using A by blast
have 0: "k mod p ≠ 0"
using k_def One_nat_def Suc_le_eq assms less_numeral_extra(1)
power_one_right residues.m_gt_one residues.mod_in_res_units
by (metis p_residues residue_UnitsE zero_not_in_residue_units)
obtain b where b_def: "b = ([k]⋅⇘Z⇩p⇙𝟭⇘Z⇩p⇙)"
by blast
have "k ≠0"
using 0 mod_0
by blast
then have 1: "b ∈ nonzero Z⇩p"
using 0 b_def int_unit
by (metis Zp.Units_nonzero Zp.zero_not_one)
have 10: "ord_Zp b = 0" using 0 1
using b_def ord_Zp_p_int_unit by blast
have 2: "ι b ∈ nonzero Q⇩p" using k_def
using "1" inc_of_nonzero by blast
have 3: "angular_component (ι b) = ac_Zp b"
using "1" angular_component_of_inclusion
by blast
have 4: "ac_Zp b = b"
using 1 10
by (metis "3" Zp.r_one ac_Zp_factors' angular_component_closed inc_of_nonzero int_pow_0 mult_comm ord_Zp_def)
have 5: "ac_Zp b n = k"
proof-
have "k ∈ carrier (Zp_res_ring n)"
using k_def unfolding Units_def by blast
then show ?thesis
using b_def k_def 4 Zp_int_inc_res mod_pos_pos_trivial
by (metis p_residue_ring_car_memE(1) p_residue_ring_car_memE(2))
qed
then have "ac n (ι b) = k"
using 10 1 2 3 4 unfolding ac_def
using Qp.not_nonzero_memI by metis
then show "x ∈ ac_cong_set3 n"
unfolding ac_cong_set3_def
using k_def unfolding ac_cong_set2_def
by (smt mem_Collect_eq)
qed
qed
lemma ac_cong_set3_is_semialgebraic:
assumes "n > 0"
shows "is_semialgebraic 2 (ac_cong_set3 n)"
proof-
have 0: "finite (ac_cong_set2 n ` (Units (Zp_res_ring n)) )"
using assms residues.finite_Units[of "p^n"] unfolding residues_def
using p_residues residues.finite_Units by blast
have 1: "are_semialgebraic 2 (ac_cong_set2 n ` (Units (Zp_res_ring n)) )"
apply(rule are_semialgebraicI)
using ac_cong_set2_is_semialg assms by blast
show ?thesis
using 0 1 ac_cong_set3_as_union
by (metis (no_types, lifting) are_semialgebraicE assms finite_union_is_semialgebraic' is_semialgebraicE subsetI)
qed
subsection‹Permutations of indices of semialgebraic sets›
lemma fun_inv_permute:
assumes "σ permutes {..<n}"
shows "fun_inv σ permutes {..<n}"
"σ ∘ (fun_inv σ) = id"
"(fun_inv σ) ∘ σ = id"
using assms unfolding fun_inv_def
using permutes_inv apply blast
using assms permutes_inv_o(1) apply blast
using assms permutes_inv_o(2) by blast
lemma poly_tuple_pullback_eq_poly_map_vimage:
assumes "is_poly_tuple n fs"
assumes "length fs = m"
assumes "S ⊆ carrir (Q⇩p⇗m⇖)"
shows "poly_map n fs ¯⇘n⇙ S = poly_tuple_pullback n S fs"
unfolding poly_map_def poly_tuple_pullback_def evimage_def restrict_def
using assms
by (smt vimage_inter_cong)
lemma permutation_is_semialgebraic:
assumes "is_semialgebraic n S"
assumes "σ permutes {..<n}"
shows "is_semialgebraic n (permute_list σ ` S)"
proof-
have "S ⊆ carrier (Q⇩p⇗n⇖)"
using assms gen_boolean_algebra_subset is_semialgebraic_def semialg_sets_def
by blast
then have "(permute_list σ ` S) = poly_tuple_pullback n S (permute_list (fun_inv σ) (pvar_list Q⇩p n))"
using Qp.cring_axioms assms pullback_by_permutation_of_poly_list'[of σ n S] unfolding poly_map_def
by blast
then have 0: "(permute_list σ ` S) = poly_tuple_pullback n S (permute_list (fun_inv σ) (pvar_list Q⇩p n))"
using poly_tuple_pullback_def
by blast
have 1: "(fun_inv σ) permutes {..<n}"
using assms unfolding fun_inv_def
using permutes_inv by blast
then show ?thesis using 1 pullback_is_semialg[of n "(permute_list (fun_inv σ) (pvar_list Q⇩p n))"]
permutation_of_poly_list_is_poly_list[of n "(pvar_list Q⇩p n)" "fun_inv σ"]
pvar_list_is_poly_tuple[of n] assms poly_tuple_pullback_eq_poly_map_vimage
by (metis "0" ‹S ⊆ carrier (Q⇩p⇗n⇖)› is_semialgebraic_def length_permute_list pvar_list_length)
qed
lemma permute_list_closed:
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
assumes "σ permutes {..<n}"
shows "permute_list σ a ∈ carrier (Q⇩p⇗n⇖)"
apply(rule cartesian_power_car_memI)
using assms cartesian_power_car_memE length_permute_list apply blast
using assms cartesian_power_car_memE'' permute_list_set by blast
lemma permute_list_closed':
assumes "σ permutes {..<n}"
assumes "permute_list σ a ∈ carrier (Q⇩p⇗n⇖)"
shows "a ∈ carrier (Q⇩p⇗n⇖)"
apply(rule cartesian_power_car_memI)
apply (metis assms(2) cartesian_power_car_memE length_permute_list)
using assms cartesian_power_car_memE'[of "permute_list σ a" Q⇩p n]
by (metis cartesian_power_car_memE in_set_conv_nth length_permute_list set_permute_list subsetI)
lemma permute_list_compose_inv:
assumes "σ permutes {..<n}"
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
shows "permute_list σ (permute_list (fun_inv σ) a) = a"
"permute_list (fun_inv σ) (permute_list σ a) = a"
using assms apply (metis cartesian_power_car_memE fun_inv_permute(3) permute_list_compose permute_list_id)
using assms by (metis cartesian_power_car_memE fun_inv_permute(2) fun_inv_permute(1) permute_list_compose permute_list_id)
lemma permutation_is_semialgebraic_imp_is_semialgebraic:
assumes "is_semialgebraic n (permute_list σ ` S)"
assumes "σ permutes {..<n}"
shows "is_semialgebraic n S"
proof-
have "permute_list (fun_inv σ) ` (permute_list σ ` S) = S"
proof-
have 0: "(permute_list σ ` S) ⊆ carrier (Q⇩p⇗n⇖)"
using assms unfolding is_semialgebraic_def semialg_sets_def
using gen_boolean_algebra_subset by blast
have 1: "S ⊆ carrier (Q⇩p⇗n⇖)"
proof fix x assume "x ∈ S" then show "x ∈ carrier (Q⇩p⇗n⇖)"
using 0 assms
by (meson image_subset_iff permute_list_closed')
qed
show ?thesis
proof show "permute_list (fun_inv σ) ` permute_list σ ` S ⊆ S"
using 0 assms permute_list_compose_inv[of σ] "1" image_iff image_subset_iff subsetD
by smt
show "S ⊆ permute_list (fun_inv σ) ` permute_list σ ` S"
using 0 assms permute_list_compose_inv[of σ]
by (smt "1" image_iff subset_eq)
qed
qed
then show ?thesis using permutation_is_semialgebraic
by (metis assms(1) assms(2) fun_inv_permute(1))
qed
lemma split_cartesian_product_is_semialgebraic:
assumes "i ≤ n"
assumes "is_semialgebraic n A"
assumes "is_semialgebraic m B"
shows "is_semialgebraic (n + m) (split_cartesian_product n m i A B)"
using assms cartesian_product_is_semialgebraic scp_permutes[of i n m]
permutation_is_semialgebraic[of "n + m" "cartesian_product A B" "(scp_permutation n m i)"]
unfolding split_cartesian_product_def
by blast
definition reverse_val_relation_set where
"reverse_val_relation_set = {as ∈ carrier (Q⇩p⇗2⇖). val (as ! 0) ≤ val (as ! 1)}"
lemma Qp_2_car_memE:
assumes "x ∈ carrier (Q⇩p⇗2⇖)"
shows "x = [x!0, x!1]"
proof-
have "length x = 2"
using assms cartesian_power_car_memE by blast
then show ?thesis
using pair_id by blast
qed
definition flip where
"flip = (λi::nat. (if i = 0 then 1 else (if i = 1 then 0 else i)))"
lemma flip_permutes:
"flip permutes {0,1}"
unfolding permutes_def flip_def
by (smt mem_simps(1))
lemma flip_eval:
"flip 0 = 1"
"flip 1 = 0"
unfolding flip_def
by auto
lemma flip_x:
assumes "x ∈ carrier (Q⇩p⇗2⇖)"
shows "permute_list flip x = [x!1, x!0]"
proof-
have 0: "x = [x!0, x!1]"
using assms Qp_2_car_memE by blast
have 1: "length (permute_list flip x) = length [x!1, x!0]"
using 0 unfolding permute_list_def
by (metis length_Cons length_map map_nth)
have 2: "⋀i. i < 2 ⟹ permute_list flip x ! i = [x!1, x!0] ! i"
proof- fix i::nat assume A: "i < 2"
show "permute_list flip x ! i = [x!1, x!0] ! i"
using 0 unfolding permute_list_def
by (smt flip_eval(1) flip_eval(2) length_Cons length_greater_0_conv list.simps(8) map_upt_Suc numeral_nat(7) upt_rec)
qed
have "⋀i. i < length x ⟹ permute_list flip x ! i = [x!1, x!0] ! i"
proof-
have 0: "length x = 2"
using assms cartesian_power_car_memE by blast
show "⋀i. i < length x ⟹ permute_list flip x ! i = [x!1, x!0] ! i" using 2 unfolding 0
by blast
qed
thus ?thesis using 1
by (metis length_permute_list nth_equalityI)
qed
lemma permute_with_flip_closed:
assumes "x ∈ carrier (Q⇩p⇗2::nat⇖)"
shows "permute_list flip x ∈ carrier (Q⇩p⇗2::nat⇖)"
apply(rule permute_list_closed)
using assms apply blast
proof-
have "{0::nat, 1} = {..<2::nat}"
by auto
thus "flip permutes {..<2}"
using flip_permutes
by auto
qed
lemma reverse_val_relation_set_semialg:
"is_semialgebraic 2 reverse_val_relation_set"
proof-
have 1: "reverse_val_relation_set = permute_list flip ` val_relation_set"
apply(rule equalityI')
proof-
show " ⋀x. x ∈ reverse_val_relation_set ⟹ x ∈ permute_list flip ` val_relation_set"
proof- fix x assume A: "x ∈ reverse_val_relation_set"
have 0: "permute_list flip x = [x ! 1, x ! 0]"
using flip_x[of x] A unfolding reverse_val_relation_set_def
by blast
have 1: "permute_list flip x ∈ carrier (Q⇩p⇗2⇖)"
apply(rule permute_with_flip_closed) using A unfolding reverse_val_relation_set_def by blast
have 2: "permute_list flip x ∈ val_relation_set"
using 1 A unfolding 0 reverse_val_relation_set_def val_relation_set_def mem_Collect_eq
by (metis Qp_2_car_memE list_hd list_tl)
show "x ∈ permute_list flip ` val_relation_set"
using flip_x[of x] A unfolding reverse_val_relation_set_def val_relation_set_def mem_Collect_eq
by (metis (no_types, lifting) "1" "2" Qp_2_car_memE flip_x image_eqI list_tl nth_Cons_0 val_relation_set_def)
qed
show "⋀x. x ∈ permute_list flip ` val_relation_set ⟹ x ∈ reverse_val_relation_set"
proof- fix x assume a: " x ∈ permute_list flip ` val_relation_set"
then obtain y where y_def: "y ∈ val_relation_set ∧x = permute_list flip y"
by blast
have y_closed: "y ∈ carrier (Q⇩p⇗2⇖)"
using y_def basic_semialg_set_memE(1) val_relation_semialg by blast
have y_length: " length y = 2"
using y_def basic_semialg_set_memE val_relation_semialg
by (metis cartesian_power_car_memE)
obtain a b where ab_def: "y = [a,b]"
using y_length pair_id by blast
have 0: "a = y!0"
using ab_def
by (metis nth_Cons_0)
have 1: "b = y!1"
using ab_def
by (metis cancel_comm_monoid_add_class.diff_cancel eq_numeral_extra(2) nth_Cons')
have a_closed: "a ∈ carrier Q⇩p"
using 0 y_closed unfolding 0
by (meson cartesian_power_car_memE' rel_simps(75) zero_order(5))
have b_closed: "b ∈ carrier Q⇩p"
proof-
have "1 < (2::nat)" by linarith
thus ?thesis
using y_closed unfolding 1
by (meson cartesian_power_car_memE')
qed
have 2: "x = [b, a]" using flip_x[of y] y_def y_closed unfolding ab_def unfolding 0 1
using ‹y ∈ carrier (Q⇩p⇗2⇖) ⟹ permute_list flip y = [y ! 1, y ! 0]› y_closed y_def by presburger
have x_closed: "x ∈ carrier (Q⇩p⇗2⇖)"
using y_def unfolding val_relation_set_def using permute_with_flip_closed[of y]
by blast
show " x ∈ reverse_val_relation_set"
using x_closed y_def
unfolding val_relation_set_def reverse_val_relation_set_def mem_Collect_eq 2 0 1
by (metis Qp_2_car_memE list_hd list_tl)
qed
qed
show ?thesis unfolding 1
apply(rule permutation_is_semialgebraic)
using val_relation_is_semialgebraic apply blast
using flip_permutes
by (metis Suc_1 insert_commute lessThan_0 lessThan_Suc numeral_nat(7))
qed
definition strict_val_relation_set where
"strict_val_relation_set = {as ∈ carrier (Q⇩p⇗2⇖). val (as ! 0) < val (as ! 1)}"
definition val_diag where
"val_diag = {as ∈ carrier (Q⇩p⇗2⇖). val (as ! 0) = val (as ! 1)}"
lemma val_diag_semialg:
"is_semialgebraic 2 val_diag"
proof-
have "val_diag = val_relation_set ∩reverse_val_relation_set"
apply(rule equalityI')
apply(rule IntI)
unfolding val_diag_def val_relation_set_def reverse_val_relation_set_def mem_Collect_eq
apply simp
apply simp
apply(erule IntE) unfolding mem_Collect_eq
using basic_trans_rules(24) by blast
then show ?thesis using intersection_is_semialg
by (simp add: reverse_val_relation_set_semialg val_relation_is_semialgebraic)
qed
lemma strict_val_relation_set_is_semialg:
"is_semialgebraic 2 strict_val_relation_set"
proof-
have 0: "strict_val_relation_set = reverse_val_relation_set - val_diag"
apply(rule equalityI')
apply(rule DiffI)
unfolding strict_val_relation_set_def val_diag_def val_relation_set_def reverse_val_relation_set_def mem_Collect_eq
using order_le_less apply blast
proof
show "⋀x. x ∈ carrier (Q⇩p⇗2⇖) ∧ val (x ! 0) < val (x ! 1) ⟹ x ∈ carrier (Q⇩p⇗2⇖) ∧ val (x ! 0) = val (x ! 1) ⟹ False"
using order_less_le by blast
show " ⋀x. x ∈ {as ∈ carrier (Q⇩p⇗2⇖). val (as ! 0) ≤ val (as ! 1)} - {as ∈ carrier (Q⇩p⇗2⇖). val (as ! 0) = val (as ! 1)} ⟹
x ∈ carrier (Q⇩p⇗2⇖) ∧ val (x ! 0) < val (x ! 1)"
apply(erule DiffE) unfolding mem_Collect_eq using order_le_less by blast
qed
show ?thesis unfolding 0
apply(rule diff_is_semialgebraic )
using reverse_val_relation_set_semialg apply blast
using val_diag_semialg by blast
qed
lemma singleton_length:
"length [a] = 1"
by auto
lemma take_closed':
assumes "m > 0"
assumes "x ∈ carrier (Q⇩p⇗m+l⇖)"
shows "take m x ∈ carrier (Q⇩p⇗m⇖)"
apply(rule take_closed[of m "m+l"])
apply simp using assms by blast
lemma triple_val_ineq_set_semialg:
shows "is_semialgebraic 3 {as ∈ carrier (Q⇩p⇗3⇖). val (as!0) ≤ val (as!1) ∧ val (as!1) ≤ val (as!2)}"
proof-
have 0: "is_semialgebraic 3 {as ∈ carrier (Q⇩p⇗3⇖). val (as!0) ≤ val (as!1)}"
proof-
have 0: "{as ∈ carrier (Q⇩p⇗3⇖). val (as!0) ≤ val (as!1)} = cartesian_product (reverse_val_relation_set) (carrier (Q⇩p⇗1⇖))"
proof(rule equalityI')
show " ⋀x. x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 0) ≤ val (as ! 1)} ⟹ x ∈ cartesian_product reverse_val_relation_set (carrier (Q⇩p⇗1⇖))"
proof- fix x assume A: " x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 0) ≤ val (as ! 1)}"
then have 0: "length x = 3" unfolding mem_Collect_eq
using cartesian_power_car_memE by blast
obtain a where a_def: "a = [x!0, x!1]"
by blast
have a_length: "length a = 2"
proof-
have "a = x!0 #[x!1]"
unfolding a_def
by blast
thus ?thesis using length_Cons[of "x!0" "[x!1]"] unfolding singleton_length[of "x!1"]
by presburger
qed
obtain b where b_def: "b = [x!2]"
by blast
have b_length: "length b = 1"
unfolding b_def singleton_length by auto
have a_closed: "a ∈ reverse_val_relation_set"
proof-
have 0: "a = take 2 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_take[of 2 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show "a ! i = take 2 x ! i "
apply(cases "i = 0")
apply (metis a_def nth_Cons_0 nth_take zero_less_numeral)
by (smt "0" ‹length (take 2 x) = min (length x) 2› a_def linorder_neqE_nat min.commute min.strict_order_iff nth_take numeral_eq_iff one_less_numeral_iff pair_id pos2 rel_simps(22) rel_simps(48) rel_simps(9) semiring_norm(81))
qed
have 1: "a ∈ carrier (Q⇩p⇗2⇖)"
apply(rule cartesian_power_car_memI')
apply (simp add: a_length)
unfolding 0 using A unfolding mem_Collect_eq
using cartesian_power_car_memE' by fastforce
show ?thesis using 1 A unfolding a_def reverse_val_relation_set_def A mem_Collect_eq
by (metis Qp_2_car_memE list_tl nth_Cons_0)
qed
have b_closed: "b ∈ carrier (Q⇩p⇗1⇖)"
apply(rule cartesian_power_car_memI)
unfolding b_length apply blast
apply(rule subsetI)
unfolding b_def using A unfolding mem_Collect_eq using cartesian_power_car_memE'[of x Q⇩p "3::nat" "2::nat"]
by simp
have 2: "x = a@b"
apply(rule nth_equalityI)
using 0 unfolding a_length b_length length_append[of a b] apply presburger
proof- fix i assume A: "i < length x"
then have A1: "i < 3"
unfolding 0 by blast
show "x ! i = (a @ b) ! i"
apply(cases "i = 0")
apply (metis a_def append.simps(2) nth_Cons_0)
apply(cases "(i:: nat) = 1")
apply (simp add: a_def)
proof- assume a: "i ≠0" "i ≠ 1"
then have "i = 2"
using A1 by presburger
thus ?thesis
by (metis a_length b_def nth_append_length)
qed
qed
have 3: "a = take 2 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_take[of 2 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show "a ! i = take 2 x ! i "
apply(cases "i = 0")
apply (metis a_def nth_Cons_0 nth_take zero_less_numeral)
by (smt "0" ‹length (take 2 x) = min (length x) 2› a_def linorder_neqE_nat min.commute min.strict_order_iff nth_take numeral_eq_iff one_less_numeral_iff pair_id pos2 rel_simps(22) rel_simps(48) rel_simps(9) semiring_norm(81))
qed
show " x ∈ cartesian_product reverse_val_relation_set (carrier (Q⇩p⇗1⇖))"
apply(rule cartesian_product_memI[of _ Q⇩p 2 _ 1])
apply (simp add: is_semialgebraic_closed reverse_val_relation_set_semialg)
apply blast
using 3 a_closed apply blast
proof-
have "drop 2 x = b"
unfolding 2 unfolding 3 using 0
by simp
then show "drop 2 x ∈ carrier (Q⇩p⇗1⇖)"
using b_closed by blast
qed
qed
show "⋀x. x ∈ cartesian_product reverse_val_relation_set (carrier (Q⇩p⇗1⇖)) ⟹ x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 0) ≤ val (as ! 1)}"
proof fix x assume A: "x ∈ cartesian_product reverse_val_relation_set (carrier (Q⇩p⇗1⇖))"
then obtain a b where ab_def: "a ∈ reverse_val_relation_set" "b ∈ carrier (Q⇩p⇗1⇖)" "x = a@b"
using cartesian_product_memE'[of x reverse_val_relation_set "carrier (Q⇩p⇗1⇖)"]
by metis
have a_length: "length a = 2"
using ab_def unfolding reverse_val_relation_set_def
using cartesian_power_car_memE by blast
have "(0::nat)< 2" by presburger
hence 0: "x!0 = a!0"
unfolding ab_def using a_length
by (metis append.simps(2) nth_Cons_0 pair_id)
have "(1::nat)< 2" by presburger
hence 1: "x!1 = a!1"
unfolding ab_def using a_length
by (metis append.simps(2) less_2_cases nth_Cons_0 nth_Cons_Suc pair_id)
obtain b' where b'_def: "b = [b']"
using ab_def cartesian_power_car_memE
by (metis (no_types, opaque_lifting) append_Cons append_Nil append_eq_append_conv min_list.cases singleton_length)
have b'_closed: "b' ∈ carrier Q⇩p"
using b'_def ab_def cartesian_power_car_memE
by (metis Qp.R1_memE' list_hd)
have x_closed: "x ∈ carrier (Q⇩p⇗3⇖)"
using ab_def cartesian_power_append[of a Q⇩p 2 b'] b'_def b'_closed
unfolding b'_def ab_def(3) reverse_val_relation_set_def mem_Collect_eq
by simp
show "x ∈ carrier (Q⇩p⇗3⇖) ∧ val (x ! 0) ≤ val (x ! 1)"
using x_closed ab_def unfolding reverse_val_relation_set_def mem_Collect_eq 0 1 by blast
qed
qed
show ?thesis unfolding 0
using cartesian_product_is_semialgebraic[of 2 reverse_val_relation_set 1 "carrier (Q⇩p⇗1⇖)"]
by (simp add: carrier_is_semialgebraic reverse_val_relation_set_semialg)
qed
have 1: "is_semialgebraic 3 {as ∈ carrier (Q⇩p⇗3⇖). val (as!1) ≤ val (as!2)}"
proof-
have 0: "{as ∈ carrier (Q⇩p⇗3⇖). val (as!1) ≤ val (as!2)} = cartesian_product (carrier (Q⇩p⇗1⇖)) (reverse_val_relation_set)"
proof(rule equalityI')
show "⋀x. x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) ≤ val (as ! 2)} ⟹ x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) reverse_val_relation_set"
proof-
fix x assume A: " x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) ≤ val (as ! 2)}"
then have 0: "length x = 3" unfolding mem_Collect_eq
using cartesian_power_car_memE by blast
obtain a where a_def: "a = [x!1, x!2]"
by blast
have a_length: "length a = 2"
proof-
have "a = x!1 #[x!2]"
unfolding a_def
by blast
thus ?thesis using length_Cons[of "x!1" "[x!2]"] unfolding singleton_length[of "x!2"]
by presburger
qed
obtain b where b_def: "b = [x!0]"
by blast
have b_length: "length b = 1"
unfolding b_def singleton_length by auto
have a_closed: "a ∈ reverse_val_relation_set"
proof-
have 0: "a = drop 1 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_drop[of 1 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show " a ! i = drop 1 x ! i"
apply(cases "i = 0")
unfolding a_def using nth_drop[of 1 x i]
apply (metis (no_types, opaque_lifting) "0" a_def arith_extra_simps(6) diff_is_0_eq' eq_imp_le eq_numeral_extra(1) flip_def flip_eval(1) less_numeral_extra(1) less_one less_or_eq_imp_le nat_add_left_cancel_le nat_le_linear nat_less_le nth_Cons_0 nth_drop numeral_neq_zero trans_less_add2 zero_less_diff)
apply(cases "i = 1")
using nth_drop[of 1 x i] unfolding 0
apply (metis "0" a_def a_length list.simps(1) nat_1_add_1 nth_drop one_le_numeral pair_id semiring_norm(3))
using a by presburger
qed
have 1: "a ∈ carrier (Q⇩p⇗2⇖)"
using a_def A drop_closed[of 1 3 x Q⇩p] unfolding 0 mem_Collect_eq
by (metis One_nat_def Suc_1 diff_Suc_1 numeral_3_eq_3 rel_simps(49) semiring_norm(77))
show ?thesis using 1 A unfolding a_def reverse_val_relation_set_def A mem_Collect_eq
by (metis Qp_2_car_memE list_tl nth_Cons_0)
qed
have b_closed: "b ∈ carrier (Q⇩p⇗1⇖)"
apply(rule cartesian_power_car_memI)
unfolding b_length apply blast
apply(rule subsetI)
unfolding b_def using A unfolding mem_Collect_eq using cartesian_power_car_memE'[of x Q⇩p "3::nat" "0::nat"]
by (metis b_def b_length in_set_conv_nth less_one Qp.to_R_to_R1 zero_less_numeral)
have 2: "x = b@a"
apply(rule nth_equalityI)
using 0 unfolding a_length b_length length_append[of b a] apply presburger
proof- fix i assume A: "i < length x"
then have A1: "i < 3"
unfolding 0 by blast
show "x ! i = (b @ a) ! i"
apply(cases "i = 0")
apply (metis append.simps(2) b_def nth_Cons_0)
apply(cases "(i:: nat) = (1::nat)")
using append.simps a_def nth_Cons
apply (metis b_length nth_append_length)
apply(cases "(i:: nat) = (2::nat)")
using A unfolding 0
apply (metis a_def a_length arith_special(3) b_length list.inject nth_append_length_plus pair_id)
proof- assume A0: "i ≠0" "i ≠ 1" "i ≠2"
then have "i ≥ 3" by presburger
then show "x ! i = (b @ a) ! i"
using A unfolding 0 by presburger
qed
qed
have 3: "a = drop 1 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_drop[of 1 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show " a ! i = drop 1 x ! i"
apply(cases "i = 0")
unfolding a_def using nth_drop[of 1 x i]
apply (metis (no_types, opaque_lifting) "0" a_def arith_extra_simps(6) diff_is_0_eq' eq_imp_le eq_numeral_extra(1) flip_def flip_eval(1) less_numeral_extra(1) less_one less_or_eq_imp_le nat_add_left_cancel_le nat_le_linear nat_less_le nth_Cons_0 nth_drop numeral_neq_zero trans_less_add2 zero_less_diff)
apply(cases "i = 1")
using nth_drop[of 1 x i] unfolding 0
apply (metis "0" a_def a_length list.simps(1) nat_1_add_1 nth_drop one_le_numeral pair_id semiring_norm(3))
using a by presburger
qed
show "x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) reverse_val_relation_set"
apply(rule cartesian_product_memI[of _ Q⇩p 1 _ 2])
apply (simp add: is_semialgebraic_closed reverse_val_relation_set_semialg)
using reverse_val_relation_set_def apply blast
using take_closed[of 1 3 x] A unfolding mem_Collect_eq apply auto[1]
using a_closed unfolding 3 by blast
qed
show "⋀x. x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) reverse_val_relation_set ⟹ x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) ≤ val (as ! 2)}"
proof fix x assume A: "x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) reverse_val_relation_set "
then obtain a b where ab_def: "a ∈ reverse_val_relation_set" "b ∈ carrier (Q⇩p⇗1⇖)" "x = b@a"
using cartesian_product_memE'[of x "carrier (Q⇩p⇗1⇖)" reverse_val_relation_set]
by metis
have a_length: "length a = 2"
using ab_def unfolding reverse_val_relation_set_def
using cartesian_power_car_memE by blast
obtain b' where b'_def: "b = [b']"
using ab_def cartesian_power_car_memE
by (metis (no_types, opaque_lifting) append_Cons append_Nil append_eq_append_conv min_list.cases singleton_length)
have b'_closed: "b' ∈ carrier Q⇩p"
using b'_def ab_def cartesian_power_car_memE
by (metis Qp.R1_memE' list_hd)
have b_length: "length b = 1"
by (simp add: b'_def)
have x_id: "x = b'#a"
unfolding ab_def b'_def by auto
have "(1::nat)< 2" by presburger
hence 0: "x!1 = a!0"
unfolding ab_def b'_def using a_length
by (metis b'_def b_length nth_append_length pair_id)
have 00: "2 = Suc 1"
by auto
have 1: "x!2 = a!1"
using a_length nth_Cons[of b' a "2::nat"]
unfolding x_id 00
by (meson nth_Cons_Suc)
have x_closed: "x ∈ carrier (Q⇩p⇗3⇖)"
unfolding x_id b'_def using b'_closed cartesian_power_cons[of a Q⇩p 2 b'] ab_def
unfolding reverse_val_relation_set_def mem_Collect_eq
by simp
show "x ∈ carrier (Q⇩p⇗3⇖) ∧ val (x ! 1) ≤ val (x ! 2)"
using x_closed ab_def unfolding reverse_val_relation_set_def mem_Collect_eq 0 1 by blast
qed
qed
show ?thesis unfolding 0
using cartesian_product_is_semialgebraic[of 2 reverse_val_relation_set 1 "carrier (Q⇩p⇗1⇖)"]
by (metis add_num_simps(2) car_times_semialg_is_semialg one_plus_numeral reverse_val_relation_set_semialg)
qed
have 2: "{as ∈ carrier (Q⇩p⇗3⇖). val (as!0) ≤ val (as!1) ∧ val (as!1) ≤ val (as!2)}=
{as ∈ carrier (Q⇩p⇗3⇖). val (as!0) ≤ val (as!1)} ∩ {as ∈ carrier (Q⇩p⇗3⇖). val (as!1) ≤ val (as!2)}"
by blast
show ?thesis using intersection_is_semialg 0 1 unfolding 2 by blast
qed
lemma triple_val_ineq_set_semialg':
shows "is_semialgebraic 3 {as ∈ carrier (Q⇩p⇗3⇖). val (as!0) ≤ val (as!1) ∧ val (as!1) < val (as!2)}"
proof-
have 0: "is_semialgebraic 3 {as ∈ carrier (Q⇩p⇗3⇖). val (as!0) ≤ val (as!1)}"
proof-
have 0: "{as ∈ carrier (Q⇩p⇗3⇖). val (as!0) ≤ val (as!1)} = cartesian_product (reverse_val_relation_set) (carrier (Q⇩p⇗1⇖))"
proof(rule equalityI')
show " ⋀x. x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 0) ≤ val (as ! 1)} ⟹ x ∈ cartesian_product reverse_val_relation_set (carrier (Q⇩p⇗1⇖))"
proof- fix x assume A: " x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 0) ≤ val (as ! 1)}"
then have 0: "length x = 3" unfolding mem_Collect_eq
using cartesian_power_car_memE by blast
obtain a where a_def: "a = [x!0, x!1]"
by blast
have a_length: "length a = 2"
proof-
have "a = x!0 #[x!1]"
unfolding a_def
by blast
thus ?thesis using length_Cons[of "x!0" "[x!1]"] unfolding singleton_length[of "x!1"]
by presburger
qed
obtain b where b_def: "b = [x!2]"
by blast
have b_length: "length b = 1"
unfolding b_def singleton_length by auto
have a_closed: "a ∈ reverse_val_relation_set"
proof-
have 0: "a = take 2 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_take[of 2 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show "a ! i = take 2 x ! i "
apply(cases "i = 0")
apply (metis a_def nth_Cons_0 nth_take zero_less_numeral)
by (smt "0" ‹length (take 2 x) = min (length x) 2› a_def linorder_neqE_nat min.commute min.strict_order_iff nth_take numeral_eq_iff one_less_numeral_iff pair_id pos2 rel_simps(22) rel_simps(48) rel_simps(9) semiring_norm(81))
qed
have 1: "a ∈ carrier (Q⇩p⇗2⇖)"
using a_def 0 A unfolding mem_Collect_eq
by (meson Qp_2I cartesian_power_car_memE' rel_simps(49) rel_simps(51) semiring_norm(77))
show ?thesis using 1 A unfolding a_def reverse_val_relation_set_def A mem_Collect_eq
by (metis Qp_2_car_memE list_tl nth_Cons_0)
qed
have b_closed: "b ∈ carrier (Q⇩p⇗1⇖)"
apply(rule cartesian_power_car_memI)
unfolding b_length apply blast
apply(rule subsetI)
unfolding b_def using A unfolding mem_Collect_eq using cartesian_power_car_memE'[of x Q⇩p "3::nat" "2::nat"]
by simp
have 2: "x = a@b"
apply(rule nth_equalityI)
using 0 unfolding a_length b_length length_append[of a b] apply presburger
proof- fix i assume A: "i < length x"
then have A1: "i < 3"
unfolding 0 by blast
show "x ! i = (a @ b) ! i"
apply(cases "i = 0")
apply (metis a_def append.simps(2) nth_Cons_0)
apply(cases "(i:: nat) = 1")
apply (simp add: a_def)
proof- assume a: "i ≠0" "i ≠ 1"
then have "i = 2"
using A1 by presburger
thus ?thesis
by (metis a_length b_def nth_append_length)
qed
qed
have 3: "a = take 2 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_take[of 2 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show "a ! i = take 2 x ! i "
apply(cases "i = 0")
apply (metis a_def nth_Cons_0 nth_take zero_less_numeral)
by (smt "0" ‹length (take 2 x) = min (length x) 2› a_def linorder_neqE_nat min.commute min.strict_order_iff nth_take numeral_eq_iff one_less_numeral_iff pair_id pos2 rel_simps(22) rel_simps(48) rel_simps(9) semiring_norm(81))
qed
show " x ∈ cartesian_product reverse_val_relation_set (carrier (Q⇩p⇗1⇖))"
apply(rule cartesian_product_memI[of _ Q⇩p 2 _ 1])
apply (simp add: is_semialgebraic_closed reverse_val_relation_set_semialg)
apply blast
using 3 a_closed apply blast
proof-
have "drop 2 x = b"
unfolding 2 unfolding 3 using 0
by simp
then show "drop 2 x ∈ carrier (Q⇩p⇗1⇖)"
using b_closed by blast
qed
qed
show "⋀x. x ∈ cartesian_product reverse_val_relation_set (carrier (Q⇩p⇗1⇖)) ⟹ x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 0) ≤ val (as ! 1)}"
proof fix x assume A: "x ∈ cartesian_product reverse_val_relation_set (carrier (Q⇩p⇗1⇖))"
then obtain a b where ab_def: "a ∈ reverse_val_relation_set" "b ∈ carrier (Q⇩p⇗1⇖)" "x = a@b"
using cartesian_product_memE'[of x reverse_val_relation_set "carrier (Q⇩p⇗1⇖)"]
by metis
have a_length: "length a = 2"
using ab_def unfolding reverse_val_relation_set_def
using cartesian_power_car_memE by blast
have "(0::nat)< 2" by presburger
hence 0: "x!0 = a!0"
unfolding ab_def using a_length
by (metis append.simps(2) nth_Cons_0 pair_id)
have "(1::nat)< 2" by presburger
hence 1: "x!1 = a!1"
unfolding ab_def using a_length
by (metis append.simps(2) less_2_cases nth_Cons_0 nth_Cons_Suc pair_id)
obtain b' where b'_def: "b = [b']"
using ab_def cartesian_power_car_memE
by (metis (no_types, opaque_lifting) append_Cons append_Nil append_eq_append_conv min_list.cases singleton_length)
have b'_closed: "b' ∈ carrier Q⇩p"
using b'_def ab_def cartesian_power_car_memE
by (metis Qp.R1_memE' list_hd)
have x_closed: "x ∈ carrier (Q⇩p⇗3⇖)"
using ab_def cartesian_power_append[of a Q⇩p 2 b'] b'_def b'_closed
unfolding b'_def ab_def(3) reverse_val_relation_set_def mem_Collect_eq
by simp
show "x ∈ carrier (Q⇩p⇗3⇖) ∧ val (x ! 0) ≤ val (x ! 1)"
using x_closed ab_def unfolding reverse_val_relation_set_def mem_Collect_eq 0 1 by blast
qed
qed
show ?thesis unfolding 0
using cartesian_product_is_semialgebraic[of 2 reverse_val_relation_set 1 "carrier (Q⇩p⇗1⇖)"]
by (simp add: carrier_is_semialgebraic reverse_val_relation_set_semialg)
qed
have 1: "is_semialgebraic 3 {as ∈ carrier (Q⇩p⇗3⇖). val (as!1) < val (as!2)}"
proof-
have 0: "{as ∈ carrier (Q⇩p⇗3⇖). val (as!1) < val (as!2)} = cartesian_product (carrier (Q⇩p⇗1⇖)) (strict_val_relation_set)"
proof(rule equalityI')
show "⋀x. x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) < val (as ! 2)} ⟹ x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) strict_val_relation_set"
proof- fix x assume A: " x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) < val (as ! 2)}"
then have 0: "length x = 3" unfolding mem_Collect_eq
using cartesian_power_car_memE by blast
obtain a where a_def: "a = [x!1, x!2]"
by blast
have a_length: "length a = 2"
proof-
have "a = x!1 #[x!2]"
unfolding a_def
by blast
thus ?thesis using length_Cons[of "x!1" "[x!2]"] unfolding singleton_length[of "x!2"]
by presburger
qed
obtain b where b_def: "b = [x!0]"
by blast
have b_length: "length b = 1"
unfolding b_def singleton_length by auto
have a_closed: "a ∈ strict_val_relation_set"
proof-
have 0: "a = drop 1 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_drop[of 1 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show " a ! i = drop 1 x ! i"
apply(cases "i = 0")
unfolding a_def using nth_drop[of 1 x i]
apply (metis (no_types, opaque_lifting) "0" a_def arith_extra_simps(6) diff_is_0_eq' eq_imp_le eq_numeral_extra(1) flip_def flip_eval(1) less_numeral_extra(1) less_one less_or_eq_imp_le nat_add_left_cancel_le nat_le_linear nat_less_le nth_Cons_0 nth_drop numeral_neq_zero trans_less_add2 zero_less_diff)
apply(cases "i = 1")
using nth_drop[of 1 x i] unfolding 0
apply (metis "0" a_def a_length list.simps(1) nat_1_add_1 nth_drop one_le_numeral pair_id semiring_norm(3))
using a by presburger
qed
have 1: "a ∈ carrier (Q⇩p⇗2⇖)"
using a_def A drop_closed[of 1 3 x Q⇩p] unfolding 0 mem_Collect_eq
by (metis One_nat_def Suc_1 diff_Suc_1 numeral_3_eq_3 rel_simps(49) semiring_norm(77))
show ?thesis using 1 A unfolding a_def strict_val_relation_set_def A mem_Collect_eq
by (metis Qp_2_car_memE list_tl nth_Cons_0)
qed
have b_closed: "b ∈ carrier (Q⇩p⇗1⇖)"
apply(rule cartesian_power_car_memI)
unfolding b_length apply blast
apply(rule subsetI)
unfolding b_def using A unfolding mem_Collect_eq using cartesian_power_car_memE'[of x Q⇩p "3::nat" "0::nat"]
by (metis b_def b_length in_set_conv_nth less_one Qp.to_R_to_R1 zero_less_numeral)
have 2: "x = b@a"
apply(rule nth_equalityI)
using 0 unfolding a_length b_length length_append[of b a] apply presburger
proof- fix i assume A: "i < length x"
then have A1: "i < 3"
unfolding 0 by blast
show "x ! i = (b @ a) ! i"
apply(cases "i = 0")
apply (metis append.simps(2) b_def nth_Cons_0)
apply(cases "(i:: nat) = (1::nat)")
using append.simps a_def nth_Cons
apply (metis b_length nth_append_length)
apply(cases "(i:: nat) = (2::nat)")
using A unfolding 0
apply (metis a_def a_length arith_special(3) b_length list.inject nth_append_length_plus pair_id)
proof- assume A0: "i ≠0" "i ≠ 1" "i ≠2"
then have "i ≥ 3" by presburger
then show "x ! i = (b @ a) ! i"
using A unfolding 0 by presburger
qed
qed
have 3: "a = drop 1 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_drop[of 1 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show " a ! i = drop 1 x ! i"
apply(cases "i = 0")
unfolding a_def using nth_drop[of 1 x i]
apply (metis (no_types, opaque_lifting) "0" a_def arith_extra_simps(6) diff_is_0_eq' eq_imp_le eq_numeral_extra(1) flip_def flip_eval(1) less_numeral_extra(1) less_one less_or_eq_imp_le nat_add_left_cancel_le nat_le_linear nat_less_le nth_Cons_0 nth_drop numeral_neq_zero trans_less_add2 zero_less_diff)
apply(cases "i = 1")
using nth_drop[of 1 x i] unfolding 0
apply (metis "0" a_def a_length list.simps(1) nat_1_add_1 nth_drop one_le_numeral pair_id semiring_norm(3))
using a by presburger
qed
show "x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) strict_val_relation_set"
apply(rule cartesian_product_memI[of _ Q⇩p 1 _ 2])
apply (simp add: is_semialgebraic_closed strict_val_relation_set_is_semialg)
using strict_val_relation_set_def apply blast
using take_closed[of 1 3 x Q⇩p] A unfolding mem_Collect_eq apply auto[1]
using a_closed unfolding 3 by blast
qed
show "⋀x. x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) strict_val_relation_set ⟹ x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) < val (as ! 2)}"
proof fix x assume A: "x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) strict_val_relation_set "
then obtain a b where ab_def: "a ∈ strict_val_relation_set" "b ∈ carrier (Q⇩p⇗1⇖)" "x = b@a"
using cartesian_product_memE'[of x "carrier (Q⇩p⇗1⇖)" strict_val_relation_set]
by metis
have a_length: "length a = 2"
using ab_def unfolding strict_val_relation_set_def
using cartesian_power_car_memE by blast
obtain b' where b'_def: "b = [b']"
using ab_def cartesian_power_car_memE
by (metis (no_types, opaque_lifting) append_Cons append_Nil append_eq_append_conv min_list.cases singleton_length)
have b'_closed: "b' ∈ carrier Q⇩p"
using b'_def ab_def
by (metis Qp.R1_memE' list_hd)
have b_length: "length b = 1"
by (simp add: b'_def)
have x_id: "x = b'#a"
unfolding ab_def b'_def by auto
have "(1::nat)< 2" by presburger
hence 0: "x!1 = a!0"
unfolding ab_def b'_def using a_length
by (metis b'_def b_length nth_append_length pair_id)
have 00: "2 = Suc 1"
by auto
have 1: "x!2 = a!1"
using a_length nth_Cons[of b' a "2::nat"]
unfolding x_id 00
by (meson nth_Cons_Suc)
have x_closed: "x ∈ carrier (Q⇩p⇗3⇖)"
unfolding x_id b'_def using b'_closed cartesian_power_cons[of a Q⇩p 2 b'] ab_def
unfolding strict_val_relation_set_def mem_Collect_eq
by simp
show "x ∈ carrier (Q⇩p⇗3⇖) ∧ val (x ! 1) < val (x ! 2)"
using x_closed ab_def unfolding strict_val_relation_set_def mem_Collect_eq 0 1 by blast
qed
qed
show ?thesis unfolding 0
using cartesian_product_is_semialgebraic[of 2 reverse_val_relation_set 1 "carrier (Q⇩p⇗1⇖)"]
by (metis add_num_simps(2) car_times_semialg_is_semialg one_plus_numeral strict_val_relation_set_is_semialg)
qed
have 2: "{as ∈ carrier (Q⇩p⇗3⇖). val (as!0) ≤ val (as!1) ∧ val (as!1) < val (as!2)}=
{as ∈ carrier (Q⇩p⇗3⇖). val (as!0) ≤ val (as!1)} ∩ {as ∈ carrier (Q⇩p⇗3⇖). val (as!1) < val (as!2)}"
by blast
show ?thesis using intersection_is_semialg 0 1 unfolding 2 by blast
qed
lemma triple_val_ineq_set_semialg'':
shows "is_semialgebraic 3 {as ∈ carrier (Q⇩p⇗3⇖). val (as!1) < val (as!2)}"
proof-
have 0: "{as ∈ carrier (Q⇩p⇗3⇖). val (as!1) < val (as!2)} = cartesian_product (carrier (Q⇩p⇗1⇖)) (strict_val_relation_set)"
proof(rule equalityI')
show "⋀x. x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) < val (as ! 2)} ⟹ x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) strict_val_relation_set"
proof- fix x assume A: " x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) < val (as ! 2)}"
then have 0: "length x = 3" unfolding mem_Collect_eq
using cartesian_power_car_memE by blast
obtain a where a_def: "a = [x!1, x!2]"
by blast
have a_length: "length a = 2"
proof-
have "a = x!1 #[x!2]"
unfolding a_def
by blast
thus ?thesis using length_Cons[of "x!1" "[x!2]"] unfolding singleton_length[of "x!2"]
by presburger
qed
obtain b where b_def: "b = [x!0]"
by blast
have b_length: "length b = 1"
unfolding b_def singleton_length by auto
have a_closed: "a ∈ strict_val_relation_set"
proof-
have 0: "a = drop 1 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_drop[of 1 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show " a ! i = drop 1 x ! i"
apply(cases "i = 0")
unfolding a_def using nth_drop[of 1 x i]
apply (metis (no_types, opaque_lifting) "0" a_def arith_extra_simps(6) diff_is_0_eq' eq_imp_le eq_numeral_extra(1) flip_def flip_eval(1) less_numeral_extra(1) less_one less_or_eq_imp_le nat_add_left_cancel_le nat_le_linear nat_less_le nth_Cons_0 nth_drop numeral_neq_zero trans_less_add2 zero_less_diff)
apply(cases "i = 1")
using nth_drop[of 1 x i] unfolding 0
apply (metis "0" a_def a_length list.simps(1) nat_1_add_1 nth_drop one_le_numeral pair_id semiring_norm(3))
using a by presburger
qed
have 1: "a ∈ carrier (Q⇩p⇗2⇖)"
using a_def A drop_closed[of 1 3 x Q⇩p] unfolding 0 mem_Collect_eq
by (metis One_nat_def Suc_1 diff_Suc_1 numeral_3_eq_3 rel_simps(49) semiring_norm(77))
show ?thesis using 1 A unfolding a_def strict_val_relation_set_def A mem_Collect_eq
by (metis Qp_2_car_memE list_tl nth_Cons_0)
qed
have b_closed: "b ∈ carrier (Q⇩p⇗1⇖)"
apply(rule cartesian_power_car_memI)
unfolding b_length apply blast
apply(rule subsetI)
unfolding b_def using A unfolding mem_Collect_eq using cartesian_power_car_memE'[of x Q⇩p "3::nat" "0::nat"]
by (metis b_def b_length in_set_conv_nth less_one Qp.to_R_to_R1 zero_less_numeral)
have 2: "x = b@a"
apply(rule nth_equalityI)
using 0 unfolding a_length b_length length_append[of b a] apply presburger
proof- fix i assume A: "i < length x"
then have A1: "i < 3"
unfolding 0 by blast
show "x ! i = (b @ a) ! i"
apply(cases "i = 0")
apply (metis append.simps(2) b_def nth_Cons_0)
apply(cases "(i:: nat) = (1::nat)")
using append.simps a_def nth_Cons
apply (metis b_length nth_append_length)
apply(cases "(i:: nat) = (2::nat)")
using A unfolding 0
apply (metis a_def a_length arith_special(3) b_length list.inject nth_append_length_plus pair_id)
proof- assume A0: "i ≠0" "i ≠ 1" "i ≠2"
then have "i ≥ 3" by presburger
then show "x ! i = (b @ a) ! i"
using A unfolding 0 by presburger
qed
qed
have 3: "a = drop 1 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_drop[of 1 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show " a ! i = drop 1 x ! i"
apply(cases "i = 0")
unfolding a_def using nth_drop[of 1 x i]
apply (metis (no_types, opaque_lifting) "0" a_def arith_extra_simps(6) diff_is_0_eq' eq_imp_le eq_numeral_extra(1) flip_def flip_eval(1) less_numeral_extra(1) less_one less_or_eq_imp_le nat_add_left_cancel_le nat_le_linear nat_less_le nth_Cons_0 nth_drop numeral_neq_zero trans_less_add2 zero_less_diff)
apply(cases "i = 1")
using nth_drop[of 1 x i] unfolding 0
apply (metis "0" a_def a_length list.simps(1) nat_1_add_1 nth_drop one_le_numeral pair_id semiring_norm(3))
using a by presburger
qed
show "x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) strict_val_relation_set"
apply(rule cartesian_product_memI[of _ Q⇩p 1 _ 2])
apply (simp add: is_semialgebraic_closed strict_val_relation_set_is_semialg)
using strict_val_relation_set_def apply blast
using take_closed[of 1 3 x] A unfolding mem_Collect_eq
using one_le_numeral apply blast
using a_closed unfolding 3 by blast
qed
show "⋀x. x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) strict_val_relation_set ⟹ x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) < val (as ! 2)}"
proof fix x assume A: "x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) strict_val_relation_set "
then obtain a b where ab_def: "a ∈ strict_val_relation_set" "b ∈ carrier (Q⇩p⇗1⇖)" "x = b@a"
using cartesian_product_memE'[of x "carrier (Q⇩p⇗1⇖)" strict_val_relation_set]
by metis
have a_length: "length a = 2"
using ab_def unfolding strict_val_relation_set_def
using cartesian_power_car_memE by blast
obtain b' where b'_def: "b = [b']"
using ab_def cartesian_power_car_memE
by (metis (no_types, opaque_lifting) append_Cons append_Nil append_eq_append_conv min_list.cases singleton_length)
have b'_closed: "b' ∈ carrier Q⇩p"
using b'_def ab_def cartesian_power_car_memE
by (metis Qp.R1_memE' list_hd)
have b_length: "length b = 1"
by (simp add: b'_def)
have x_id: "x = b'#a"
unfolding ab_def b'_def by auto
have "(1::nat)< 2" by presburger
hence 0: "x!1 = a!0"
unfolding ab_def b'_def using a_length
by (metis b'_def b_length nth_append_length pair_id)
have 00: "2 = Suc 1"
by auto
have 1: "x!2 = a!1"
using a_length nth_Cons[of b' a "2::nat"]
unfolding x_id 00
by (meson nth_Cons_Suc)
have x_closed: "x ∈ carrier (Q⇩p⇗3⇖)"
unfolding x_id b'_def using b'_closed cartesian_power_cons[of a Q⇩p 2 b'] ab_def
unfolding strict_val_relation_set_def mem_Collect_eq
by simp
show "x ∈ carrier (Q⇩p⇗3⇖) ∧ val (x ! 1) < val (x ! 2)"
using x_closed ab_def unfolding strict_val_relation_set_def mem_Collect_eq 0 1 by blast
qed
qed
show ?thesis unfolding 0
using cartesian_product_is_semialgebraic[of 2 reverse_val_relation_set 1 "carrier (Q⇩p⇗1⇖)"]
by (metis add_num_simps(2) car_times_semialg_is_semialg one_plus_numeral strict_val_relation_set_is_semialg)
qed
lemma triple_val_ineq_set_semialg''':
shows "is_semialgebraic 3 {as ∈ carrier (Q⇩p⇗3⇖). val (as!1) ≤ val (as!2)}"
proof-
have 0: "{as ∈ carrier (Q⇩p⇗3⇖). val (as!1) ≤ val (as!2)} = cartesian_product (carrier (Q⇩p⇗1⇖)) (reverse_val_relation_set)"
proof(rule equalityI')
show "⋀x. x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) ≤ val (as ! 2)} ⟹ x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) reverse_val_relation_set"
proof- fix x assume A: " x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) ≤ val (as ! 2)}"
then have 0: "length x = 3" unfolding mem_Collect_eq
using cartesian_power_car_memE by blast
obtain a where a_def: "a = [x!1, x!2]"
by blast
have a_length: "length a = 2"
proof-
have "a = x!1 #[x!2]"
unfolding a_def
by blast
thus ?thesis using length_Cons[of "x!1" "[x!2]"] unfolding singleton_length[of "x!2"]
by presburger
qed
obtain b where b_def: "b = [x!0]"
by blast
have b_length: "length b = 1"
unfolding b_def singleton_length by auto
have a_closed: "a ∈ reverse_val_relation_set"
proof-
have 0: "a = drop 1 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_drop[of 1 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show " a ! i = drop 1 x ! i"
apply(cases "i = 0")
unfolding a_def using nth_drop[of 1 x i]
apply (metis (no_types, opaque_lifting) "0" a_def arith_extra_simps(6) diff_is_0_eq' eq_imp_le eq_numeral_extra(1) flip_def flip_eval(1) less_numeral_extra(1) less_one less_or_eq_imp_le nat_add_left_cancel_le nat_le_linear nat_less_le nth_Cons_0 nth_drop numeral_neq_zero trans_less_add2 zero_less_diff)
apply(cases "i = 1")
using nth_drop[of 1 x i] unfolding 0
apply (metis "0" a_def a_length list.simps(1) nat_1_add_1 nth_drop one_le_numeral pair_id semiring_norm(3))
using a by presburger
qed
have 1: "a ∈ carrier (Q⇩p⇗2⇖)"
using a_def A drop_closed[of 1 3 x Q⇩p] unfolding 0 mem_Collect_eq
by (metis One_nat_def Suc_1 diff_Suc_1 numeral_3_eq_3 rel_simps(49) semiring_norm(77))
show ?thesis using 1 A unfolding a_def reverse_val_relation_set_def A mem_Collect_eq
by (metis Qp_2_car_memE list_tl nth_Cons_0)
qed
have b_closed: "b ∈ carrier (Q⇩p⇗1⇖)"
apply(rule cartesian_power_car_memI)
unfolding b_length apply blast
apply(rule subsetI)
unfolding b_def using A unfolding mem_Collect_eq using cartesian_power_car_memE'[of x Q⇩p "3::nat" "0::nat"]
by (metis b_def b_length in_set_conv_nth less_one Qp.to_R_to_R1 zero_less_numeral)
have 2: "x = b@a"
apply(rule nth_equalityI)
using 0 unfolding a_length b_length length_append[of b a] apply presburger
proof- fix i assume A: "i < length x"
then have A1: "i < 3"
unfolding 0 by blast
show "x ! i = (b @ a) ! i"
apply(cases "i = 0")
apply (metis append.simps(2) b_def nth_Cons_0)
apply(cases "(i:: nat) = (1::nat)")
using append.simps a_def nth_Cons
apply (metis b_length nth_append_length)
apply(cases "(i:: nat) = (2::nat)")
using A unfolding 0
apply (metis a_def a_length arith_special(3) b_length list.inject nth_append_length_plus pair_id)
proof- assume A0: "i ≠0" "i ≠ 1" "i ≠2"
then have "i ≥ 3" by presburger
then show "x ! i = (b @ a) ! i"
using A unfolding 0 by presburger
qed
qed
have 3: "a = drop 1 x"
apply(rule nth_equalityI)
unfolding a_length 0 length_drop[of 1 x]
apply linarith
proof- fix i::nat assume a: "i < 2" show " a ! i = drop 1 x ! i"
apply(cases "i = 0")
unfolding a_def using nth_drop[of 1 x i]
apply (metis (no_types, opaque_lifting) "0" a_def arith_extra_simps(6) diff_is_0_eq' eq_imp_le eq_numeral_extra(1) flip_def flip_eval(1) less_numeral_extra(1) less_one less_or_eq_imp_le nat_add_left_cancel_le nat_le_linear nat_less_le nth_Cons_0 nth_drop numeral_neq_zero trans_less_add2 zero_less_diff)
apply(cases "i = 1")
using nth_drop[of 1 x i] unfolding 0
apply (metis "0" a_def a_length list.simps(1) nat_1_add_1 nth_drop one_le_numeral pair_id semiring_norm(3))
using a by presburger
qed
show "x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) reverse_val_relation_set"
apply(rule cartesian_product_memI[of _ Q⇩p 1 _ 2])
apply (simp add: is_semialgebraic_closed reverse_val_relation_set_semialg)
using reverse_val_relation_set_def apply blast
using take_closed[of 1 3 x] A unfolding mem_Collect_eq apply auto[1]
using a_closed unfolding 3 by blast
qed
show "⋀x. x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) reverse_val_relation_set ⟹ x ∈ {as ∈ carrier (Q⇩p⇗3⇖). val (as ! 1) ≤ val (as ! 2)}"
proof fix x assume A: "x ∈ cartesian_product (carrier (Q⇩p⇗1⇖)) reverse_val_relation_set "
then obtain a b where ab_def: "a ∈ reverse_val_relation_set" "b ∈ carrier (Q⇩p⇗1⇖)" "x = b@a"
using cartesian_product_memE'[of x "carrier (Q⇩p⇗1⇖)" reverse_val_relation_set]
by metis
have a_length: "length a = 2"
using ab_def unfolding reverse_val_relation_set_def
using cartesian_power_car_memE by blast
obtain b' where b'_def: "b = [b']"
using ab_def cartesian_power_car_memE
by (metis (no_types, opaque_lifting) append_Cons append_Nil append_eq_append_conv min_list.cases singleton_length)
have b'_closed: "b' ∈ carrier Q⇩p"
using b'_def ab_def cartesian_power_car_memE
by (metis Qp.R1_memE' list_hd)
have b_length: "length b = 1"
by (simp add: b'_def)
have x_id: "x = b'#a"
unfolding ab_def b'_def by auto
have "(1::nat)< 2" by presburger
hence 0: "x!1 = a!0"
unfolding ab_def b'_def using a_length
by (metis b'_def b_length nth_append_length pair_id)
have 00: "2 = Suc 1"
by auto
have 1: "x!2 = a!1"
using a_length nth_Cons[of b' a "2::nat"]
unfolding x_id 00
by (meson nth_Cons_Suc)
have x_closed: "x ∈ carrier (Q⇩p⇗3⇖)"
unfolding x_id b'_def using b'_closed cartesian_power_cons[of a Q⇩p 2 b'] ab_def
unfolding reverse_val_relation_set_def mem_Collect_eq
by simp
show "x ∈ carrier (Q⇩p⇗3⇖) ∧ val (x ! 1) ≤ val (x ! 2)"
using x_closed ab_def unfolding reverse_val_relation_set_def mem_Collect_eq 0 1 by blast
qed
qed
show ?thesis unfolding 0
using cartesian_product_is_semialgebraic[of 2 reverse_val_relation_set 1 "carrier (Q⇩p⇗1⇖)"]
by (metis add_num_simps(2) car_times_semialg_is_semialg one_plus_numeral reverse_val_relation_set_semialg)
qed
subsection‹Semialgebraic Functions›
text‹
The most natural way to define a semialgebraic function $f: \mathbb{Q}_p^n \to \mathbb{Q}_p$ is a
function whose graph is a semialgebraic subset of $\mathbb{Q}_p^{n+1}$. However, the definition
given here is slightly different, and devised by Denef in \<^cite>‹"denef1986"› in order to prove
Macintyre's theorem. As Denef notes, we can use Macintyre's theorem to deduce that the given
definition perfectly aligns with the intuitive one.
›
subsubsection‹Defining Semialgebraic Functions›
text‹Apply a function f to the tuple consisting of the first n indices, leaving the remaining indices
unchanged›
definition partial_image where
"partial_image m f xs = (f (take m xs))#(drop m xs)"
definition partial_pullback where
"partial_pullback m f l S = (partial_image m f) ¯⇘m+l⇙ S "
lemma partial_pullback_memE:
assumes "as ∈ partial_pullback m f l S"
shows "as ∈ carrier (Q⇩p⇗m + l⇖)" "partial_image m f as ∈ S"
using assms apply (metis evimage_eq partial_pullback_def)
using assms unfolding partial_pullback_def
by blast
lemma partial_pullback_closed:
"partial_pullback m f l S ⊆ carrier (Q⇩p⇗m + l⇖)"
using partial_pullback_memE(1) by blast
lemma partial_pullback_memI:
assumes "as ∈ carrier (Q⇩p⇗m + k⇖)"
assumes "(f (take m as))#(drop m as) ∈ S"
shows "as ∈ partial_pullback m f k S"
using assms unfolding partial_pullback_def partial_image_def evimage_def
by blast
lemma partial_image_eq:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "bs ∈ carrier (Q⇩p⇗k⇖)"
assumes "x = as @ bs"
shows "partial_image n f x = (f as)#bs"
proof-
have 0: "(take n x) = as"
by (metis append_eq_conv_conj assms(1) assms(3) cartesian_power_car_memE)
have 1: "drop n x = bs"
by (metis "0" append_take_drop_id assms(3) same_append_eq)
show ?thesis using 0 1 unfolding partial_image_def
by blast
qed
lemma partial_pullback_memE':
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "bs ∈ carrier (Q⇩p⇗k⇖)"
assumes "x = as @ bs"
assumes "x ∈ partial_pullback n f k S"
shows "(f as)#bs ∈ S"
using partial_pullback_memE[of x n f k S] partial_image_def[of n f x]
by (metis assms(1) assms(2) assms(3) assms(4) partial_image_eq)
text‹Partial pullbacks have the same algebraic properties as pullbacks›
lemma partial_pullback_intersect:
"partial_pullback m f l (S1 ∩ S2) = (partial_pullback m f l S1) ∩ (partial_pullback m f l S2)"
unfolding partial_pullback_def
by simp
lemma partial_pullback_union:
"partial_pullback m f l (S1 ∪ S2) = (partial_pullback m f l S1) ∪ (partial_pullback m f l S2)"
unfolding partial_pullback_def
by simp
lemma cartesian_power_drop:
assumes "x ∈ carrier (Q⇩p⇗n+l⇖)"
shows "drop n x ∈ carrier (Q⇩p⇗l⇖)"
apply(rule cartesian_power_car_memI)
using assms cartesian_power_car_memE
apply (metis add_diff_cancel_left' length_drop)
using assms cartesian_power_car_memE''
by (metis order.trans set_drop_subset)
lemma partial_pullback_complement:
assumes "f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
shows "partial_pullback m f l (carrier (Q⇩p⇗Suc l⇖) - S) = carrier (Q⇩p⇗m + l⇖) - (partial_pullback m f l S) "
apply(rule equalityI)
using partial_pullback_def[of m f l "(carrier (Q⇩p⇗Suc l⇖) - S)"]
partial_pullback_def[of m f l S]
apply (smt Diff_iff evimage_Diff partial_pullback_memE(1) subsetI)
proof fix x assume A: " x ∈ carrier (Q⇩p⇗m + l⇖) - partial_pullback m f l S"
show " x ∈ partial_pullback m f l (carrier (Q⇩p⇗Suc l⇖) - S) "
apply(rule partial_pullback_memI)
using A
apply blast
proof
have 00: "Suc l = l + 1"
by auto
have 0: "drop m x ∈ carrier (Q⇩p⇗l⇖)"
by (meson A DiffD1 cartesian_power_drop)
have 1: "take m x ∈ carrier (Q⇩p⇗m⇖)"
using A by (meson DiffD1 le_add1 take_closed)
have "f (take m x) # drop m x ∈ carrier (Q⇩p⇗l+1⇖) "
using assms 0 1 00 cartesian_power_cons[of "drop m x" Q⇩p l "f (take m x)"]
by blast
thus "f (take m x) # drop m x ∈ carrier (Q⇩p⇗Suc l⇖) "
using 00 by metis
show "f (take m x) # drop m x ∉ S"
using A unfolding partial_pullback_def partial_image_def
by blast
qed
qed
lemma partial_pullback_carrier:
assumes "f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
shows "partial_pullback m f l (carrier (Q⇩p⇗Suc l⇖)) = carrier (Q⇩p⇗m + l⇖)"
apply(rule equalityI)
using partial_pullback_memE(1) apply blast
proof fix x assume A: "x ∈ carrier (Q⇩p⇗m + l⇖)"
show "x ∈ partial_pullback m f l (carrier (Q⇩p⇗Suc l⇖))"
apply(rule partial_pullback_memI)
using A cartesian_power_drop[of x m l] assms
apply blast
proof-
have "f (take m x) ∈ carrier Q⇩p"
using A assms take_closed[of m "m+l" x Q⇩p]
by (meson Pi_mem le_add1)
then show "f (take m x) # drop m x ∈ carrier (Q⇩p⇗Suc l⇖)"
using cartesian_power_drop[of x m l]
by (metis A add.commute cartesian_power_cons plus_1_eq_Suc)
qed
qed
text‹Definition 1.4 from Denef›
definition is_semialg_function where
"is_semialg_function m f = ((f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p) ∧
(∀l ≥ 0. ∀S ∈ semialg_sets (1 + l). is_semialgebraic (m + l) (partial_pullback m f l S)))"
lemma is_semialg_function_closed:
assumes "is_semialg_function m f"
shows "f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
using is_semialg_function_def assms by blast
lemma is_semialg_functionE:
assumes "is_semialg_function m f"
assumes "is_semialgebraic (1 + k) S"
shows " is_semialgebraic (m + k) (partial_pullback m f k S)"
using is_semialg_function_def assms
by (meson is_semialgebraicE le0)
lemma is_semialg_functionI:
assumes "f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
assumes "⋀k S. S ∈ semialg_sets (1 + k) ⟹ is_semialgebraic (m + k) (partial_pullback m f k S)"
shows "is_semialg_function m f"
using assms unfolding is_semialg_function_def
by blast
text‹Semialgebraicity for functions can be verified on basic semialgebraic sets ›
lemma is_semialg_functionI':
assumes "f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
assumes "⋀k S. S ∈ basic_semialgs (1 + k) ⟹ is_semialgebraic (m + k) (partial_pullback m f k S)"
shows "is_semialg_function m f"
apply(rule is_semialg_functionI)
using assms(1) apply blast
proof-
show "⋀k S. S ∈ semialg_sets (1 + k) ⟹ is_semialgebraic (m + k) (partial_pullback m f k S)"
proof- fix k S assume A: "S ∈ semialg_sets (1 + k)"
show "is_semialgebraic (m + k) (partial_pullback m f k S)"
apply(rule gen_boolean_algebra.induct[of S "carrier (Q⇩p⇗1+k⇖)" "basic_semialgs (1 + k)"])
using A unfolding semialg_sets_def
apply blast
using partial_pullback_carrier assms carrier_is_semialgebraic plus_1_eq_Suc apply presburger
apply (metis assms(1) assms(2) carrier_is_semialgebraic intersection_is_semialg partial_pullback_carrier partial_pullback_intersect plus_1_eq_Suc)
using partial_pullback_union union_is_semialgebraic apply presburger
using assms(1) complement_is_semialg partial_pullback_complement plus_1_eq_Suc by presburger
qed
qed
text‹Graphs of semialgebraic functions are semialgebraic›
abbreviation graph where
"graph ≡ fun_graph Q⇩p"
lemma graph_memE:
assumes "f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
assumes "x ∈ graph m f"
shows "f (take m x) = x!m"
"x = (take m x)@[f (take m x)]"
"take m x ∈ carrier (Q⇩p⇗m⇖)"
proof-
obtain a where a_def: "a∈carrier (Q⇩p⇗m⇖) ∧ x = a @ [f a]"
using assms
unfolding fun_graph_def
by blast
then have 0: "a = take m x"
by (metis append_eq_conv_conj cartesian_power_car_memE)
then show "f (take m x) = x!m"
by (metis a_def cartesian_power_car_memE nth_append_length)
show "x = (take m x)@[f (take m x)]"
using "0" a_def
by blast
show "take m x ∈ carrier (Q⇩p⇗m⇖)"
using "0" a_def by blast
qed
lemma graph_memI:
assumes "f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
assumes "f (take m x) = x!m"
assumes "x ∈ carrier (Q⇩p⇗m+1⇖)"
shows "x ∈ graph m f"
proof-
have 0: "take m x ∈ carrier (Q⇩p⇗m⇖)"
apply(rule take_closed[of _ "m + 1"])
apply simp
using assms(3) by blast
have "x = (take m x)@[x!m]"
by (metis ‹take m x ∈ carrier (Q⇩p⇗m⇖)› add.commute
assms(3) cartesian_power_car_memE length_append_singleton lessI
nth_equalityI nth_take plus_1_eq_Suc take_Suc_conv_app_nth)
then have "x = (take m x)@[f (take m x)]"
using assms(2)
by presburger
then show ?thesis
using assms 0
unfolding fun_graph_def
by blast
qed
lemma graph_mem_closed:
assumes "f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
assumes "x ∈ graph m f"
shows "x ∈ carrier (Q⇩p⇗m+1⇖)"
proof(rule cartesian_power_car_memI')
show "length x = m + 1"
using assms graph_memE[of f m x]
by (smt Groups.add_ac(2) cartesian_power_car_memE fun_graph_def length_append_singleton mem_Collect_eq plus_1_eq_Suc)
show "⋀i. i < m + 1 ⟹ x ! i ∈ carrier Q⇩p"
proof- fix i assume A: "i < m + 1"
then show "x ! i ∈ carrier Q⇩p"
proof(cases "i = m")
case True
then show ?thesis using graph_memE[of f m x]
by (metis PiE assms(1) assms(2))
next
case False
then show ?thesis using graph_memE[of f m x]
by (metis ‹i < m + 1› add.commute assms(1) assms(2) cartesian_power_car_memE' less_SucE nth_take plus_1_eq_Suc)
qed
qed
qed
lemma graph_closed:
assumes "f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
shows "graph m f ⊆ carrier (Q⇩p⇗m+1⇖)"
using assms graph_mem_closed
by blast
text‹The ‹m›-dimensional diagonal set is semialgebraic›
notation diagonal ("Δ ")
lemma diag_is_algebraic:
shows "is_algebraic Q⇩p (n + n) (Δ n)"
using Qp.cring_axioms diagonal_is_algebraic
by blast
lemma diag_is_semialgebraic:
shows "is_semialgebraic (n + n) (Δ n)"
using diag_is_algebraic is_algebraic_imp_is_semialg
by blast
text‹Transposition permutations›
definition transpose where
"transpose i j = (Fun.swap i j id)"
lemma transpose_permutes:
assumes "i< n"
assumes "j < n"
shows "transpose i j permutes {..<n}"
unfolding permutes_def transpose_def
proof
show "∀x. x ∉ {..<n} ⟶ Fun.swap i j id x = x"
using assms by (auto simp: Transposition.transpose_def)
show "∀y. ∃!x. Fun.swap i j id x = y"
proof fix y show "∃!x. Fun.swap i j id x = y"
using swap_id_eq[of i j y]
by (metis eq_id_iff swap_apply(1) swap_apply(2) swap_id_eq swap_self)
qed
qed
lemma transpose_alt_def:
"transpose a b x = (if x = a then b else if x = b then a else x)"
using swap_id_eq
by (simp add: transpose_def)
definition last_to_first where
"last_to_first n = (λi. if i = (n-1) then 0 else if i < n-1 then i + 1 else i)"
definition first_to_last where
"first_to_last n = fun_inv (last_to_first n)"
lemma last_to_first_permutes:
assumes "(n::nat) > 0"
shows "last_to_first n permutes {..<n}"
unfolding permutes_def
proof
show "∀x. x ∉ {..<n} ⟶ last_to_first n x = x"
proof fix x show " x ∉ {..<n} ⟶ last_to_first n x = x"
proof assume A: "x ∉ {..<n}" then have "¬ x < n"
by blast then have "x ≥ n" by linarith
then show "last_to_first n x = x"
unfolding last_to_first_def using assms
by auto
qed
qed
show "∀y. ∃!x. last_to_first n x = y"
proof fix y
show "∃!x. last_to_first n x = y"
proof(cases "y = 0")
case True
then have 0: "last_to_first n (n-1) = y"
using last_to_first_def
by (simp add: last_to_first_def)
have 1: "⋀x. last_to_first n x = y ⟹ x = n-1"
unfolding last_to_first_def using True
by (metis add_gr_0 less_numeral_extra(1) not_gr_zero)
show ?thesis
using 0 1
by blast
next
case False
then show ?thesis
proof(cases "y < n")
case True
then have 0: "last_to_first n (y-1) = y"
using False True
unfolding last_to_first_def
using add.commute by auto
have 1: "⋀x. last_to_first n x = y ⟹ x =(y-1)"
unfolding last_to_first_def
using True False
by auto
show ?thesis using 0 1 by blast
next
case F: False
then have 0: "y ≥ n"
using not_less by blast
then have 1: "last_to_first n y = y"
by (simp add: ‹∀x. x ∉ {..<n} ⟶ last_to_first n x = x›)
have 2: "⋀x. last_to_first n x = y ⟹ x =y"
using 0 unfolding last_to_first_def
using False by presburger
then show ?thesis using 1 2 by blast
qed
qed
qed
qed
definition graph_swap where
"graph_swap n f = permute_list ((first_to_last (n+1))) ` (graph n f)"
lemma last_to_first_eq:
assumes "length as = n"
shows "permute_list (last_to_first (n+1)) (a#as) = (as@[a])"
proof-
have 0: "⋀i. i < (n+1) ⟹ permute_list (last_to_first (n + 1)) (a # as) ! i = (as@[a]) ! i"
proof-
fix i assume A: "i < n+1"
show "permute_list (last_to_first (n + 1)) (a # as) ! i = (as @ [a]) ! i"
proof(cases "i = n")
case True
have 0: "(as @ [a]) ! i = a"
by (metis True assms nth_append_length)
have 1: "length (a#as) = n + 1"
by (simp add: assms)
have 2: "i < length (a # as)"
using "1" A by linarith
have 3: "last_to_first (n + 1) permutes {..<length (a # as)}"
by (metis "1" add_gr_0 last_to_first_permutes less_numeral_extra(1))
have 4: "permute_list (last_to_first (n + 1)) (a # as) ! i = (a # as) ! last_to_first (n + 1) i"
using 2 3 permute_list_nth[of "last_to_first (n + 1)" "a#as" i]
by blast
have 5: "permute_list (last_to_first (n + 1)) (a # as) ! i = (a # as) ! 0"
using 4 unfolding last_to_first_def
by (simp add: True)
have 6: "permute_list (last_to_first (n + 1)) (a # as) ! i = a"
using 5
by simp
then show ?thesis using 0 by auto
next
case False
then show ?thesis
by (smt A add.commute add.right_neutral add_diff_cancel_right' add_gr_0
add_less_cancel_left append.simps(1) append.simps(2) assms last_to_first_def
last_to_first_permutes less_SucE less_numeral_extra(1) list.size(3) list.size(4)
nth_append permute_list_nth plus_1_eq_Suc)
qed
qed
have 1: "length (a#as) = n + 1"
by (simp add: assms)
have 2: "length (permute_list (last_to_first (n+1)) (a#as)) = n + 1"
by (metis "1" length_permute_list)
have 3: "length (as@[a]) = n + 1"
by (simp add: assms)
then show ?thesis using 0 2
by (metis nth_equalityI)
qed
lemma first_to_last_eq:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "a ∈ carrier Q⇩p"
shows "permute_list (first_to_last (n+1)) (as@[a]) = (a#as)"
proof-
have "length as = n"
using assms(1) cartesian_power_car_memE by blast
then show ?thesis
using last_to_first_eq last_to_first_permutes[of n]
permute_list_compose_inv(2)[of "(last_to_first (n + 1))" n "a # as"]
unfolding first_to_last_def
by (metis add_gr_0 assms(1) assms(2) cartesian_power_append last_to_first_permutes
less_one permute_list_closed' permute_list_compose_inv(2))
qed
lemma graph_swapI:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "f ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
shows "(f as)#as ∈ graph_swap n f"
proof-
have 0: "as@[f as] ∈ graph n f"
using assms using graph_memI[of f n] fun_graph_def
by blast
have 1: "f as ∈ carrier Q⇩p"
using assms
by blast
then show ?thesis
using assms 0 first_to_last_eq[of as "n" "f as"]
unfolding graph_swap_def
by (metis image_eqI)
qed
lemma graph_swapE:
assumes "x ∈ graph_swap n f"
assumes "f ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
shows "hd x = f (tl x)"
proof-
obtain y where y_def: "y ∈ graph n f ∧ x = permute_list (first_to_last (n+1)) y"
using assms graph_swap_def
by (smt image_def mem_Collect_eq)
then have "take n y ∈ carrier (Q⇩p⇗n⇖)"
using assms(2) graph_memE(3)
by blast
then show "hd x = f (tl x)"
by (metis (no_types, lifting) add.commute assms(2) cartesian_power_car_memE'
first_to_last_eq graph_memE(1) graph_memE(2) graph_mem_closed lessI list.sel(1)
list.sel(3) plus_1_eq_Suc y_def)
qed
text‹Semialgebraic functions have semialgebraic graphs›
lemma graph_as_partial_pullback:
assumes "f ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
shows "partial_pullback n f 1 (Δ 1) = graph n f"
proof
show "partial_pullback n f 1 (Δ 1) ⊆ graph n f"
proof fix x assume A: "x ∈ partial_pullback n f 1 (Δ 1)"
then have 0: "f (take n x) # drop n x ∈ Δ 1"
by (metis local.partial_image_def partial_pullback_memE(2))
then have 1: "length (f (take n x) # drop n x) = 2"
using diagonal_def
by (metis (no_types, lifting) cartesian_power_car_memE mem_Collect_eq one_add_one)
then obtain b where b_def: "[b] = drop n x"
by (metis list.inject pair_id)
then have "[f (take n x), b] ∈ Δ 1"
using "0"
by presburger
then have "b = f (take n x)"
using 0
by (smt One_nat_def Qp.cring_axioms diagonal_def drop0 drop_Suc_Cons list.inject mem_Collect_eq take_Suc_Cons)
then have "x = (take n x)@[f (take n x)]"
by (metis append_take_drop_id b_def)
then show "x ∈ graph n f" using graph_memI[of f n x]
by (metis (no_types, lifting) A ‹b = f (take n x)›
assms b_def nth_via_drop partial_pullback_memE(1))
qed
show "graph n f ⊆ partial_pullback n f 1 (Δ 1)"
proof fix x
assume A: "x ∈ graph n f "
then have 0: "x ∈ carrier (Q⇩p⇗n+1⇖)"
using assms graph_mem_closed by blast
have "x = (take n x) @ [f (take n x)]"
using A graph_memE(2)[of f n x] assms
by blast
then have "partial_image n f x = [f (take n x), f (take n x)]"
by (metis append_take_drop_id local.partial_image_def same_append_eq)
then have "partial_image n f x ∈ Δ 1"
using assms 0 diagonal_def[of 1] Qp.cring_axioms diagonalI[of "partial_image n f x"]
by (metis (no_types, lifting) A append_Cons append_eq_conv_conj
cartesian_power_car_memE cartesian_power_car_memE' graph_memE(1)
less_add_one self_append_conv2 Qp.to_R1_closed)
then show "x ∈ partial_pullback n f 1 (Δ 1)"
unfolding partial_pullback_def using 0
by blast
qed
qed
lemma semialg_graph:
assumes "is_semialg_function n f"
shows "is_semialgebraic (n + 1) (graph n f)"
using assms graph_as_partial_pullback[of f n] unfolding is_semialg_function_def
by (metis diag_is_semialgebraic is_semialgebraicE less_imp_le_nat less_numeral_extra(1))
text‹Functions induced by polynomials are semialgebraic›
definition var_list_segment where
"var_list_segment i j = map (λi. pvar Q⇩p i) [i..< j]"
lemma var_list_segment_length:
assumes "i ≤ j"
shows "length (var_list_segment i j) = j - i"
using assms var_list_segment_def
by fastforce
lemma var_list_segment_entry:
assumes "k < j - i"
assumes "i ≤ j"
shows "var_list_segment i j ! k = pvar Q⇩p (i + k)"
using assms var_list_segment_length
unfolding var_list_segment_def
using nth_map_upt by blast
lemma var_list_segment_is_poly_tuple:
assumes "i ≤j"
assumes "j ≤ n"
shows "is_poly_tuple n (var_list_segment i j)"
apply(rule Qp_is_poly_tupleI)
using assms var_list_segment_entry var_list_segment_length Qp.cring_axioms pvar_closed[of _ n]
by (metis (no_types, opaque_lifting) add.commute add_lessD1 diff_add_inverse le_Suc_ex
less_diff_conv)
lemma map_by_var_list_segment:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "j ≤ n"
assumes "i ≤ j"
shows "poly_map n (var_list_segment i j) as = list_segment i j as"
apply(rule nth_equalityI )
unfolding poly_map_def var_list_segment_def list_segment_def restrict_def poly_tuple_eval_def
apply (metis (full_types) assms(1) length_map)
using assms eval_pvar[of _ n as] Qp.cring_axioms length_map add.commute
length_upt less_diff_conv less_imp_add_positive nth_map nth_upt
trans_less_add2
by (smt le_add_diff_inverse2)
lemma map_by_var_list_segment_to_length:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "i ≤ n"
shows "poly_map n (var_list_segment i n) as = drop i as"
apply(rule nth_equalityI )
apply (metis Qp_poly_mapE' assms(1) assms(2) cartesian_power_car_memE length_drop var_list_segment_length)
using assms map_by_var_list_segment[of as n n i] list_segment_drop[of i as] cartesian_power_car_memE[of as Q⇩p n]
map_nth[of ] nth_drop nth_map[of _ "[i..<n]" "(pvar Q⇩p)" ] nth_map[of _ "map (pvar Q⇩p) [i..<n]" "eval_at_point Q⇩p as"]
unfolding poly_map_def poly_tuple_eval_def var_list_segment_def restrict_def list_segment_def
by (smt add.commute add_eq_self_zero drop_map drop_upt le_Suc_ex le_refl)
lemma map_tail_by_var_list_segment:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "a ∈ carrier Q⇩p"
assumes "i < n"
shows "poly_map (n+1) (var_list_segment 1 (n+1)) (a#as) = as"
proof-
have 0: "(a#as) ∈ carrier (Q⇩p⇗n+1⇖)"
using assms
by (meson cartesian_power_cons)
have 1: "length as = n"
using assms cartesian_power_car_memE
by blast
have 2: "drop 1 (a # as) = as"
using 0 1 using list_segment_drop[of 1 "a#as"]
by (metis One_nat_def drop0 drop_Suc_Cons )
have "1 ≤n + 1" by auto
then show ?thesis
using 0 2 map_by_var_list_segment_to_length[of "a#as" "n+1" 1]
by presburger
qed
lemma Qp_poly_tuple_Cons:
assumes "is_poly_tuple n fs"
assumes "f ∈ carrier (Q⇩p[𝒳⇘k⇙])"
assumes "k ≤n"
shows "is_poly_tuple n (f#fs)"
using is_poly_tuple_Cons[of n fs f] poly_ring_car_mono[of k n] assms
by blast
lemma poly_map_Cons:
assumes "is_poly_tuple n fs"
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
shows "poly_map n (f#fs) a = (Qp_ev f a)#poly_map n fs a"
using assms poly_map_cons by blast
lemma poly_map_append':
assumes "is_poly_tuple n fs"
assumes "is_poly_tuple n gs"
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
shows "poly_map n (fs@gs) a = poly_map n fs a @ poly_map n gs a"
using assms(3) poly_map_append by blast
lemma partial_pullback_by_poly:
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
assumes "S ⊆ carrier (Q⇩p⇗1+k⇖)"
shows "partial_pullback n (Qp_ev f) k S = poly_tuple_pullback (n+k) S (f# (var_list_segment n (n+k)))"
proof
show "partial_pullback n (Qp_ev f) k S ⊆ poly_tuple_pullback (n+k) S (f # var_list_segment n (n + k))"
proof fix x assume A: " x ∈ partial_pullback n (Qp_ev f) k S"
then obtain as bs where as_bs_def: "as ∈ carrier (Q⇩p⇗n⇖) ∧ bs ∈ carrier (Q⇩p⇗k⇖) ∧ x = as @ bs"
using partial_pullback_memE(1)[of x n "(Qp_ev f)" k S] cartesian_power_decomp
by metis
then have 0: "(Qp_ev f as#bs) ∈ S"
using A partial_pullback_memE'
by blast
have 1: "Qp_ev f as = Qp_ev f (as@bs)"
using assms as_bs_def poly_eval_cartesian_prod[of as n bs k f]
Qp.cring_axioms [of ]
by metis
then have 2: "((Qp_ev f x) #bs) ∈ S"
using "0" as_bs_def
by presburger
have 3: "bs = list_segment n (n+k) x"
using as_bs_def list_segment_drop[of n x]
by (metis (no_types, lifting) add_cancel_right_right add_diff_cancel_left'
append_eq_append_conv append_take_drop_id cartesian_power_car_memE
length_0_conv length_append length_map length_upt linorder_neqE_nat
list_segment_def not_add_less1)
have 4: "is_poly_tuple (n+k) (f # var_list_segment n (n + k))"
using Qp_poly_tuple_Cons
var_list_segment_is_poly_tuple
by (metis add.commute assms(1) dual_order.refl le_add2)
have 5: "f ∈ carrier (Q⇩p [𝒳⇘n + k⇙])"
using poly_ring_car_mono[of n "n + k"] assms le_add1 by blast
have 6: "is_poly_tuple (n + k) (var_list_segment n (n + k))"
by (simp add: var_list_segment_is_poly_tuple)
have 7: "x ∈ carrier (Q⇩p⇗n + k⇖)"
using as_bs_def cartesian_power_concat(1) by blast
hence 8: "poly_map (n+k) (f # var_list_segment n (n + k)) x = (Qp_ev f x)#poly_map (n+k) (var_list_segment n (n + k)) x"
using 5 6 7 A poly_map_Cons[of "n + k" "var_list_segment n (n + k)" f x] 4
unfolding partial_pullback_def evimage_def
by blast
hence 6: "poly_map (n+k) (f # var_list_segment n (n + k)) x = (Qp_ev f x)#bs"
using 3 "7" le_add1 le_refl map_by_var_list_segment by presburger
show " x ∈ poly_tuple_pullback (n+k) S (f # var_list_segment n (n + k))"
unfolding poly_tuple_pullback_def using 6
by (metis "2" "7" IntI poly_map_apply vimage_eq)
qed
show "poly_tuple_pullback (n + k) S (f # var_list_segment n (n + k)) ⊆ partial_pullback n (Qp_ev f) k S"
proof fix x
assume A: "x ∈ poly_tuple_pullback (n + k) S (f # var_list_segment n (n + k))"
have 0: "is_poly_tuple (n+k) (f # var_list_segment n (n + k))"
using Qp_poly_tuple_Cons assms(1) le_add1 var_list_segment_is_poly_tuple
by blast
have 1: "x ∈ carrier (Q⇩p⇗n+k⇖)"
using A unfolding poly_tuple_pullback_def
by blast
have 2: "poly_map (n+k) (f # var_list_segment n (n + k)) x ∈ S"
using 1 assms A unfolding poly_map_def poly_tuple_pullback_def restrict_def
by (metis (no_types, opaque_lifting) Int_commute add.commute evimage_def evimage_eq)
have 3: "poly_map (n+k) (f # var_list_segment n (n + k)) x = (Qp_ev f x)#(drop n x)"
using poly_map_Cons[of "n + k" "var_list_segment n (n + k)" f x] 1 assms(1) map_by_var_list_segment_to_length
le_add1 poly_map_cons by presburger
have 4: "poly_map (n+k) (f # var_list_segment n (n + k)) x = (Qp_ev f (take n x))#(drop n x)"
using assms 1 3 eval_at_points_higher_pow[of f n "n + k" "x"] le_add1
by (metis nat_le_iff_add)
show "x ∈ partial_pullback n (Qp_ev f) k S"
apply(rule partial_pullback_memI)
using 1 apply blast
using 2 3 4 by metis
qed
qed
lemma poly_is_semialg:
assumes "f ∈ carrier (Q⇩p[𝒳⇘n⇙])"
shows "is_semialg_function n (Qp_ev f)"
proof(rule is_semialg_functionI)
show "Qp_ev f ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
using assms
by (meson Pi_I eval_at_point_closed)
show "⋀k S. S ∈ semialg_sets (1 + k) ⟹ is_semialgebraic (n + k) (partial_pullback n (Qp_ev f) k S)"
proof- fix k::nat fix S
assume A: "S ∈ semialg_sets (1 + k)"
have 0: "is_poly_tuple (n + k) (f # var_list_segment n (n + k))"
by (metis add.commute assms le_add2 order_refl Qp_poly_tuple_Cons
var_list_segment_is_poly_tuple)
have 1: "length (f # var_list_segment n (n + k)) = k + 1"
by (metis add.commute add_diff_cancel_left' le_add1 length_Cons
plus_1_eq_Suc var_list_segment_length)
have 2: "partial_pullback n (Qp_ev f) k S = poly_tuple_pullback (n + k) S (f # var_list_segment n (n + k))"
using A assms partial_pullback_by_poly[of f n S k]
unfolding semialg_sets_def
using gen_boolean_algebra_subset
by blast
then show "is_semialgebraic (n + k) (partial_pullback n (Qp_ev f) k S)"
using add.commute[of 1 k] 0 1 assms(1)
pullback_is_semialg[of "n+k" "(f # var_list_segment n (n + k))" "k+1" S]
by (metis A is_semialgebraicI is_semialgebraic_closed poly_tuple_pullback_eq_poly_map_vimage)
qed
qed
text‹Families of polynomials defined by semialgebraic coefficient functions›
lemma semialg_function_on_carrier:
assumes "is_semialg_function n f"
assumes "restrict f (carrier (Q⇩p⇗n⇖)) = restrict g (carrier (Q⇩p⇗n⇖))"
shows "is_semialg_function n g"
proof(rule is_semialg_functionI)
have 0: "f ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
using assms(1) is_semialg_function_closed
by blast
show "g ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
proof fix x assume A: "x ∈ carrier (Q⇩p⇗n⇖)" then show " g x ∈ carrier Q⇩p"
using assms(2) 0
by (metis (no_types, lifting) PiE restrict_Pi_cancel)
qed
show "⋀k S. S ∈ semialg_sets (1 + k) ⟹ is_semialgebraic (n + k) (partial_pullback n g k S)"
proof- fix k S
assume A: "S ∈ semialg_sets (1 + k)"
have 1: "is_semialgebraic (n + k) (partial_pullback n f k S)"
using A assms(1) is_semialg_functionE is_semialgebraicI
by blast
have 2: "(partial_pullback n f k S) = (partial_pullback n g k S)"
unfolding partial_pullback_def partial_image_def evimage_def
proof
show "(λxs. f (take n xs) # drop n xs) -` S ∩ carrier (Q⇩p⇗n+k⇖) ⊆ (λxs. g (take n xs) # drop n xs) -` S ∩ carrier (Q⇩p⇗n+k⇖)"
proof fix x assume "x ∈ (λxs. f (take n xs) # drop n xs) -` S ∩ carrier (Q⇩p⇗n+k⇖) "
have "(take n x) ∈ carrier (Q⇩p⇗n⇖)"
using assms
by (meson ‹x ∈ (λxs. f (take n xs) # drop n xs) -` S ∩ carrier (Q⇩p⇗n+k⇖)›
inf_le2 le_add1 subset_iff take_closed)
then have "f (take n x) = g (take n x)"
using assms unfolding restrict_def
by meson
then show " x ∈ (λxs. g (take n xs) # drop n xs) -` S ∩ carrier (Q⇩p⇗n+k⇖)"
using assms ‹x ∈ (λxs. f (take n xs) # drop n xs) -` S ∩ carrier (Q⇩p⇗n+k⇖)›
by blast
qed
show "(λxs. g (take n xs) # drop n xs) -` S ∩ carrier (Q⇩p⇗n+k⇖) ⊆ (λxs. f (take n xs) # drop n xs) -` S ∩ carrier (Q⇩p⇗n+k⇖)"
proof fix x assume A: "x ∈ (λxs. g (take n xs) # drop n xs) -` S ∩ carrier (Q⇩p⇗n+k⇖)"
have "(take n x) ∈ carrier (Q⇩p⇗n⇖)"
using assms
by (meson A inf_le2 le_add1 subset_iff take_closed)
then have "f (take n x) = g (take n x)"
using assms unfolding restrict_def
by meson
then show "x ∈ (λxs. f (take n xs) # drop n xs) -` S ∩ carrier (Q⇩p⇗n+k⇖)"
using A by blast
qed
qed
then show "is_semialgebraic (n + k) (partial_pullback n g k S)"
using 1 by auto
qed
qed
lemma semialg_function_on_carrier':
assumes "is_semialg_function n f"
assumes "⋀a. a ∈ carrier (Q⇩p⇗n⇖) ⟹ f a = g a"
shows "is_semialg_function n g"
using assms semialg_function_on_carrier unfolding restrict_def
by (meson restrict_ext semialg_function_on_carrier)
lemma constant_function_is_semialg:
assumes "n > 0"
assumes "x ∈ carrier Q⇩p"
assumes "⋀ a. a ∈ carrier (Q⇩p⇗n⇖) ⟹ f a = x"
shows "is_semialg_function n f"
proof(rule semialg_function_on_carrier[of _ "Qp_ev (Qp_to_IP x)"])
show "is_semialg_function n (Qp_ev (Qp_to_IP x))"
using assms poly_is_semialg[of "(Qp_to_IP x)"] Qp_to_IP_car
by blast
have 0: "⋀ a. a ∈ carrier (Q⇩p⇗n⇖) ⟹ f a = Qp_ev (Qp_to_IP x) a"
using eval_at_point_const assms
by blast
then show "restrict (Qp_ev (Qp_to_IP x)) (carrier (Q⇩p⇗n⇖)) = restrict f (carrier (Q⇩p⇗n⇖))"
by (metis (no_types, lifting) restrict_ext)
qed
lemma cartesian_product_singleton_factor_projection_is_semialg:
assumes "A ⊆ carrier (Q⇩p⇗m⇖)"
assumes "b ∈ carrier (Q⇩p⇗n⇖)"
assumes "is_semialgebraic (m+n) (cartesian_product A {b})"
shows "is_semialgebraic m A"
proof-
obtain f where f_def: "f = map (pvar Q⇩p) [0..<m]"
by blast
have 0: "is_poly_tuple m f"
using assms var_list_segment_is_poly_tuple[of 0 m m]
unfolding var_list_segment_def f_def by blast
have 4: "length f = m"
unfolding f_def using length_map[of "pvar Q⇩p" "[0..<m]"] by auto
obtain g where g_def: "(g::(nat multiset ⇒ ((nat ⇒ int) × (nat ⇒ int)) set) list) = map (λi::nat. Qp.indexed_const (b ! i)) [(0::nat)..<n]"
by blast
have 1: "is_poly_tuple m g"
proof-
have 0: "set [0::nat..< n] = {..<n}"
using atLeast_upt by blast
then have "⋀i. i ∈ set [0::nat..< n] ⟹ b!i ∈ carrier Q⇩p"
using assms(2) cartesian_power_car_memE'[of b Q⇩p n] by blast
hence 1: "⋀i. i ∈ set [0::nat..< n] ⟹ Qp.indexed_const (b ! i) ∈ carrier (Q⇩p[𝒳⇘m⇙])"
using assms Qp_to_IP_car by blast
show ?thesis
unfolding is_poly_tuple_def g_def
apply(rule subsetI)
using set_map[of "λi. Qp.indexed_const (b ! i)" "[0..<n]"] 1 unfolding 0
by (smt image_iff)
qed
have 2: "is_poly_tuple m (f@g)"
using 0 1 Qp_is_poly_tuple_append assms(3) by blast
have 3: "⋀x. x ∈ carrier (Q⇩p⇗m⇖) ⟹ poly_tuple_eval (f@g) x = x@b"
proof- fix x assume A: "x ∈ carrier (Q⇩p⇗m⇖)"
have 30: "poly_tuple_eval f x = x"
proof-
have 300: "length (poly_tuple_eval f x) = length x"
unfolding poly_tuple_eval_def using cartesian_power_car_memE
by (metis "4" A length_map)
have "⋀i. i < length x ⟹ poly_tuple_eval f x ! i = x ! i"
unfolding f_def poly_tuple_eval_def using nth_map
by (metis "4" A add_cancel_right_left cartesian_power_car_memE eval_pvar f_def length_map nth_upt)
thus ?thesis using 300
by (metis nth_equalityI)
qed
have 31: "poly_tuple_eval g x = b"
proof-
have 310: "length (poly_tuple_eval g x) = length b"
unfolding poly_tuple_eval_def g_def using cartesian_power_car_memE
by (metis assms(2) length_map map_nth)
have 311: "length b = n" using assms cartesian_power_car_memE by blast
hence "⋀i. i < n ⟹ poly_tuple_eval g x ! i = b ! i" proof- fix i assume "i < n"
thus "poly_tuple_eval g x ! i = b ! i"
unfolding g_def poly_tuple_eval_def using eval_at_point_const[of "b!i" x m] 310 nth_map
by (metis "311" A assms(2) cartesian_power_car_memE' length_map map_nth)
qed
thus ?thesis using 311 310 nth_equalityI
by (metis list_eq_iff_nth_eq)
qed
have 32: "poly_tuple_eval (f @ g) x = poly_map m (f@g) x"
unfolding poly_map_def restrict_def using A
by (simp add: A)
have 33: "poly_tuple_eval f x = poly_map m f x"
unfolding poly_map_def restrict_def using A
by (simp add: A)
have 34: "poly_tuple_eval g x = poly_map m g x"
unfolding poly_map_def restrict_def using A
by (simp add: A)
show "poly_tuple_eval (f @ g) x = x @ b"
using assms 1 2 30 31 poly_map_append[of x m f g] A unfolding 32 33 34
by (simp add: A ‹b ∈ carrier (Q⇩p⇗n⇖)›)
qed
have 4: "A = (poly_tuple_eval (f@g) ¯⇘m⇙ (cartesian_product A {b}))"
proof
show "A ⊆ poly_tuple_eval (f @ g) ¯⇘m⇙ cartesian_product A {b}"
proof(rule subsetI) fix x assume A: "x ∈ A"
then have 0: "poly_tuple_eval (f@g) x = x@b"
using 3 assms by blast
then show " x ∈ poly_tuple_eval (f @ g) ¯⇘m⇙ cartesian_product A {b}"
using A cartesian_product_memE
by (smt Un_upper1 assms(1) assms(2) cartesian_product_memI' evimageI2 in_mono insert_is_Un mk_disjoint_insert singletonI)
qed
show "poly_tuple_eval (f @ g) ¯⇘m⇙ cartesian_product A {b} ⊆ A"
proof(rule subsetI) fix x assume A: "x ∈ (poly_tuple_eval (f @ g) ¯⇘m⇙ cartesian_product A {b})"
then have "poly_tuple_eval (f @ g) x ∈ cartesian_product A {b}"
by blast
then have "x@b ∈ cartesian_product A {b}"
using A 3 by (metis evimage_eq)
then show "x ∈ A"
using A
by (metis append_same_eq cartesian_product_memE' singletonD)
qed
qed
have 5: "A = poly_map m (f@g) ¯⇘m⇙ (cartesian_product A {b})"
proof
show "A ⊆ poly_map m (f @ g) ¯⇘m⇙ cartesian_product A {b}"
unfolding poly_map_def evimage_def restrict_def using 4
by (smt IntI assms(1) evimageD in_mono subsetI vimageI)
show "poly_map m (f @ g) ¯⇘m⇙ cartesian_product A {b} ⊆ A"
unfolding poly_map_def evimage_def restrict_def using 4
by (smt Int_iff evimageI2 subsetI vimage_eq)
qed
have 6: "length (f @ g) = m + n"
unfolding f_def g_def by (metis index_list_length length_append length_map map_nth)
show ?thesis using 2 5 6 assms pullback_is_semialg[of m "f@g" "m+n" "cartesian_product A {b}"]
by (metis is_semialgebraicE zero_eq_add_iff_both_eq_0)
qed
lemma cartesian_product_factor_projection_is_semialg:
assumes "A ⊆ carrier (Q⇩p⇗m⇖)"
assumes "B ⊆ carrier (Q⇩p⇗n⇖)"
assumes "B ≠ {}"
assumes "is_semialgebraic (m+n) (cartesian_product A B)"
shows "is_semialgebraic m A"
proof-
obtain b where b_def: "b ∈ B"
using assms by blast
have "is_semialgebraic n {b}"
using assms b_def is_algebraic_imp_is_semialg singleton_is_algebraic by blast
hence 0: "is_semialgebraic (m+n) (cartesian_product (carrier (Q⇩p⇗m⇖)) {b})"
using car_times_semialg_is_semialg assms(4) by blast
have "(cartesian_product (carrier (Q⇩p⇗m⇖)) {b}) ∩ (cartesian_product A B)
= (cartesian_product A {b})"
using assms b_def cartesian_product_intersection[of "carrier (Q⇩p⇗m⇖)" Q⇩p m "{b}" n A B]
by (metis (no_types, lifting) Int_absorb1 Int_empty_left Int_insert_left_if1 ‹is_semialgebraic n {b}› is_semialgebraic_closed set_eq_subset)
hence "is_semialgebraic (m+n) (cartesian_product A {b})"
using assms 0 intersection_is_semialg by metis
thus ?thesis using assms cartesian_product_singleton_factor_projection_is_semialg
by (meson ‹is_semialgebraic n {b}› insert_subset is_semialgebraic_closed)
qed
lemma partial_pullback_cartesian_product:
assumes "ξ ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
assumes "S ⊆ carrier (Q⇩p⇗1⇖)"
shows "cartesian_product (partial_pullback m ξ 0 S) (carrier (Q⇩p⇗1⇖)) = partial_pullback m ξ 1 (cartesian_product S (carrier (Q⇩p⇗1⇖))) "
proof
show "cartesian_product (partial_pullback m ξ 0 S) (carrier (Q⇩p⇗1⇖)) ⊆ partial_pullback m ξ 1 (cartesian_product S (carrier (Q⇩p⇗1⇖)))"
proof fix x assume A: "x ∈ cartesian_product (partial_pullback m ξ 0 S) (carrier (Q⇩p⇗1⇖))"
then obtain y t where yt_def: "x = y@[t] ∧ y ∈ partial_pullback m ξ 0 S ∧ t ∈ carrier Q⇩p"
by (metis cartesian_product_memE' Qp.to_R1_to_R Qp.to_R_pow_closed)
then have "[ξ y] ∈ S"
using partial_pullback_memE unfolding partial_image_def
by (metis (no_types, lifting) add.right_neutral append.right_neutral cartesian_power_drop le_zero_eq take_closed partial_pullback_memE' take_eq_Nil)
then have 0: "[ξ y]@[t] ∈ cartesian_product S (carrier (Q⇩p⇗1⇖))"
using cartesian_product_memI' yt_def
by (metis assms(2) carrier_is_semialgebraic is_semialgebraic_closed Qp.to_R1_closed)
have 1: " x ∈ carrier (Q⇩p⇗m + 1⇖)"
using A yt_def
by (metis add.right_neutral cartesian_power_append partial_pullback_memE(1))
show "x ∈ partial_pullback m ξ 1 (cartesian_product S (carrier (Q⇩p⇗1⇖)))"
apply(rule partial_pullback_memI)
using "1" apply blast
using yt_def 0
by (smt Cons_eq_appendI add.right_neutral local.partial_image_def partial_image_eq partial_pullback_memE(1) self_append_conv2 Qp.to_R1_closed)
qed
show "partial_pullback m ξ 1 (cartesian_product S (carrier (Q⇩p⇗1⇖))) ⊆ cartesian_product (partial_pullback m ξ 0 S) (carrier (Q⇩p⇗1⇖))"
proof(rule subsetI) fix x assume A: "x ∈ partial_pullback m ξ 1 (cartesian_product S (carrier (Q⇩p⇗1⇖)))"
then have 0: "x ∈ carrier (Q⇩p⇗m + 1⇖)"
using assms partial_pullback_memE[of x m ξ 1 "cartesian_product S (carrier (Q⇩p⇗1⇖))"]
by blast
have 1: "ξ (take m x) # drop m x ∈ cartesian_product S (carrier (Q⇩p⇗1⇖))"
using A assms partial_pullback_memE[of x m ξ 1 "cartesian_product S (carrier (Q⇩p⇗1⇖))"]
unfolding partial_image_def
by blast
have 2: "ξ (take m (take m x)) # drop m (take m x) = [ξ (take m x)]"
using 0 1
by (metis add.commute add.right_neutral append.right_neutral append_take_drop_id take0 take_drop)
show "x ∈ cartesian_product (partial_pullback m ξ 0 S) (carrier (Q⇩p⇗1⇖))"
apply(rule cartesian_product_memI[of _ Q⇩p m _ 1])
apply (metis add_cancel_right_right partial_pullback_closed)
apply blast
apply(rule partial_pullback_memI[of _ m 0 ξ S]) using 0
apply (metis Nat.add_0_right le_iff_add take_closed)
using 2 apply (metis (no_types, lifting) "1" add.commute add.right_neutral assms(2) cartesian_product_memE(1) list.inject plus_1_eq_Suc take_Suc_Cons take_drop)
using 0 cartesian_power_drop by blast
qed
qed
lemma cartesian_product_swap:
assumes "A ⊆ carrier (Q⇩p⇗n⇖)"
assumes "B ⊆ carrier (Q⇩p⇗m⇖)"
assumes "is_semialgebraic (m+n) (cartesian_product A B)"
shows "is_semialgebraic (m+n) (cartesian_product B A)"
proof-
obtain f where f_def: "f = (λi. (if i < m then n + i else (if i < m+n then i - m else i)))"
by blast
have 0: "⋀i. i ∈ {..<m} ⟶ f i ∈ {n..<m+n}"
unfolding f_def by simp
have 1: "⋀i. i ∈ {m..<m+n} ⟶ f i ∈ {..<n}"
unfolding f_def by (simp add: less_diff_conv2)
have 2: "⋀i. i ∉ {..<m + n} ⟶ f i ∉ {..<m + n}"
unfolding f_def by simp
have f_permutes: "f permutes {..<m+n}"
unfolding permutes_def
proof
show "∀x. x ∉ {..<m + n} ⟶ f x = x"
unfolding f_def by simp
show "∀y. ∃!x. f x = y"
proof fix y
show "∃!x. f x = y"
proof(cases "y < n")
case True
have T0: "f (y+m) = y"
unfolding f_def using True
by simp
have "⋀i. f i = y ⟹ i ∈ {m..<m+n}"
using 0 1 2 True f_def nat_neq_iff by fastforce
hence "⋀i. f i = y ⟹ i = y+m"
using T0 unfolding f_def by auto
thus ?thesis using T0 by blast
next
case False
show ?thesis
proof(cases "y ∈ {n..<m+n}")
case True
have T0: "f (y-n) = y"
using True unfolding f_def by auto
have "⋀i. f i = y ⟹ i ∈ {..<m}"
using 0 1 2 True f_def
by (metis False atLeastLessThan_iff diff_add_inverse2 diff_diff_cancel diff_le_self
lessThan_iff less_imp_diff_less linordered_semidom_class.add_diff_inverse nat_neq_iff not_add_less1)
hence "⋀i. f i = y ⟹ i = y- n"
using f_def by force
then show ?thesis using T0 by blast
next
case F: False
then show ?thesis using 0 1 2 unfolding f_def
using False add_diff_inverse_nat lessThan_iff by auto
qed
qed
qed
qed
have "permute_list f ` (cartesian_product A B) = (cartesian_product B A)"
proof
show "permute_list f ` cartesian_product A B ⊆ cartesian_product B A"
proof fix x assume A: " x ∈ permute_list f ` cartesian_product A B"
then obtain a b where ab_def: "a ∈ A ∧b ∈ B ∧ x = permute_list f (a@b)"
by (metis (mono_tags, lifting) cartesian_product_memE' image_iff)
have 0: "x = permute_list f (a@b)"
using ab_def by blast
have 1: "length a = n"
using ab_def assms cartesian_power_car_memE[of a Q⇩p n] by blast
have 2: "length b = m"
using ab_def assms cartesian_power_car_memE[of b Q⇩p m] by blast
have 3: "length x = m + n"
using 1 2 0 f_permutes by simp
have 4: "⋀i. i < m ⟹ x ! i = (a@b) ! (f i)"
unfolding 0 using permute_list_nth
by (metis "0" "3" f_permutes length_permute_list trans_less_add1)
hence 5: "⋀i. i < m ⟹ x ! i = b!i"
unfolding f_def using 1 2
by (metis "4" f_def nth_append_length_plus)
have 6: "⋀i. i ∈ {m..<m+n} ⟹ x ! i = (a@b) ! (i - m)"
unfolding 0 using f_def permute_list_nth f_permutes
by (metis (no_types, lifting) "0" "3" atLeastLessThan_iff length_permute_list not_add_less2
ordered_cancel_comm_monoid_diff_class.diff_add)
have 7: "x = b@a"
proof(rule nth_equalityI)
show "length x = length (b @ a)"
using 1 2 3 by simp
show "⋀i. i < length x ⟹ x ! i = (b @ a) ! i"
unfolding 3 using 1 2 4 5
by (smt "0" add.commute add_diff_inverse_nat f_def f_permutes length_append nat_add_left_cancel_less nth_append permute_list_nth)
qed
show "x ∈ cartesian_product B A" unfolding 7 using ab_def unfolding cartesian_product_def by blast
qed
show "cartesian_product B A ⊆ permute_list f ` cartesian_product A B"
proof fix y assume A: "y ∈ cartesian_product B A"
then obtain b a where ab_def: "b ∈ B ∧ a ∈ A ∧ y = b@a"
using cartesian_product_memE' by blast
obtain x where 0: "x = permute_list f (a@b)"
by blast
have 1: "length a = n"
using ab_def assms cartesian_power_car_memE[of a Q⇩p n] by blast
have 2: "length b = m"
using ab_def assms cartesian_power_car_memE[of b Q⇩p m] by blast
have 3: "length x = m + n"
using 1 2 0 f_permutes by simp
have 4: "⋀i. i < m ⟹ x ! i = (a@b) ! (f i)"
unfolding 0 using permute_list_nth
by (metis "0" "3" f_permutes length_permute_list trans_less_add1)
hence 5: "⋀i. i < m ⟹ x ! i = b!i"
unfolding f_def using 1 2
by (metis "4" f_def nth_append_length_plus)
have 6: "⋀i. i ∈ {m..<m+n} ⟹ x ! i = (a@b) ! (i - m)"
unfolding 0 using f_def permute_list_nth f_permutes
by (metis (no_types, lifting) "0" "3" atLeastLessThan_iff length_permute_list not_add_less2
ordered_cancel_comm_monoid_diff_class.diff_add)
have 7: "x = b@a"
proof(rule nth_equalityI)
show "length x = length (b @ a)"
using 1 2 3 by simp
show "⋀i. i < length x ⟹ x ! i = (b @ a) ! i"
unfolding 3 using 1 2 4 5
by (smt "0" add.commute add_diff_inverse_nat f_def f_permutes length_append nat_add_left_cancel_less nth_append permute_list_nth)
qed
show "y ∈ permute_list f ` cartesian_product A B"
using ab_def 7 cartesian_product_memI'[of _ Q⇩p] unfolding 0
by (metis assms(1) assms(2) image_eqI)
qed
qed
thus ?thesis using assms f_permutes permutation_is_semialgebraic
by metis
qed
lemma Qp_zero_subset_is_semialg:
assumes "S ⊆ carrier (Q⇩p⇗0⇖)"
shows "is_semialgebraic 0 S"
proof(cases "S = {}")
case True
then show ?thesis
by (simp add: empty_is_semialgebraic)
next
case False
then have "S = carrier (Q⇩p⇗0⇖)"
using assms unfolding Qp_zero_carrier by blast
then show ?thesis
by (simp add: carrier_is_semialgebraic)
qed
lemma cartesian_product_empty_list:
"cartesian_product A {[]} = A"
"cartesian_product {[]} A = A"
proof
show "cartesian_product A {[]} ⊆ A"
apply(rule subsetI)
unfolding cartesian_product_def
by (smt append_Nil2 empty_iff insert_iff mem_Collect_eq)
show "A ⊆ cartesian_product A {[]}"
apply(rule subsetI)
unfolding cartesian_product_def
by (smt append_Nil2 empty_iff insert_iff mem_Collect_eq)
show "cartesian_product {[]} A = A"
proof
show "cartesian_product {[]} A ⊆ A"
apply(rule subsetI)
unfolding cartesian_product_def
by (smt append_self_conv2 bex_empty insert_compr mem_Collect_eq)
show "A ⊆ cartesian_product {[]} A"
apply(rule subsetI)
unfolding cartesian_product_def
by blast
qed
qed
lemma cartesian_product_singleton_factor_projection_is_semialg':
assumes "A ⊆ carrier (Q⇩p⇗m⇖)"
assumes "b ∈ carrier (Q⇩p⇗n⇖)"
assumes "is_semialgebraic (m+n) (cartesian_product A {b})"
shows "is_semialgebraic m A"
proof(cases "n > 0")
case True
show ?thesis
proof(cases "m > 0")
case T: True
then show ?thesis
using assms True cartesian_product_singleton_factor_projection_is_semialg by blast
next
case False
then show ?thesis using Qp_zero_subset_is_semialg assms by blast
qed
next
case False
then have F0: "b = []"
using assms Qp_zero_carrier by blast
have "cartesian_product A {b} = A"
unfolding F0
by (simp add: cartesian_product_empty_list(1))
then show ?thesis using assms False
by (metis add.right_neutral gr0I)
qed
subsection ‹More on graphs of functions›
text‹This section lays the groundwork for showing that semialgebraic functions are closed under
various algebraic operations›
text‹The take and drop functions on lists are polynomial maps›
lemma function_restriction:
assumes "g ∈ carrier (Q⇩p⇗n⇖) → S"
assumes "n ≤ k"
shows "(g ∘ (take n)) ∈ carrier (Q⇩p⇗k⇖) → S"
proof fix x
assume "x ∈ carrier (Q⇩p⇗k⇖)"
then have "take n x ∈ carrier (Q⇩p⇗n⇖)"
using assms(2) take_closed
by blast
then show "(g ∘ take n) x ∈ S"
using assms comp_apply
by (metis Pi_iff comp_def)
qed
lemma partial_pullback_restriction:
assumes "g ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
assumes "n < k"
shows "partial_pullback k (g ∘ take n) m S =
split_cartesian_product (n + m) (k - n) n (partial_pullback n g m S) (carrier (Q⇩p⇗k - n⇖))"
proof(rule equalityI)
show "partial_pullback k (g ∘ take n) m S ⊆ split_cartesian_product (n + m) (k - n) n (partial_pullback n g m S) (carrier (Q⇩p⇗k - n⇖))"
proof fix x assume A: "x ∈ partial_pullback k (g ∘ take n) m S"
obtain as bs where asbs_def: "x = as@bs ∧ as ∈ carrier (Q⇩p⇗k⇖) ∧ bs ∈ carrier (Q⇩p⇗m⇖)"
using partial_pullback_memE[of x k "g ∘ take n" m S] A cartesian_power_decomp[of x Q⇩p k m]
by metis
have 0: "((g ∘ (take n)) as)#bs ∈ S"
using asbs_def partial_pullback_memE'[of as k bs m x] A
by blast
have 1: "(g (take n as))#bs ∈ S"
using 0
by (metis comp_apply)
have 2: "take n as @ bs ∈ carrier (Q⇩p⇗n+m⇖)"
by (meson asbs_def assms(2) cartesian_power_concat(1) less_imp_le_nat take_closed)
have 3: "(take n as)@bs ∈ (partial_pullback n g m S)"
using 1 2 partial_pullback_memI[of "(take n as)@bs" n m g S]
by (metis (mono_tags, opaque_lifting) asbs_def assms(2) local.partial_image_def nat_less_le
partial_image_eq subsetD subset_refl take_closed)
have 4: "drop n as ∈ (carrier (Q⇩p⇗k - n⇖))"
using asbs_def assms(2) drop_closed
by blast
show " x ∈ split_cartesian_product (n + m) (k - n) n (partial_pullback n g m S) (carrier (Q⇩p⇗k - n⇖))"
using split_cartesian_product_memI[of "take n as" bs
"partial_pullback n g m S" "drop n as"
"carrier (Q⇩p⇗k - n⇖)" Q⇩p "n + m" "k - n" n ] 4
by (metis (no_types, lifting) "3" append.assoc append_take_drop_id
asbs_def assms(2) cartesian_power_car_memE less_imp_le_nat partial_pullback_memE(1)
subsetI take_closed)
qed
show "split_cartesian_product (n + m) (k - n) n (partial_pullback n g m S) (carrier (Q⇩p⇗k - n⇖)) ⊆ partial_pullback k (g ∘ take n) m S"
proof fix x assume A: "x ∈ split_cartesian_product (n + m) (k - n) n (partial_pullback n g m S) (carrier (Q⇩p⇗k - n⇖))"
show "x ∈ partial_pullback k (g ∘ take n) m S"
proof(rule partial_pullback_memI)
have 0: "(partial_pullback n g m S) ⊆ carrier (Q⇩p⇗n+m⇖)"
using partial_pullback_closed by blast
then have "split_cartesian_product (n + m) (k - n) n (partial_pullback n g m S) (carrier (Q⇩p⇗k - n⇖)) ⊆ carrier (Q⇩p⇗n + m + (k - n)⇖)"
using assms A split_cartesian_product_closed[of "partial_pullback n g m S" Q⇩p "n + m"
"carrier (Q⇩p⇗k - n⇖)" "k - n" n]
using le_add1 by blast
then show P: "x ∈ carrier (Q⇩p⇗k+m⇖)"
by (smt A Nat.add_diff_assoc2 add.commute add_diff_cancel_left' assms(2) le_add1 less_imp_le_nat subsetD)
have "take n x @ drop (n + (k - n)) x ∈ partial_pullback n g m S"
using 0 A split_cartesian_product_memE[of x "n + m" "k - n" n "partial_pullback n g m S" "carrier (Q⇩p⇗k - n⇖)" Q⇩p]
le_add1 by blast
have 1: "g (take n x) # drop k x ∈ S"
using partial_pullback_memE
by (metis (no_types, lifting) ‹take n x @ drop (n + (k - n)) x ∈ partial_pullback n g m S›
‹x ∈ carrier (Q⇩p⇗k+m⇖)› add.assoc assms(2) cartesian_power_drop le_add1
le_add_diff_inverse less_imp_le_nat partial_pullback_memE' take_closed)
have 2: "g (take n x) = (g ∘ take n) (take k x)"
using assms P comp_apply[of g "take n" "take k x"]
by (metis add.commute append_same_eq append_take_drop_id less_imp_add_positive take_add take_drop)
then show "(g ∘ take n) (take k x) # drop k x ∈ S"
using "1" by presburger
qed
qed
qed
lemma comp_take_is_semialg:
assumes "is_semialg_function n g"
assumes "n < k"
assumes "0 < n"
shows "is_semialg_function k (g ∘ (take n))"
proof(rule is_semialg_functionI)
show "g ∘ take n ∈ carrier (Q⇩p⇗k⇖) → carrier Q⇩p"
using assms function_restriction[of g n "carrier Q⇩p" k] dual_order.strict_implies_order
is_semialg_function_closed
by blast
show "⋀ka S. S ∈ semialg_sets (1 + ka) ⟹ is_semialgebraic (k + ka) (partial_pullback k (g ∘ take n) ka S)"
proof- fix l S assume A: "S ∈ semialg_sets (1 + l)"
have 0: "is_semialgebraic (n + l) (partial_pullback n g l S) "
using assms A is_semialg_functionE is_semialgebraicI
by blast
have "is_semialgebraic (n + l + (k - n)) (split_cartesian_product (n + l) (k - n) n (partial_pullback n g l S) (carrier (Q⇩p⇗k - n⇖)))"
using A 0 split_cartesian_product_is_semialgebraic[of _ _
"partial_pullback n g l S" _ "carrier (Q⇩p⇗k - n⇖)"]
add_gr_0 assms(2) assms(3) carrier_is_semialgebraic le_add1 zero_less_diff
by presburger
then show "is_semialgebraic (k + l) (partial_pullback k (g ∘ take n) l S)"
using partial_pullback_restriction[of g n k l S]
by (metis (no_types, lifting) add.assoc add.commute assms(1) assms(2) is_semialg_function_closed le_add_diff_inverse less_imp_le_nat)
qed
qed
text‹Restriction of a graph to a semialgebraic domain›
lemma graph_formula:
assumes "g ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
shows "graph n g = {as ∈ carrier (Q⇩p⇗Suc n⇖). g (take n as) = as!n}"
using assms graph_memI fun_graph_def[of Q⇩p n g]
by (smt Collect_cong Suc_eq_plus1 graph_memE(1) graph_mem_closed mem_Collect_eq)
definition restricted_graph where
"restricted_graph n g S = {as ∈ carrier (Q⇩p⇗Suc n⇖). take n as ∈ S ∧ g (take n as) = as!n }"
lemma restricted_graph_closed:
"restricted_graph n g S ⊆ carrier (Q⇩p⇗Suc n⇖)"
by (metis (no_types, lifting) mem_Collect_eq restricted_graph_def subsetI)
lemma restricted_graph_memE:
assumes "a ∈ restricted_graph n g S"
shows "a ∈ carrier (Q⇩p⇗Suc n⇖)" "take n a ∈ S" "g (take n a) = a!n"
using assms
using restricted_graph_closed apply blast
apply (metis (no_types, lifting) assms mem_Collect_eq restricted_graph_def)
using assms unfolding restricted_graph_def
by blast
lemma restricted_graph_mem_formula:
assumes "a ∈ restricted_graph n g S"
shows "a = (take n a)@[g (take n a)]"
proof-
have "length a = Suc n"
using assms
by (metis (no_types, lifting) cartesian_power_car_memE mem_Collect_eq restricted_graph_def)
then have "a = (take n a)@[a!n]"
by (metis append_eq_append_conv_if hd_drop_conv_nth lessI take_hd_drop)
then show ?thesis
by (metis assms restricted_graph_memE(3))
qed
lemma restricted_graph_memI:
assumes "a ∈ carrier (Q⇩p⇗Suc n⇖)"
assumes "take n a ∈ S"
assumes "g (take n a) = a!n"
shows "a ∈ restricted_graph n g S"
using assms restricted_graph_def
by blast
lemma restricted_graph_memI':
assumes "a ∈ S"
assumes "g ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
assumes "S ⊆ carrier (Q⇩p⇗n⇖)"
shows "(a@[g a]) ∈ restricted_graph n g S"
proof-
have "a ∈ carrier (Q⇩p⇗n⇖)"
using assms(1) assms(3) by blast
then have "g a ∈ carrier Q⇩p"
using assms by blast
then have 0: "a @ [g a] ∈ carrier (Q⇩p⇗Suc n⇖)"
using assms
by (metis (no_types, lifting) add.commute cartesian_power_append plus_1_eq_Suc subsetD)
have 1: "take n (a @ [g a]) ∈ S"
using assms
by (metis (no_types, lifting) append_eq_conv_conj cartesian_power_car_memE subsetD)
show ?thesis
using assms restricted_graph_memI[of "a@[g a]" n S g]
by (metis "0" ‹a ∈ carrier (Q⇩p⇗n⇖)› append_eq_conv_conj cartesian_power_car_memE nth_append_length)
qed
lemma restricted_graph_subset:
assumes "g ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
assumes "S ⊆ carrier (Q⇩p⇗n⇖)"
shows "restricted_graph n g S ⊆ graph n g"
proof fix x assume A: "x ∈ restricted_graph n g S"
show "x ∈ graph n g"
apply(rule graph_memI)
using assms(1) apply blast
using A restricted_graph_memE(3) apply blast
by (metis A add.commute plus_1_eq_Suc restricted_graph_memE(1))
qed
lemma restricted_graph_subset':
assumes "g ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
assumes "S ⊆ carrier (Q⇩p⇗n⇖)"
shows "restricted_graph n g S ⊆ cartesian_product S (carrier (Q⇩p⇗1⇖))"
proof fix a assume A: "a ∈ restricted_graph n g S"
then have "a = (take n a)@[g (take n a)]"
using restricted_graph_mem_formula by blast
then show "a ∈ cartesian_product S (carrier (Q⇩p⇗1⇖))"
using cartesian_product_memI' A unfolding restricted_graph_def
by (metis (mono_tags, lifting) assms(2) last_closed' mem_Collect_eq subsetI Qp.to_R1_closed)
qed
lemma restricted_graph_intersection:
assumes "g ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
assumes "S ⊆ carrier (Q⇩p⇗n⇖)"
shows "restricted_graph n g S = graph n g ∩ (cartesian_product S (carrier (Q⇩p⇗1⇖)))"
proof
show "restricted_graph n g S ⊆ graph n g ∩ cartesian_product S (carrier (Q⇩p⇗1⇖))"
using assms restricted_graph_subset restricted_graph_subset'
by (meson Int_subset_iff)
show "graph n g ∩ cartesian_product S (carrier (Q⇩p⇗1⇖)) ⊆ restricted_graph n g S"
proof fix x assume A: " x ∈ graph n g ∩ cartesian_product S (carrier (Q⇩p⇗1⇖))"
show "x ∈ restricted_graph n g S"
apply(rule restricted_graph_memI)
using A graph_memE[of g n x]
apply (metis (no_types, lifting) Int_iff add.commute assms(1) graph_mem_closed plus_1_eq_Suc)
using A graph_memE[of g n x] cartesian_product_memE[of x S "carrier (Q⇩p⇗1⇖)" Q⇩p n]
using assms(2) apply blast
using A graph_memE[of g n x] cartesian_product_memE[of x S "carrier (Q⇩p⇗1⇖)" Q⇩p n]
using assms(1) by blast
qed
qed
lemma restricted_graph_is_semialgebraic:
assumes "is_semialg_function n g"
assumes "is_semialgebraic n S"
shows "is_semialgebraic (n+1) (restricted_graph n g S)"
proof-
have 0: "restricted_graph n g S = graph n g ∩ (cartesian_product S (carrier (Q⇩p⇗1⇖)))"
using assms is_semialg_function_closed is_semialgebraic_closed
restricted_graph_intersection by presburger
have 1: "is_semialgebraic (n + 1) (graph n g)"
using assms semialg_graph
by blast
have 2: "is_semialgebraic (n + 1) (cartesian_product S (carrier (Q⇩p⇗1⇖)))"
using cartesian_product_is_semialgebraic[of n S 1 "carrier (Q⇩p⇗1⇖)"] assms
carrier_is_semialgebraic less_one
by presburger
then show ?thesis
using 0 1 2 intersection_is_semialg[of "n+1" "graph n g" "cartesian_product S (carrier (Q⇩p⇗1⇖))"]
by presburger
qed
lemma take_closed:
assumes "n ≤ k"
assumes "x ∈ carrier (Q⇩p⇗k⇖)"
shows "take n x ∈ carrier (Q⇩p⇗n⇖)"
using assms take_closed
by blast
lemma take_compose_closed:
assumes "g ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
assumes "n < k"
shows "g ∘ take n ∈ carrier (Q⇩p⇗k⇖) → carrier Q⇩p"
proof fix x assume A: "x ∈ carrier (Q⇩p⇗k⇖)"
then have "(take n x) ∈ carrier (Q⇩p⇗n⇖)"
using assms less_imp_le_nat take_closed
by blast
then have "g (take n x) ∈ carrier Q⇩p"
using assms(1) by blast
then show "(g ∘ take n) x ∈ carrier Q⇩p"
using comp_apply[of g "take n" x]
by presburger
qed
lemma take_graph_formula:
assumes "g ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
assumes "n < k"
assumes "0 < n"
shows "graph k (g ∘ (take n)) = {as ∈ carrier (Q⇩p⇗k+1⇖). g (take n as) = as!k}"
proof-
have "⋀as. as ∈ carrier (Q⇩p⇗k+1⇖) ⟹ (g ∘ take n) (take k as) = g (take n as) "
using assms comp_apply take_take[of n k]
proof -
fix as :: "((nat ⇒ int) × (nat ⇒ int)) set list"
show "(g ∘ take n) (take k as) = g (take n as)"
by (metis (no_types) ‹n < k› comp_eq_dest_lhs min.strict_order_iff take_take)
qed
then show ?thesis
using take_compose_closed[of g n k] assms comp_apply[of g "take n"] graph_formula[of "g ∘ (take n)" k]
by (smt Collect_cong Suc_eq_plus1)
qed
lemma graph_memI':
assumes "a ∈ carrier (Q⇩p⇗Suc n⇖)"
assumes "take n a ∈ carrier (Q⇩p⇗n⇖)"
assumes "g (take n a) = a!n"
shows "a ∈ graph n g"
using assms fun_graph_def[of Q⇩p n g]
by (smt cartesian_power_car_memE eq_imp_le lessI mem_Collect_eq take_Suc_conv_app_nth take_all)
lemma graph_memI'':
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
assumes "g ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
shows "(a@[g a]) ∈ graph n g "
using assms fun_graph_def
by blast
lemma graph_as_restricted_graph:
assumes "f ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
shows "graph n f = restricted_graph n f (carrier (Q⇩p⇗n⇖))"
apply(rule equalityI)
apply (metis Suc_eq_plus1 assms graph_memE(1) graph_memE(3) graph_mem_closed restricted_graph_memI subsetI)
by (simp add: assms restricted_graph_subset)
definition double_graph where
"double_graph n f g = {as ∈ carrier (Q⇩p⇗n+2⇖). f (take n as) = as!n ∧ g (take n as) = as!(n + 1)}"
lemma double_graph_rep:
assumes "g ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
assumes "f ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
shows "double_graph n f g = restricted_graph (n + 1) (g ∘ take n) (graph n f)"
proof
show "double_graph n f g ⊆ restricted_graph (n + 1) (g ∘ take n) (graph n f)"
proof fix x assume A: "x ∈ double_graph n f g"
then have 0: "x ∈ carrier (Q⇩p⇗n+2⇖) ∧ f (take n x) = x!n ∧ g (take n x) = x!(n + 1)"
using double_graph_def by blast
have 1: "take (n+1) x ∈ graph n f"
apply(rule graph_memI)
using assms(2) apply blast
apply (metis "0" append_eq_conv_conj cartesian_power_car_memE le_add1 length_take
less_add_same_cancel1 less_numeral_extra(1) min.absorb2 nth_take take_add)
by (metis (no_types, opaque_lifting) "0" Suc_eq_plus1 Suc_n_not_le_n add_cancel_right_right
dual_order.antisym le_iff_add not_less_eq_eq one_add_one plus_1_eq_Suc take_closed)
show " x ∈ restricted_graph (n + 1) (g ∘ take n) (graph n f)"
apply(rule restricted_graph_memI)
apply (metis "0" One_nat_def add_Suc_right numeral_2_eq_2)
using "1" apply blast
using 0 take_take[of n "n + 1" x] comp_apply
by (metis le_add1 min.absorb1)
qed
show "restricted_graph (n + 1) (g ∘ take n) (graph n f) ⊆ double_graph n f g"
proof fix x
assume A: "x ∈ restricted_graph (n + 1) (g ∘ take n) (graph n f)"
then have 0: "x ∈ carrier (Q⇩p⇗Suc (n + 1)⇖) ∧ take (n + 1) x ∈ graph n f ∧ (g ∘ take n) (take (n + 1) x) = x ! (n + 1)"
using restricted_graph_memE[of x "n+1" "(g ∘ take n)" "graph n f" ]
by blast
then have 1: "x ∈ carrier (Q⇩p⇗n+2⇖)"
using 0
by (metis Suc_1 add_Suc_right)
have 2: " f (take n x) = x ! n"
using 0 take_take[of n "n + 1" x] graph_memE[of f n "take (n + 1) x"]
by (metis assms(2) le_add1 less_add_same_cancel1 less_numeral_extra(1) min.absorb1 nth_take)
have 3: "g (take n x) = x ! (n + 1)"
using 0 comp_apply take_take[of n "n + 1" x]
by (metis le_add1 min.absorb1)
then show "x ∈ double_graph n f g"
unfolding double_graph_def using 1 2 3
by blast
qed
qed
lemma double_graph_is_semialg:
assumes "n > 0"
assumes "is_semialg_function n f"
assumes "is_semialg_function n g"
shows "is_semialgebraic (n+2) (double_graph n f g)"
using double_graph_rep[of g n f] assms restricted_graph_is_semialgebraic[of n "g ∘ take n" "graph n f"]
by (metis (no_types, lifting) Suc_eq_plus1 add_Suc_right is_semialg_function_closed
less_add_same_cancel1 less_numeral_extra(1) one_add_one restricted_graph_is_semialgebraic
comp_take_is_semialg semialg_graph)
definition add_vars :: "nat ⇒ nat ⇒ padic_tuple ⇒ padic_number" where
"add_vars i j as = as!i ⊕⇘Q⇩p⇙ as!j"
lemma add_vars_rep:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "i < n"
assumes "j < n"
shows "add_vars i j as = Qp_ev ((pvar Q⇩p i) ⊕⇘Q⇩p[𝒳⇘n⇙]⇙ (pvar Q⇩p j)) as"
unfolding add_vars_def
using assms eval_at_point_add[of as n "pvar Q⇩p i" "pvar Q⇩p j"]
eval_pvar by (metis pvar_closed)
lemma add_vars_is_semialg:
assumes "i < n"
assumes "j < n"
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
shows "is_semialg_function n (add_vars i j)"
proof-
have "pvar Q⇩p i ⊕⇘Q⇩p[𝒳⇘n⇙]⇙ pvar Q⇩p j ∈ carrier (Q⇩p[𝒳⇘n⇙])"
using assms pvar_closed[of ]
by blast
then have "is_semialg_function n (Qp_ev (pvar Q⇩p i ⊕⇘Q⇩p[𝒳⇘n⇙]⇙ pvar Q⇩p j))"
using assms poly_is_semialg[of "(pvar Q⇩p i) ⊕⇘Q⇩p[𝒳⇘n⇙]⇙ (pvar Q⇩p j)"]
by blast
then show ?thesis
using assms add_vars_rep
semialg_function_on_carrier[of n "Qp_ev ((pvar Q⇩p i) ⊕⇘Q⇩p[𝒳⇘n⇙]⇙ (pvar Q⇩p j))" "add_vars i j" ]
by (metis (no_types, lifting) restrict_ext)
qed
definition mult_vars :: "nat ⇒ nat ⇒ padic_tuple ⇒ padic_number" where
"mult_vars i j as = as!i ⊗ as!j"
lemma mult_vars_rep:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "i < n"
assumes "j < n"
shows "mult_vars i j as = Qp_ev ((pvar Q⇩p i) ⊗⇘Q⇩p[𝒳⇘n⇙]⇙ (pvar Q⇩p j)) as"
unfolding mult_vars_def
using assms eval_at_point_mult[of as n "pvar Q⇩p i" "pvar Q⇩p j"]
eval_pvar[of i n as] eval_pvar[of j n as ]
by (metis pvar_closed)
lemma mult_vars_is_semialg:
assumes "i < n"
assumes "j < n"
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
shows "is_semialg_function n (mult_vars i j)"
proof-
have "pvar Q⇩p i ⊗⇘Q⇩p[𝒳⇘n⇙]⇙ pvar Q⇩p j ∈ carrier (Q⇩p[𝒳⇘n⇙])"
using assms pvar_closed[of ]
by blast
then have "is_semialg_function n (Qp_ev (pvar Q⇩p i ⊗⇘Q⇩p[𝒳⇘n⇙]⇙ pvar Q⇩p j))"
using assms poly_is_semialg[of "(pvar Q⇩p i) ⊗⇘Q⇩p[𝒳⇘n⇙]⇙ (pvar Q⇩p j)"]
by blast
then show ?thesis
using assms mult_vars_rep
semialg_function_on_carrier[of n "Qp_ev ((pvar Q⇩p i) ⊗⇘Q⇩p[𝒳⇘n⇙]⇙ (pvar Q⇩p j))" "mult_vars i j" ]
by (metis (no_types, lifting) restrict_ext)
qed
definition minus_vars :: "nat ⇒ padic_tuple ⇒ padic_number" where
"minus_vars i as = ⊖⇘Q⇩p⇙ as!i"
lemma minus_vars_rep:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "i < n"
shows "minus_vars i as = Qp_ev (⊖⇘Q⇩p[𝒳⇘n⇙]⇙(pvar Q⇩p i)) as"
unfolding minus_vars_def
using assms eval_pvar[of i n as] eval_at_point_a_inv[of as n "pvar Q⇩p i"]
by (metis pvar_closed)
lemma minus_vars_is_semialg:
assumes "i < n"
assumes "a ∈ carrier (Q⇩p⇗n⇖)"
shows "is_semialg_function n (minus_vars i)"
proof-
have 0: "pvar Q⇩p i ∈ carrier (Q⇩p[𝒳⇘n⇙])"
using assms pvar_closed[of ] Qp.cring_axioms by presburger
have "is_semialg_function n (Qp_ev (⊖⇘Q⇩p[𝒳⇘n⇙]⇙(pvar Q⇩p i)))"
apply(rule poly_is_semialg )
using "0" by blast
then show ?thesis
using assms minus_vars_rep[of a i n]
semialg_function_on_carrier[of n _ "minus_vars i" ]
by (metis (no_types, lifting) minus_vars_rep restrict_ext)
qed
definition extended_graph where
"extended_graph n f g h = {as ∈ carrier (Q⇩p⇗n+3⇖).
f (take n as) = as!n ∧ g (take n as) = as! (n + 1) ∧ h [(f (take n as)),(g (take n as))] = as! (n + 2) }"
lemma extended_graph_rep:
"extended_graph n f g h = restricted_graph (n + 2) (h ∘ (drop n)) (double_graph n f g)"
proof
show "extended_graph n f g h ⊆ restricted_graph (n + 2) (h ∘ drop n) (double_graph n f g)"
proof fix x
assume "x ∈ extended_graph n f g h"
then have A: "x ∈ carrier (Q⇩p⇗n+3⇖) ∧f (take n x) = x!n ∧ g (take n x) = x! (n + 1) ∧
h [(f (take n x)),(g (take n x))] = x! (n + 2)"
unfolding extended_graph_def by blast
then have 0: "take (n + 2) x ∈ carrier (Q⇩p⇗n+2⇖)"
proof -
have "Suc (Suc n) ≤ n + numeral (num.One + num.Bit0 num.One)"
by simp
then show ?thesis
by (metis (no_types) ‹x ∈ carrier (Q⇩p⇗n+3⇖) ∧ f (take n x) = x ! n ∧ g (take n x) = x ! (n + 1) ∧ h [f (take n x), g (take n x)] = x ! (n + 2)› add_2_eq_Suc' add_One_commute semiring_norm(5) take_closed)
qed
have 1: "f (take n (take (n + 2) x)) = (take (n + 2) x) ! n"
using A
by (metis Suc_1 add.commute append_same_eq append_take_drop_id
less_add_same_cancel1 nth_take take_add take_drop zero_less_Suc)
have 2: " g (take n (take (n + 2) x)) = (take (n + 2) x) ! (n + 1)"
using A
by (smt add.assoc add.commute append_same_eq append_take_drop_id less_add_same_cancel1
less_numeral_extra(1) nth_take one_add_one take_add take_drop)
then have 3: "take (n + 2) x ∈ double_graph n f g"
unfolding double_graph_def
using 0 1 2
by blast
have 4: "drop n (take (n + 2) x) = [(f (take n x)),(g (take n x))]"
proof-
have 40: "take (n + 2) x ! (n + 1) = x! (n + 1)"
by (metis add.commute add_2_eq_Suc' lessI nth_take plus_1_eq_Suc)
have 41: "take (n + 2) x ! n = x! n"
by (metis Suc_1 less_SucI less_add_same_cancel1 less_numeral_extra(1) nth_take)
have 42: "take (n + 2) x ! (n + 1) = g (take n x)"
using 40 A
by blast
have 43: "take (n + 2) x ! n = f (take n x)"
using 41 A
by blast
show ?thesis using A 42 43
by (metis "0" add_cancel_right_right cartesian_power_car_memE cartesian_power_drop
le_add_same_cancel1 nth_drop pair_id zero_le_numeral)
qed
then have 5: "(h ∘ drop n) (take (n + 2) x) = x ! (n + 2)"
using 3 A
by (metis add_2_eq_Suc' comp_eq_dest_lhs)
show "x ∈ restricted_graph (n + 2) (h ∘ drop n) (double_graph n f g)"
using restricted_graph_def A 3 5
by (metis (no_types, lifting) One_nat_def Suc_1
add_Suc_right numeral_3_eq_3 restricted_graph_memI)
qed
show "restricted_graph (n + 2) (h ∘ drop n) (double_graph n f g) ⊆ extended_graph n f g h"
proof fix x assume A: "x ∈ restricted_graph (n + 2) (h ∘ drop n) (double_graph n f g)"
then have 0: "take (n+2) x ∈ double_graph n f g"
using restricted_graph_memE(2) by blast
have 1: "(h ∘ drop n) (take (n+2) x) = x! (n+2) "
by (meson A restricted_graph_memE(3) padic_fields_axioms)
have 2: "x ∈ carrier (Q⇩p⇗n+3⇖)"
using A
by (metis (no_types, opaque_lifting) Suc3_eq_add_3 add.commute add_2_eq_Suc'
restricted_graph_closed subsetD)
have 3: "length x = n + 3"
using "2" cartesian_power_car_memE by blast
have 4: "drop n (take (n+2) x) = [x!n, x!(n+1)]"
proof-
have "length (take (n+2) x) = n+2"
by (simp add: "3")
then have 40:"length (drop n (take (n+2) x)) = 2"
by (metis add_2_eq_Suc' add_diff_cancel_left' length_drop)
have 41: "(drop n (take (n+2) x))!0 = x!n"
using 3
by (metis Nat.add_0_right ‹length (take (n + 2) x) = n + 2› add_gr_0 le_add1 less_add_same_cancel1 less_numeral_extra(1) nth_drop nth_take one_add_one)
have 42: "(drop n (take (n+2) x))!1 = x!(n+1)"
using 3 nth_take nth_drop A
by (metis add.commute le_add1 less_add_same_cancel1 less_numeral_extra(1) one_add_one take_drop)
show ?thesis
using 40 41 42
by (metis pair_id)
qed
have "(take n x) = take n (take (n+2) x)"
using take_take 3
by (metis le_add1 min.absorb1)
then have 5: "f (take n x) = x ! n"
using 0 double_graph_def[of n f g] 3
by (smt Suc_1 less_add_same_cancel1 mem_Collect_eq nth_take zero_less_Suc)
have 6: "g (take n x) = x ! (n + 1) "
using 0 double_graph_def[of n f g] 3 take_take[of n "n+2" x]
by (smt Suc_1 ‹take n x = take n (take (n + 2) x)› add_Suc_right lessI mem_Collect_eq nth_take)
have 7: " h [f (take n x), g (take n x)] = x ! (n + 2)"
using 4 A comp_apply
by (metis "1" "5" "6")
show " x ∈ extended_graph n f g h"
unfolding extended_graph_def
using 2 5 6 7 A
by blast
qed
qed
lemma function_tuple_eval_closed:
assumes "is_function_tuple Q⇩p n fs"
assumes "x ∈ carrier (Q⇩p⇗n⇖)"
shows "function_tuple_eval Q⇩p n fs x ∈ carrier (Q⇩p⇗length fs⇖)"
using function_tuple_eval_closed[of Q⇩p n fs x] assms by blast
definition k_graph where
"k_graph n fs = {x ∈ carrier (Q⇩p⇗n + length fs⇖). x = (take n x)@ (function_tuple_eval Q⇩p n fs (take n x)) }"
lemma k_graph_memI:
assumes "is_function_tuple Q⇩p n fs"
assumes "x = as@function_tuple_eval Q⇩p n fs as"
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
shows "x ∈ k_graph n fs"
proof-
have "take n x = as"
using assms
by (metis append_eq_conv_conj cartesian_power_car_memE)
then show ?thesis unfolding k_graph_def using assms
by (smt append_eq_conv_conj cartesian_power_car_memE cartesian_power_car_memI'' length_append local.function_tuple_eval_closed mem_Collect_eq)
qed
text‹composing a function with a function tuple›
lemma Qp_function_tuple_comp_closed:
assumes "f ∈ carrier (Q⇩p⇗n⇖) → carrier Q⇩p"
assumes "length fs = n"
assumes "is_function_tuple Q⇩p m fs"
shows "function_tuple_comp Q⇩p fs f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
using assms function_tuple_comp_closed
by blast
subsubsection‹Tuples of Semialgebraic Functions›
text‹Predicate for a tuple of semialgebraic functions›
definition is_semialg_function_tuple where
"is_semialg_function_tuple n fs = (∀ f ∈ set fs. is_semialg_function n f)"
lemma is_semialg_function_tupleI:
assumes "⋀ f. f ∈ set fs ⟹ is_semialg_function n f"
shows "is_semialg_function_tuple n fs"
using assms is_semialg_function_tuple_def
by blast
lemma is_semialg_function_tupleE:
assumes "is_semialg_function_tuple n fs"
assumes "i < length fs"
shows "is_semialg_function n (fs ! i)"
by (meson assms(1) assms(2) in_set_conv_nth is_semialg_function_tuple_def padic_fields_axioms)
lemma is_semialg_function_tupleE':
assumes "is_semialg_function_tuple n fs"
assumes "f ∈ set fs"
shows "is_semialg_function n f"
using assms(1) assms(2) is_semialg_function_tuple_def
by blast
lemma semialg_function_tuple_is_function_tuple:
assumes "is_semialg_function_tuple n fs"
shows "is_function_tuple Q⇩p n fs"
apply(rule is_function_tupleI)
using assms is_semialg_function_closed is_semialg_function_tupleE' by blast
lemma const_poly_function_tuple_comp_is_semialg:
assumes "n > 0"
assumes "is_semialg_function_tuple n fs"
assumes "a ∈ carrier Q⇩p"
shows "is_semialg_function n (poly_function_tuple_comp Q⇩p n fs (Qp_to_IP a))"
apply(rule semialg_function_on_carrier[of n "Qp_ev (Qp_to_IP a)"])
using poly_is_semialg[of "(Qp_to_IP a)"]
using assms(1) assms(3) Qp_to_IP_car apply blast
using poly_function_tuple_comp_eq[of n fs "(Qp_to_IP a)"] assms unfolding restrict_def
by (metis (no_types, opaque_lifting) eval_at_point_const poly_function_tuple_comp_constant semialg_function_tuple_is_function_tuple)
lemma pvar_poly_function_tuple_comp_is_semialg:
assumes "n > 0"
assumes "is_semialg_function_tuple n fs"
assumes "i < length fs"
shows "is_semialg_function n (poly_function_tuple_comp Q⇩p n fs (pvar Q⇩p i))"
apply(rule semialg_function_on_carrier[of n "fs!i"])
using assms(2) assms(3) is_semialg_function_tupleE apply blast
by (metis assms(2) assms(3) poly_function_tuple_comp_pvar
restrict_ext semialg_function_tuple_is_function_tuple)
text‹Polynomial functions with semialgebraic coefficients›
definition point_to_univ_poly :: "nat ⇒ padic_tuple ⇒ padic_univ_poly" where
"point_to_univ_poly n a = ring_cfs_to_univ_poly n a"
definition tuple_partial_image where
"tuple_partial_image m fs x = (function_tuple_eval Q⇩p m fs (take m x))@(drop m x)"
lemma tuple_partial_image_closed:
assumes "length fs > 0"
assumes "is_function_tuple Q⇩p n fs"
assumes "x ∈ carrier (Q⇩p⇗n+l⇖)"
shows "tuple_partial_image n fs x ∈ carrier (Q⇩p⇗length fs + l⇖)"
using assms unfolding tuple_partial_image_def
by (meson cartesian_power_concat(1) cartesian_power_drop
function_tuple_eval_closed le_add1 take_closed)
lemma tuple_partial_image_indices:
assumes "length fs > 0"
assumes "is_function_tuple Q⇩p n fs"
assumes "x ∈ carrier (Q⇩p⇗n+l⇖)"
assumes "i < length fs"
shows "(tuple_partial_image n fs x) ! i = (fs!i) (take n x)"
proof-
have 0: "(function_tuple_eval Q⇩p n fs (take n x)) ! i = (fs!i) (take n x)"
using assms unfolding function_tuple_eval_def
by (meson nth_map)
have 1: "length (function_tuple_eval Q⇩p n fs (take n x)) > i"
by (metis assms(4) function_tuple_eval_def length_map)
show ?thesis
using 0 1 assms unfolding tuple_partial_image_def
by (metis nth_append)
qed
lemma tuple_partial_image_indices':
assumes "length fs > 0"
assumes "is_function_tuple Q⇩p n fs"
assumes "x ∈ carrier (Q⇩p⇗n+l⇖)"
assumes "i < l"
shows "(tuple_partial_image n fs x) ! (length fs + i) = x!(n + i)"
using assms unfolding tuple_partial_image_def
by (metis (no_types, lifting) cartesian_power_car_memE function_tuple_eval_closed le_add1
nth_append_length_plus nth_drop take_closed)
definition tuple_partial_pullback where
"tuple_partial_pullback n fs l S = ((tuple_partial_image n fs)-`S) ∩ carrier (Q⇩p⇗n+l⇖)"
lemma tuple_partial_pullback_memE:
assumes "as ∈ tuple_partial_pullback m fs l S"
shows "as ∈ carrier (Q⇩p⇗m + l⇖)" "tuple_partial_image m fs as ∈ S"
using assms
apply (metis (no_types, opaque_lifting) Int_iff add.commute tuple_partial_pullback_def)
using assms unfolding tuple_partial_pullback_def
by blast
lemma tuple_partial_pullback_closed:
"tuple_partial_pullback m fs l S ⊆ carrier (Q⇩p⇗m + l⇖)"
using tuple_partial_pullback_memE by blast
lemma tuple_partial_pullback_memI:
assumes "as ∈ carrier (Q⇩p⇗m + k⇖)"
assumes "is_function_tuple Q⇩p m fs"
assumes "((function_tuple_eval Q⇩p m fs) (take m as))@(drop m as) ∈ S"
shows "as ∈ tuple_partial_pullback m fs k S"
using assms unfolding tuple_partial_pullback_def tuple_partial_image_def
by blast
lemma tuple_partial_image_eq:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "bs ∈ carrier (Q⇩p⇗k⇖)"
assumes "x = as @ bs"
shows "tuple_partial_image n fs x = ((function_tuple_eval Q⇩p n fs) as)@bs"
proof-
have 0: "(take n x) = as"
by (metis append_eq_conv_conj assms(1) assms(3) cartesian_power_car_memE)
have 1: "drop n x = bs"
by (metis "0" append_take_drop_id assms(3) same_append_eq)
show ?thesis using assms 0 1 unfolding tuple_partial_image_def
by presburger
qed
lemma tuple_partial_pullback_memE':
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "bs ∈ carrier (Q⇩p⇗k⇖)"
assumes "x = as @ bs"
assumes "x ∈ tuple_partial_pullback n fs k S"
shows "(function_tuple_eval Q⇩p n fs as)@bs ∈ S"
using tuple_partial_pullback_memE[of x n fs k S] tuple_partial_image_def[of n fs x]
by (metis assms(1) assms(2) assms(3) assms(4) tuple_partial_image_eq)
text‹tuple partial pullbacks have the same algebraic properties as pullbacks›
lemma tuple_partial_pullback_intersect:
"tuple_partial_pullback m f l (S1 ∩ S2) = (tuple_partial_pullback m f l S1) ∩ (tuple_partial_pullback m f l S2)"
unfolding tuple_partial_pullback_def
by blast
lemma tuple_partial_pullback_union:
"tuple_partial_pullback m f l (S1 ∪ S2) = (tuple_partial_pullback m f l S1) ∪ (tuple_partial_pullback m f l S2)"
unfolding tuple_partial_pullback_def
by blast
lemma tuple_partial_pullback_complement:
assumes "is_function_tuple Q⇩p m fs"
shows "tuple_partial_pullback m fs l ((carrier (Q⇩p⇗length fs + l⇖)) - S) = carrier (Q⇩p⇗m + l⇖) - (tuple_partial_pullback m fs l S) "
apply(rule equalityI)
using tuple_partial_pullback_def[of m fs l "((carrier (Q⇩p⇗length fs + l⇖)) - S)"]
tuple_partial_pullback_def[of m fs l S]
apply blast
proof fix x assume A: " x ∈ carrier (Q⇩p⇗m + l⇖) - tuple_partial_pullback m fs l S"
show " x ∈ tuple_partial_pullback m fs l (carrier (Q⇩p⇗length fs + l⇖) - S) "
apply(rule tuple_partial_pullback_memI)
using A
apply blast
using assms
apply blast
proof
have 0: "drop m x ∈ carrier (Q⇩p⇗l⇖)"
by (meson A DiffD1 cartesian_power_drop)
have 1: "take m x ∈ carrier (Q⇩p⇗m⇖)"
using A
by (meson DiffD1 le_add1 take_closed)
show "function_tuple_eval Q⇩p m fs (take m x) @ drop m x
∈ carrier (Q⇩p⇗length fs + l⇖)"
using 0 1 assms
using cartesian_power_concat(1) function_tuple_eval_closed by blast
show "function_tuple_eval Q⇩p m fs (take m x) @ drop m x ∉ S"
using A unfolding tuple_partial_pullback_def tuple_partial_image_def
by blast
qed
qed
lemma tuple_partial_pullback_carrier:
assumes "is_function_tuple Q⇩p m fs"
shows "tuple_partial_pullback m fs l (carrier (Q⇩p⇗length fs + l⇖)) = carrier (Q⇩p⇗m + l⇖)"
apply(rule equalityI)
using tuple_partial_pullback_memE(1) apply blast
proof fix x assume A: "x ∈ carrier (Q⇩p⇗m + l⇖)"
show "x ∈ tuple_partial_pullback m fs l (carrier (Q⇩p⇗length fs + l⇖))"
apply(rule tuple_partial_pullback_memI)
using A cartesian_power_drop[of x m l] take_closed assms
apply blast
using assms apply blast
proof-
have "function_tuple_eval Q⇩p m fs (take m x) ∈ carrier (Q⇩p⇗length fs⇖)"
using A take_closed assms
function_tuple_eval_closed le_add1
by blast
then show "function_tuple_eval Q⇩p m fs (take m x) @ drop m x
∈ carrier (Q⇩p⇗length fs + l⇖)"
using cartesian_power_drop[of x m l] A cartesian_power_concat(1)
by blast
qed
qed
definition is_semialg_map_tuple where
"is_semialg_map_tuple m fs = (is_function_tuple Q⇩p m fs ∧
(∀l ≥ 0. ∀S ∈ semialg_sets ((length fs) + l). is_semialgebraic (m + l) (tuple_partial_pullback m fs l S)))"
lemma is_semialg_map_tuple_closed:
assumes "is_semialg_map_tuple m fs"
shows "is_function_tuple Q⇩p m fs"
using is_semialg_map_tuple_def assms by blast
lemma is_semialg_map_tupleE:
assumes "is_semialg_map_tuple m fs"
assumes "is_semialgebraic ((length fs) + l) S"
shows " is_semialgebraic (m + l) (tuple_partial_pullback m fs l S)"
using is_semialg_map_tuple_def[of m fs] assms is_semialgebraicE[of "((length fs) + l)" S]
by blast
lemma is_semialg_map_tupleI:
assumes "is_function_tuple Q⇩p m fs"
assumes "⋀k S. S ∈ semialg_sets ((length fs) + k) ⟹ is_semialgebraic (m + k) (tuple_partial_pullback m fs k S)"
shows "is_semialg_map_tuple m fs"
using assms unfolding is_semialg_map_tuple_def
by blast
text‹Semialgebraicity for maps can be verified on basic semialgebraic sets›
lemma is_semialg_map_tupleI':
assumes "is_function_tuple Q⇩p m fs"
assumes "⋀k S. S ∈ basic_semialgs ((length fs) + k) ⟹ is_semialgebraic (m + k) (tuple_partial_pullback m fs k S)"
shows "is_semialg_map_tuple m fs"
apply(rule is_semialg_map_tupleI)
using assms(1) apply blast
proof-
show "⋀k S. S ∈ semialg_sets ((length fs) + k) ⟹ is_semialgebraic (m + k) (tuple_partial_pullback m fs k S)"
proof- fix k S assume A: "S ∈ semialg_sets ((length fs) + k)"
show "is_semialgebraic (m + k) (tuple_partial_pullback m fs k S)"
apply(rule gen_boolean_algebra.induct[of S "carrier (Q⇩p⇗length fs + k⇖)" "basic_semialgs ((length fs) + k)"])
using A unfolding semialg_sets_def
apply blast
using tuple_partial_pullback_carrier assms carrier_is_semialgebraic plus_1_eq_Suc apply presburger
using assms(1) assms(2) carrier_is_semialgebraic intersection_is_semialg tuple_partial_pullback_carrier tuple_partial_pullback_intersect apply presburger
using tuple_partial_pullback_union union_is_semialgebraic apply presburger
using assms(1) complement_is_semialg tuple_partial_pullback_complement plus_1_eq_Suc by presburger
qed
qed
text‹
The goal of this section is to show that tuples of semialgebraic functions are semialgebraic maps.
›
text‹The function $(x_0, x, y) \mapsto (x_0, f(x), y)$›
definition twisted_partial_image where
"twisted_partial_image n m f xs = (take n xs)@ partial_image m f (drop n xs)"
text‹The set ${(x_0, x, y) \mid (x_0, f(x), y) \in S}$›
text‹Convention: a function which produces a subset of (Qp (i + j +k)) will receive the 3 arity
parameters in sequence, at the very beginning of the function›
definition twisted_partial_pullback where
"twisted_partial_pullback n m l f S = ((twisted_partial_image n m f)-`S) ∩ carrier (Q⇩p⇗n+m+l⇖)"
lemma twisted_partial_pullback_memE:
assumes "as ∈ twisted_partial_pullback n m l f S"
shows "as ∈ carrier (Q⇩p⇗n+m+l⇖)" "twisted_partial_image n m f as ∈ S"
using assms
apply (metis (no_types, opaque_lifting) Int_iff add.commute twisted_partial_pullback_def subset_iff)
using assms unfolding twisted_partial_pullback_def
by blast
lemma twisted_partial_pullback_closed:
"twisted_partial_pullback n m l f S ⊆ carrier (Q⇩p⇗n+m+l⇖)"
using twisted_partial_pullback_memE(1) by blast
lemma twisted_partial_pullback_memI:
assumes "as ∈ carrier (Q⇩p⇗n+m+l⇖)"
assumes "(take n as)@((f (take m (drop n as)))#(drop (n + m) as)) ∈ S"
shows "as ∈ twisted_partial_pullback n m l f S"
using assms unfolding twisted_partial_pullback_def twisted_partial_image_def
by (metis (no_types, lifting) IntI add.commute drop_drop local.partial_image_def vimageI)
lemma twisted_partial_image_eq:
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "bs ∈ carrier (Q⇩p⇗m⇖)"
assumes "cs ∈ carrier (Q⇩p⇗l⇖)"
assumes "x = as @ bs @ cs"
shows "twisted_partial_image n m f x = as@((f bs)#cs)"
proof-
have 0: "(take n x) = as"
by (metis append_eq_conv_conj assms(1) assms(4)
cartesian_power_car_memE)
have 1: "twisted_partial_image n m f x = as@(partial_image m f (bs@cs))"
using 0 assms twisted_partial_image_def
by (metis append_eq_conv_conj cartesian_power_car_memE)
have 2: "(partial_image m f (bs@cs)) = (f bs)#cs"
using partial_image_eq[of bs m cs l "bs@cs" f] assms
by blast
show ?thesis using assms 0 1 2
by (metis )
qed
lemma twisted_partial_pullback_memE':
assumes "as ∈ carrier (Q⇩p⇗n⇖)"
assumes "bs ∈ carrier (Q⇩p⇗m⇖)"
assumes "cs ∈ carrier (Q⇩p⇗l⇖)"
assumes "x = as @ bs @ cs"
assumes "x ∈ twisted_partial_pullback n m l f S"
shows "as@((f bs)#cs) ∈ S"
by (metis (no_types, lifting) assms(1) assms(2) assms(3) assms(4) assms(5)
twisted_partial_image_eq twisted_partial_pullback_memE(2))
text‹partial pullbacks have the same algebraic properties as pullbacks›
text‹permutation which moves the entry at index ‹i› to 0›
definition twisting_permutation where
"twisting_permutation (i::nat) = (λj. if j < i then j + 1 else
(if j = i then 0 else j))"
lemma twisting_permutation_permutes:
assumes "i < n"
shows "twisting_permutation i permutes {..<n}"
proof-
have 0: "⋀x. x > i ⟹ twisting_permutation i x = x"
unfolding twisting_permutation_def
by auto
have 1: "(∀x. x ∉ {..<n} ⟶ twisting_permutation i x = x)"
using 0 assms
by auto
have 2: "(∀y. ∃!x. twisting_permutation i x = y)"
proof fix y
show " ∃!x. twisting_permutation i x = y"
proof(cases "y = 0")
case True
show "∃!x. twisting_permutation i x = y"
by (metis Suc_eq_plus1 True add_eq_0_iff_both_eq_0 less_nat_zero_code
nat_neq_iff twisting_permutation_def zero_neq_one)
next
case False
show ?thesis
proof(cases "y ≤i")
case True
show ?thesis
proof
show "twisting_permutation i (y - 1) = y"
using True
by (metis False add.commute add_diff_inverse_nat diff_less gr_zeroI le_eq_less_or_eq
less_imp_diff_less less_one twisting_permutation_def)
show "⋀x. twisting_permutation i x = y ⟹ x = y - 1"
using True False twisting_permutation_def by force
qed
next
case False
then show ?thesis
by (auto simp add: twisting_permutation_def)
qed
qed
qed
show ?thesis
using 1 2
by (simp add: permutes_def)
qed
lemma twisting_permutation_action:
assumes "length as = i"
shows "permute_list (twisting_permutation i) (b#(as@bs)) = as@(b#bs)"
proof-
have 0: "length (permute_list (twisting_permutation i) (b#(as@bs))) = length (as@(b#bs))"
by (metis add.assoc length_append length_permute_list list.size(4))
have "⋀j. j < length (as@(b#bs))
⟹ (permute_list (twisting_permutation i) (b#(as@bs))) ! j = (as@(b#bs)) ! j"
proof-
fix j assume A: "j < length (as@(b#bs))"
show "(permute_list (twisting_permutation i) (b#(as@bs))) ! j = (as@(b#bs)) ! j"
proof(cases "j < i")
case True
then have T0: "twisting_permutation i j = j + 1"
using twisting_permutation_def by auto
then have T1: "(b # as @ bs) ! twisting_permutation i j = as!j"
using assms
by (simp add: assms True nth_append)
have T2: "(permute_list (twisting_permutation i) (b # as @ bs)) ! j = as!j"
proof-
have "twisting_permutation i permutes {..<length (b # as @ bs)}"
by (metis (full_types) assms length_Cons length_append
not_add_less1 not_less_eq twisting_permutation_permutes)
then show ?thesis
using True permute_list_nth[of "twisting_permutation i" "b#(as@bs)" j ]
twisting_permutation_permutes[of i "length (b#(as@bs))"] assms
by (metis T0 T1 add_cancel_right_right lessThan_iff
permutes_not_in zero_neq_one)
qed
have T3: "(as @ b # bs) ! j = as!j"
using assms True
by (simp add: assms nth_append)
show "(permute_list (twisting_permutation i) (b #( as @ bs))) ! j = (as @ b # bs) ! j"
using T3 T2
by simp
next
case False
show ?thesis
proof(cases "j = i")
case True
then have T0: "twisting_permutation i j = 0"
using twisting_permutation_def by auto
then have T1: "(b # as @ bs) ! twisting_permutation i j = b"
using assms
by (simp add: assms True nth_append)
have T2: "(permute_list (twisting_permutation i) (b # as @ bs)) ! j = b"
proof-
have "twisting_permutation i permutes {..<length (b # as @ bs)}"
by (metis (full_types) assms length_Cons length_append
not_add_less1 not_less_eq twisting_permutation_permutes)
then show ?thesis
using True permute_list_nth[of "twisting_permutation i" "b#(as@bs)" j ]
twisting_permutation_permutes[of i "length (b#(as@bs))"] assms
by (metis "0" A T1 length_permute_list)
qed
have T3: "(as @ b # bs) ! j = b"
by (metis True assms nth_append_length)
show ?thesis
by (simp add: T2 T3)
next
case F: False
then have F0: "twisting_permutation i j = j"
by (simp add: False twisting_permutation_def)
then have F1: "(b # as @ bs) ! twisting_permutation i j = bs! (j - i - 1)"
using assms
by (metis (mono_tags, lifting) F False Suc_diff_1
cancel_ab_semigroup_add_class.diff_right_commute linorder_neqE_nat not_gr_zero
not_less_eq nth_Cons' nth_append)
have F2: "(permute_list (twisting_permutation i) (b # as @ bs)) ! j = bs ! (j - i - 1)"
using F1 assms permute_list_nth
by (metis A add_cancel_right_right append.assoc last_to_first_eq le_add1
le_eq_less_or_eq length_0_conv length_append length_permute_list list.distinct(1)
twisting_permutation_permutes)
have F3: "(as @ b # bs) ! j = bs!(j - i - 1)"
by (metis F False assms linorder_neqE_nat nth_Cons_pos nth_append zero_less_diff)
then show ?thesis
using F2 F3
by presburger
qed
qed
qed
then show ?thesis
using 0
by (metis nth_equalityI)
qed
lemma twisting_permutation_action':
assumes "length as = i"
shows "permute_list (fun_inv (twisting_permutation i)) (as@(b#bs)) = (b#(as@bs)) "
proof-
obtain TI where TI_def: "TI = twisting_permutation i"
by blast
have 0: "TI permutes {..<length (as@(b#bs))}"
using assms TI_def twisting_permutation_permutes[of i "length (as@(b#bs))"]
by (metis add_diff_cancel_left' gr0I length_0_conv length_append list.distinct(1) zero_less_diff)
have 1: "(fun_inv TI) permutes {..<length (as@(b#bs))}"
by (metis "0" Nil_is_append_conv fun_inv_permute(1) length_greater_0_conv list.distinct(1))
have "permute_list (fun_inv (twisting_permutation i)) (as@(b#bs)) =
permute_list (fun_inv (twisting_permutation i)) (permute_list (twisting_permutation i) (b#(as@bs)))"
using twisting_permutation_action[of as i b bs] assms
by (simp add: ‹length as = i›)
then have "permute_list (fun_inv TI) (as@(b#bs)) =
permute_list ((fun_inv TI) ∘ TI) (b#(as@bs))"
using 0 1
by (metis TI_def fun_inv_permute(2) fun_inv_permute(3) length_greater_0_conv
length_permute_list permute_list_compose)
then show ?thesis
by (metis "0" Nil_is_append_conv TI_def fun_inv_permute(3)
length_greater_0_conv list.distinct(1) permute_list_id)
qed
lemma twisting_semialg:
assumes "is_semialgebraic n S"
assumes "n > i"
shows "is_semialgebraic n ((permute_list ((twisting_permutation i)) ` S))"
proof-
obtain TI where TI_def: "TI = twisting_permutation i"
by blast
have 0: "TI permutes {..<(n::nat)}"
using assms TI_def twisting_permutation_permutes[of i n]
by blast
have "(TI) permutes {..<n}"
using TI_def "0"
by auto
then show ?thesis
using assms permutation_is_semialgebraic[of n S "TI"] TI_def
by blast
qed
lemma twisting_semialg':
assumes "is_semialgebraic n S"
assumes "n > i"
shows "is_semialgebraic n ((permute_list (fun_inv (twisting_permutation i)) ` S))"
proof-
obtain TI where TI_def: "TI = twisting_permutation i"
by blast
have 0: "TI permutes {..<(n::nat)}"
using assms TI_def twisting_permutation_permutes[of i n]
by blast
have "(fun_inv TI) permutes {..<n}" using 0 permutes_inv[of TI "{..<n}"]
unfolding fun_inv_def
by blast
then show ?thesis
using assms permutation_is_semialgebraic[of n S "fun_inv TI"] TI_def
by blast
qed
text‹Defining a permutation that does: $(x0, x1, y) \mapsto (x_1, x0, y)$›
definition tp_1 where
"tp_1 i j = (λ n. (if n<i then j + n else
(if i ≤ n ∧ n < i + j then n - i else
n)))"
lemma permutes_I:
assumes "⋀x. x ∉ S ⟹ f x = x"
assumes "⋀y. y ∈ S ⟹ ∃!x ∈ S. f x = y"
assumes "⋀x. x ∈ S ⟹ f x ∈ S"
shows "f permutes S"
proof-
have 0 : "(∀x. x ∉ S ⟶ f x = x) "
using assms(1) by blast
have 1: "(∀y. ∃!x. f x = y)"
proof fix y
show "∃!x. f x = y"
apply(cases "y ∈ S")
apply (metis "0" assms(2))
proof-
assume "y ∉ S"
then show "∃!x. f x = y"
by (metis assms(1) assms(3))
qed
qed
show ?thesis
using assms 1
unfolding permutes_def
by blast
qed
lemma tp_1_permutes:
"(tp_1 (i::nat) j) permutes {..< i + j}"
proof(rule permutes_I)
show "⋀x. x ∉ {..<i + j} ⟹ tp_1 i j x = x"
proof- fix x assume A: "x ∉ {..<i + j}"
then show "tp_1 i j x = x"
unfolding tp_1_def
by auto
qed
show "⋀y. y ∈ {..<i + j} ⟹ ∃!x. x ∈ {..<i + j} ∧ tp_1 i j x = y"
proof- fix y assume A: "y ∈ {..<i + j}"
show "∃!x. x ∈ {..<i + j} ∧ tp_1 i j x = y"
proof(cases "y < j")
case True
then have 0:"tp_1 i j (y + i) = y"
by (simp add: tp_1_def)
have 1: "⋀x. x ≠ y + i ⟹ tp_1 i j x ≠ y"
proof- fix x assume A: " x ≠ y + i"
show "tp_1 i j x ≠ y"
apply(cases "x < j")
apply (metis A True add.commute le_add_diff_inverse le_eq_less_or_eq nat_neq_iff not_add_less1 tp_1_def trans_less_add2)
by (metis A True add.commute le_add_diff_inverse less_not_refl tp_1_def trans_less_add1)
qed
show ?thesis using 0 1
by (metis A ‹⋀x. x ∉ {..<i + j} ⟹ tp_1 i j x = x›)
next
case False
then have "y - j < i"
using A by auto
then have "tp_1 i j (y - j) = y"
using False tp_1_def
by (simp add: tp_1_def)
then show ?thesis
by (smt A False ‹⋀x. x ∉ {..<i + j} ⟹ tp_1 i j x = x›
add.commute add_diff_inverse_nat add_left_imp_eq
less_diff_conv2 not_less tp_1_def
padic_fields_axioms)
qed
qed
show "⋀x. x ∈ {..<i + j} ⟹ tp_1 i j x ∈ {..<i + j}"
proof fix x assume A: "x ∈ {..<i + j}"
show "tp_1 i j x < i + j"
unfolding tp_1_def using A
by (simp add: trans_less_add2)
qed
qed
lemma tp_1_permutes':
"(tp_1 (i::nat) j) permutes {..< i + j + k}"
using tp_1_permutes
by (simp add: permutes_def)
lemma tp_1_permutation_action:
assumes "a ∈ carrier (Q⇩p⇗i⇖)"
assumes "b ∈ carrier (Q⇩p⇗j⇖)"
assumes "c ∈ carrier (Q⇩p⇗n⇖)"
shows "permute_list (tp_1 i j) (b@a@c)= a@b@c"
proof-
have 0:"length (permute_list (tp_1 i j) (b@a@c))= length (a@b@c)"
by (metis add.commute append.assoc length_append length_permute_list)
have "⋀x. x < length (a@b@c) ⟹ (permute_list (tp_1 i j) (b@a@c)) ! x= (a@b@c) ! x"
proof- fix x assume A: "x < length (a@b@c)"
have B: "length (a @ b @ c) = i + j + length c"
using add.assoc assms(1) assms(2) cartesian_power_car_memE length_append
by metis
have C: "tp_1 i j permutes {..<length (a @ b @ c)}"
using B assms tp_1_permutes'[of i j "length b"] tp_1_permutes'
by presburger
have D: "length a = i"
using assms(1) cartesian_power_car_memE by blast
have E: "length b = j"
using assms(2) cartesian_power_car_memE by blast
show "(permute_list (tp_1 i j) (b@a@c)) ! x= (a@b@c) ! x"
proof(cases "x < i")
case True
have T0: "(tp_1 i j x) = j + x"
using tp_1_def[of i j ] True
by auto
then have "(b@ a @ c) ! (tp_1 i j x) = a!x"
using D E assms(1) assms(2) assms(3) True nth_append
by (metis nth_append_length_plus)
then show ?thesis
using A B C assms permute_list_nth[of "tp_1 i j" "a@b@c"]
by (metis D True ‹length (permute_list (tp_1 i j) (b @ a @ c)) =
length (a @ b @ c)› length_permute_list nth_append permute_list_nth)
next
case False
show ?thesis
proof(cases "x < i + j")
case True
then have T0: "(tp_1 i j x) = x - i"
by (meson False not_less tp_1_def)
have "x - i < length b"
using E False True by linarith
then have T1: "permute_list (tp_1 i j) (b@ a @ c) ! x = b!(x-i)"
using nth_append
by (metis A C T0 ‹length (permute_list (tp_1 i j) (b @ a @ c)) = length (a @ b @ c)›
length_permute_list permute_list_nth)
then show ?thesis
by (metis D False ‹x - i < length b› nth_append)
next
case False
then have "(tp_1 i j x) = x"
by (meson tp_1_def trans_less_add1)
then show ?thesis
by (smt A C D E False add.commute add_diff_inverse_nat append.assoc
length_append nth_append_length_plus permute_list_nth)
qed
qed
qed
then show ?thesis
using 0
by (metis list_eq_iff_nth_eq)
qed
definition tw where
"tw i j = permute_list (tp_1 j i)"
lemma tw_is_semialg:
assumes "n > 0"
assumes "is_semialgebraic n S"
assumes "n ≥ i + j"
shows "is_semialgebraic n ((tw i j)`S)"
unfolding tw_def
using assms tp_1_permutes'[of j i "n - (j + i)"]
permutation_is_semialgebraic[of n S]
by (metis add.commute le_add_diff_inverse)
lemma twisted_partial_pullback_factored:
assumes "f ∈ (carrier (Q⇩p⇗m⇖)) → carrier Q⇩p"
assumes "S ⊆ carrier (Q⇩p⇗n+1+ l⇖)"
assumes "Y = partial_pullback m f (n + l) (permute_list (fun_inv (twisting_permutation n)) ` S)"
shows "twisted_partial_pullback n m l f S = (tw m n) ` Y"
proof
show "twisted_partial_pullback n m l f S ⊆ tw m n ` Y"
proof fix x
assume A: "x ∈ twisted_partial_pullback n m l f S"
then have x_closed: "x ∈ carrier (Q⇩p⇗n+m+l⇖)"
using twisted_partial_pullback_memE(1) by blast
obtain a where a_def: "a = take n x"
by blast
obtain b where b_def: "b = take m (drop n x)"
by blast
obtain c where c_def: "c = (drop (n + m) x)"
by blast
have x_eq:"x = a@(b@c)"
by (metis a_def append.assoc append_take_drop_id b_def c_def take_add)
have a_closed: "a ∈ carrier (Q⇩p⇗n⇖)"
by (metis (no_types, lifting) a_def dual_order.trans le_add1 take_closed x_closed)
have b_closed: "b ∈ carrier (Q⇩p⇗m⇖)"
proof-
have "drop n x ∈ carrier (Q⇩p⇗m + l⇖)"
by (metis (no_types, lifting) add.assoc cartesian_power_drop x_closed)
then show ?thesis
using b_def le_add1 take_closed by blast
qed
have c_closed: "c ∈ carrier (Q⇩p⇗l⇖)"
using c_def cartesian_power_drop x_closed by blast
have B: "a@((f b)#c) ∈ S"
using A twisted_partial_pullback_memE'
by (smt a_closed a_def add.commute append_take_drop_id b_closed
b_def c_closed c_def drop_drop)
have "permute_list (fun_inv (twisting_permutation n)) (a@((f b)#c)) = (f b)#(a@c)"
using assms twisting_permutation_action'[of a n "f b" c]
a_closed cartesian_power_car_memE
by blast
then have C: "(f b)#(a@c) ∈ (permute_list (fun_inv (twisting_permutation n)) ` S)"
by (metis B image_eqI)
have C: "b@(a@c) ∈ partial_pullback m f (n + l) (permute_list (fun_inv (twisting_permutation n)) ` S)"
proof(rule partial_pullback_memI)
show "b @ a @ c ∈ carrier (Q⇩p⇗m + (n + l)⇖)"
using a_closed b_closed c_closed cartesian_power_concat(1)
by blast
have 0: "(take m (b @ a @ c)) = b"
by (metis append.right_neutral b_closed cartesian_power_car_memE
diff_is_0_eq diff_self_eq_0 take0 take_all take_append)
have 1: "drop m (b @ a @ c) = a@c"
by (metis "0" append_take_drop_id same_append_eq)
show "f (take m (b @ a @ c)) # drop m (b @ a @ c) ∈ permute_list (fun_inv (twisting_permutation n)) ` S"
using 0 1 C
by presburger
qed
have D: "tw m n (b@(a@c)) = a@(b@c)"
using assms tw_def a_closed b_closed c_closed
by (metis tp_1_permutation_action x_eq)
then show "x ∈ tw m n ` Y"
using x_eq C assms
by (metis image_eqI)
qed
show "tw m n ` Y ⊆ twisted_partial_pullback n m l f S"
proof fix x
assume A: "x ∈ tw m n ` Y"
then obtain y where y_def: "x = tw m n y ∧ y ∈ Y"
by blast
obtain as where as_def: "as ∈ (permute_list (fun_inv (twisting_permutation n)) ` S) ∧
as = partial_image m f y"
using partial_pullback_memE
by (metis assms(3) y_def)
obtain s where s_def: "s ∈ S ∧ permute_list (fun_inv (twisting_permutation n)) s = as"
using as_def by blast
obtain b where b_def: "b = take m y"
by blast
obtain a where a_def: "a = take n (drop m y)"
by blast
obtain c where c_def: "c = drop (n + m) y"
by blast
have y_closed: "y ∈ carrier (Q⇩p⇗m + n + l⇖)"
by (metis add.assoc assms(3) partial_pullback_memE(1) y_def)
then have y_eq: "y = b@a@c"
using a_def b_def c_def
by (metis append_take_drop_id drop_drop)
have a_closed: "a ∈ carrier (Q⇩p⇗n⇖)"
by (metis a_def add.commute cartesian_power_drop le_add1 take_closed take_drop y_closed)
have b_closed: "b ∈ carrier (Q⇩p⇗m⇖)"
using add_leD2 b_def le_add1 take_closed y_closed
by (meson trans_le_add1)
have c_closed: "c ∈ carrier (Q⇩p⇗l⇖)"
using c_def cartesian_power_drop y_closed
by (metis add.commute)
have ac_closed: "a@c ∈ carrier (Q⇩p⇗n+l⇖)"
using a_closed c_closed cartesian_power_concat(1) by blast
then have C: " local.partial_image m f y = f b # a @ c"
using b_closed y_eq partial_image_eq[of b m "a@c" "n + l" y f]
by blast
then have as_eq: "as = (f b)#(a@c)"
using as_def
by force
have B: "(tw m n) y = a@b@c" using y_eq tw_def[of n m] tp_1_permutation_action
by (smt a_closed b_closed c_closed tw_def)
then have "x = a@(b@c)"
by (simp add: y_def)
then have "twisted_partial_image n m f x = a@((f b)# c)"
using a_closed b_closed c_closed twisted_partial_image_eq
by blast
then have D: "permute_list (twisting_permutation n) as = twisted_partial_image n m f x"
using as_eq twisting_permutation_action[of a n "f b" c ]
by (metis a_closed cartesian_power_car_memE)
have "permute_list (twisting_permutation n) as ∈ S"
proof-
have S: "length s > n"
using s_def assms cartesian_power_car_memE le_add1 le_neq_implies_less
le_trans less_add_same_cancel1 less_one not_add_less1
by (metis (no_types, lifting) subset_iff)
have "permute_list (twisting_permutation n) as = permute_list (twisting_permutation n) (permute_list (fun_inv (twisting_permutation n)) s)"
using fun_inv_def s_def by blast
then have "permute_list (twisting_permutation n) as =
permute_list ((twisting_permutation n) ∘ (fun_inv (twisting_permutation n))) s"
using fun_inv_permute(2) fun_inv_permute(3) length_greater_0_conv
length_permute_list twisting_permutation_permutes[of n "length s"]
permute_list_compose[of "fun_inv (twisting_permutation n)" s "twisting_permutation n"]
by (metis S permute_list_compose)
then have "permute_list (twisting_permutation n) as =
permute_list (id) s"
by (metis S ‹permute_list (twisting_permutation n) as = permute_list
(twisting_permutation n) (permute_list (fun_inv (twisting_permutation n)) s)›
fun_inv_permute(3) length_greater_0_conv length_permute_list permute_list_compose
twisting_permutation_permutes)
then have "permute_list (twisting_permutation n) as = s"
by simp
then show ?thesis
using s_def
by (simp add: ‹s ∈ S ∧ permute_list (fun_inv (twisting_permutation n)) s = as›)
qed
then show "x ∈ twisted_partial_pullback n m l f S"
unfolding twisted_partial_pullback_def using D
by (smt ‹x = a @ b @ c› a_closed append.assoc append_eq_conv_conj b_closed
c_closed cartesian_power_car_memE cartesian_power_concat(1) length_append
list.inject local.partial_image_def twisted_partial_image_def
twisted_partial_pullback_def twisted_partial_pullback_memI)
qed
qed
lemma twisted_partial_pullback_is_semialgebraic:
assumes "is_semialg_function m f"
assumes "is_semialgebraic (n + 1 + l) S"
shows "is_semialgebraic (n + m + l)(twisted_partial_pullback n m l f S)"
proof-
have "(fun_inv (twisting_permutation n)) permutes {..<n + 1 + l}"
by (simp add: fun_inv_permute(1) twisting_permutation_permutes)
then have "is_semialgebraic (1 + n + l) (permute_list (fun_inv (twisting_permutation n)) ` S)"
using add_gr_0 assms(2) permutation_is_semialgebraic
by (metis add.commute)
then have "is_semialgebraic (n + m + l)
(partial_pullback m f (n + l) (permute_list (fun_inv (twisting_permutation n)) ` S))"
using assms is_semialg_functionE[of m f "n + l" "(permute_list (fun_inv (twisting_permutation n)) ` S)"]
by (metis (no_types, lifting) add.assoc add.commute)
then have "is_semialgebraic (n + m + l)
((tw m n) `(partial_pullback m f (n + l) (permute_list (fun_inv (twisting_permutation n)) ` S)))"
unfolding tw_def
using tp_1_permutes'[of n m l] assms permutation_is_semialgebraic[of "n + m + l"
"partial_pullback m f (n + l) (permute_list (fun_inv (twisting_permutation n)) ` S)"
"tp_1 n m" ]
by blast
then show ?thesis
using twisted_partial_pullback_factored assms(1) assms(2)
is_semialg_function_closed is_semialgebraic_closed
by presburger
qed
definition augment where
"augment n x = take n x @ take n x @ drop n x"
lemma augment_closed:
assumes "x ∈ carrier (Q⇩p⇗n+l⇖)"
shows "augment n x ∈ carrier (Q⇩p⇗n+n+ l⇖)"
apply(rule cartesian_power_car_memI)
apply (smt ab_semigroup_add_class.add_ac(1) add.commute append_take_drop_id
assms augment_def cartesian_power_car_memE cartesian_power_drop length_append)
using assms cartesian_power_car_memE'' unfolding augment_def
by (metis (no_types, opaque_lifting) append_take_drop_id cartesian_power_concat(2) nat_le_iff_add take_closed)
lemma tuple_partial_image_factor:
assumes "is_function_tuple Q⇩p m fs"
assumes "f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
assumes "length fs = n"
assumes "x ∈ carrier (Q⇩p⇗m + l⇖)"
shows "tuple_partial_image m (fs@[f]) x = twisted_partial_image n m f (tuple_partial_image m fs (augment m x))"
proof-
obtain a where a_def: "a = take m x"
by blast
obtain b where b_def: "b = drop m x"
by blast
have a_closed: "a ∈ carrier (Q⇩p⇗m⇖)"
using a_def assms(4) le_add1 take_closed
by (meson dual_order.trans)
have b_closed: "b ∈ carrier (Q⇩p⇗l⇖)"
using assms(4) b_def cartesian_power_drop
by (metis (no_types, lifting))
have A: "(augment m x) = a @ (a @ b)"
using a_def augment_def b_def
by blast
have 0: "tuple_partial_image m fs (augment m x) = ((function_tuple_eval Q⇩p m fs) a) @ a @ b"
using A a_closed b_closed tuple_partial_image_eq[of a m "a@b" "m + l" "augment m x" fs]
cartesian_power_concat(1)
by blast
have 1: "tuple_partial_image m (fs@[f]) x = ((function_tuple_eval Q⇩p m fs a) @ [f a])@b"
using 0 tuple_partial_image_eq[of a m b l x "fs@[f]"] unfolding function_tuple_eval_def
by (metis (no_types, lifting) a_closed a_def append_take_drop_id b_closed b_def
list.simps(8) list.simps(9) map_append)
have 2: "tuple_partial_image m (fs@[f]) x = (function_tuple_eval Q⇩p m fs a) @ ((f a)#b)"
using 1
by (metis (no_types, lifting) append_Cons append_Nil2 append_eq_append_conv2 same_append_eq)
have 3: "tuple_partial_image m fs x = (function_tuple_eval Q⇩p m fs a) @ b"
using a_def b_def 2 tuple_partial_image_eq[of a m b l x fs ] assms tuple_partial_image_def
by blast
have 4: "twisted_partial_image n m f (tuple_partial_image m fs (augment m x)) =
(function_tuple_eval Q⇩p m fs a) @ ((f a)#b)"
using twisted_partial_image_eq[of _ n _ m _ l] 0 assms(1) assms(3) b_closed
local.a_closed local.function_tuple_eval_closed by blast
show ?thesis using 2 4
by presburger
qed
definition diagonalize where
"diagonalize n m S = S ∩ cartesian_product (Δ n) (carrier (Q⇩p⇗m⇖))"
lemma diagaonlize_is_semiaglebraic:
assumes "is_semialgebraic (n + n + m) S"
shows "is_semialgebraic (n + n + m) (diagonalize n m S)"
proof(cases "m = 0")
case True
then have 0: "carrier (Q⇩p⇗m⇖) = {[]}"
unfolding cartesian_power_def
by simp
have 1: "Δ n ⊆ carrier (Q⇩p⇗n+n⇖)"
using Qp.cring_axioms assms diagonalE(2)
by blast
then have "cartesian_product (Δ n) (carrier (Q⇩p⇗m⇖)) = Δ n"
using 0 cartesian_product_empty_right[of "Δ n" Q⇩p "n + n" "carrier (Q⇩p⇗m⇖)"]
by linarith
then have "diagonalize n m S = S ∩ (Δ n)"
using diagonalize_def
by presburger
then show ?thesis
using intersection_is_semialg True assms diag_is_semialgebraic
by auto
next
case False
have "is_semialgebraic (n + n + m) (cartesian_product (Δ n) (carrier (Q⇩p⇗m⇖)))"
using carrier_is_semialgebraic[of m]
cartesian_product_is_semialgebraic[of "n + n" "Δ n" m "carrier (Q⇩p⇗m⇖)"]
diag_is_semialgebraic[of n] False
by blast
then show ?thesis
using intersection_is_semialg assms(1) diagonalize_def
by presburger
qed
lemma list_segment_take:
assumes "length a ≥n"
shows "list_segment 0 n a = take n a"
proof-
have 0: "length (list_segment 0 n a) = length (take n a)"
using assms unfolding list_segment_def
by (metis (no_types, lifting) Groups.add_ac(2) add_diff_cancel_left'
append_take_drop_id le_Suc_ex length_append length_drop length_map map_nth)
have "⋀i. i < n ⟹ list_segment 0 n a !i = take n a ! i"
unfolding list_segment_def using assms
by (metis add.left_neutral diff_zero nth_map_upt nth_take)
then show ?thesis using 0
by (metis assms diff_zero le0 list_segment_length nth_equalityI)
qed
lemma augment_inverse_is_semialgebraic:
assumes "is_semialgebraic (n+n+l) S"
shows "is_semialgebraic (n+l) ((augment n -` S) ∩ carrier (Q⇩p⇗n+l⇖))"
proof-
obtain Ps where Ps_def: "Ps = (var_list_segment 0 n)"
by blast
obtain Qs where Qs_def: "Qs = (var_list_segment n (n+l))"
by blast
obtain Fs where Fs_def: "Fs = Ps@Ps@Qs"
by blast
have 0: "is_poly_tuple (n+l) Ps"
by (simp add: Ps_def var_list_segment_is_poly_tuple)
have 1: "is_poly_tuple (n+l) Qs"
by (simp add: Qs_def var_list_segment_is_poly_tuple)
have 2: "is_poly_tuple (n+l) (Ps@Qs)"
using Qp_is_poly_tuple_append[of "n+l" Ps Qs]
by (metis (no_types, opaque_lifting) "0" "1" add.commute)
have "is_poly_tuple (n+l) Fs"
using 0 2 Qp_is_poly_tuple_append[of "n + l" Ps "Ps@Qs"] Fs_def assms
by blast
have 3: "⋀x. x ∈ carrier (Q⇩p⇗n+l⇖) ⟹ augment n x = poly_map (n + l) Fs x"
proof- fix x assume A: "x ∈ carrier (Q⇩p⇗n+l⇖)"
have 30: "poly_map (n+l) Ps x = take n x"
using Ps_def map_by_var_list_segment[of x "n + l" n 0]
list_segment_take[of n x] cartesian_power_car_memE[of x Q⇩p "n+l"]
by (simp add: A)
have 31: "poly_map (n + l) Qs x = drop n x"
using Qs_def map_by_var_list_segment_to_length[of x "n + l" n] A le_add1
by blast
have 32: "poly_map (n + l) (Ps@Qs) x = take n x @ drop n x"
using poly_map_append[of x "n+l" Ps Qs ]
by (metis "30" "31" A append_take_drop_id)
show "augment n x = poly_map (n + l) Fs x"
using 30 32 poly_map_append
by (metis A Fs_def poly_map_append augment_def)
qed
have 4: "(augment n -` S) ∩ carrier (Q⇩p⇗n+l⇖) = poly_tuple_pullback (n + l) S Fs"
proof
show "augment n -` S ∩ carrier (Q⇩p⇗n+l⇖) ⊆ poly_tuple_pullback (n + l) S Fs"
proof fix x assume A: "x ∈ augment n -` S ∩ carrier (Q⇩p⇗n+l⇖)"
then have 40: "augment n x ∈ S"
by blast
have 41: "augment n x ∈ carrier (Q⇩p⇗n+n+ l⇖)"
using 40 assms unfolding augment_def
using is_semialgebraic_closed
by blast
have "x ∈ carrier (Q⇩p⇗n+l⇖)"
proof-
have "take n x @ x ∈ carrier (Q⇩p⇗n+n+ l⇖)"
using augment_def A
by (metis "41" append_take_drop_id)
then have 0: "drop n (take n x @ x) ∈ carrier (Q⇩p⇗n+l⇖)"
by (metis (no_types, lifting) add.assoc cartesian_power_drop)
have "drop n (take n x @ x) = x"
proof-
have "length x ≥ n"
using A
by (metis IntD2 cartesian_power_car_memE le_add1)
then have "length (take n x) = n"
by (metis add_right_cancel append_take_drop_id
le_add_diff_inverse length_append length_drop)
then show ?thesis
by (metis append_eq_conv_conj)
qed
then show ?thesis
using 0
by presburger
qed
then show "x ∈ poly_tuple_pullback (n + l) S Fs"
using 41 3 unfolding poly_tuple_pullback_def
by (metis (no_types, opaque_lifting) "40" add.commute cartesian_power_car_memE evimageI evimage_def poly_map_apply)
qed
show "poly_tuple_pullback (n + l) S Fs ⊆ augment n -` S ∩ carrier (Q⇩p⇗n+l⇖)"
proof fix x assume A: "x ∈ poly_tuple_pullback (n + l) S Fs"
have "x ∈ carrier (Q⇩p⇗n+l⇖)"
using A unfolding poly_tuple_pullback_def by blast
then show "x ∈ augment n -` S ∩ carrier (Q⇩p⇗n+l⇖)"
using 3
by (metis (no_types, lifting) A poly_map_apply poly_tuple_pullback_def vimage_inter_cong)
qed
qed
then show ?thesis using assms pullback_is_semialg[of "n + l" Fs]
using poly_tuple_pullback_eq_poly_map_vimage
unfolding restrict_def evimage_def Fs_def
by (smt "4" Ex_list_of_length Fs_def Ps_def Qs_def ‹is_poly_tuple (n + l) Fs› add.commute
add_diff_cancel_left' append_assoc diff_zero is_semialgebraic_closed le_add2 length_append
not_add_less1 not_gr_zero padic_fields.is_semialgebraicE padic_fields_axioms var_list_segment_length zero_le)
qed
lemma tuple_partial_pullback_is_semialg_map_tuple_induct:
assumes "is_semialg_map_tuple m fs"
assumes "is_semialg_function m f"
assumes "length fs = n"
shows "is_semialg_map_tuple m (fs@[f])"
proof(rule is_semialg_map_tupleI)
have 0: "is_function_tuple Q⇩p m fs"
using assms is_semialg_map_tuple_def
by blast
show "is_function_tuple Q⇩p m (fs @ [f])"
proof(rule is_function_tupleI)
have A0: "set (fs @ [f]) = insert f (set fs)"
by simp
have A1: "set fs ⊆ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
using 0 is_function_tuple_def
by blast
then show "set (fs @ [f]) ⊆ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
using assms 0
by (metis (no_types, lifting) A0 is_semialg_function_closed list.simps(15) set_ConsD subset_code(1))
qed
show "⋀k S. S ∈ semialg_sets (length (fs @ [f]) + k) ⟹
is_semialgebraic (m + k) (tuple_partial_pullback m (fs @ [f]) k S)"
proof- fix l S
assume A: "S ∈ semialg_sets (length (fs @ [f]) + l)"
then have B: "S ∈ semialg_sets (n + l + 1)"
using assms
by (metis (no_types, lifting) add.commute add_Suc_right add_diff_cancel_left'
append_Nil2 diff_Suc_1 length_Suc_conv length_append)
show "is_semialgebraic (m + l) (tuple_partial_pullback m (fs @ [f]) l S)"
proof-
obtain S0 where S0_def: "S0 = tuple_partial_pullback m fs (l+1) S"
by blast
have 0: "is_semialgebraic (m + l + 1) S0"
using B assms is_semialg_map_tupleE[of m fs "l + 1" S]
by (metis S0_def add.assoc is_semialgebraicI)
obtain S1 where S1_def: "S1 = twisted_partial_pullback m m l f S0"
by blast
then have "is_semialgebraic (m + m + l) S1"
using S1_def assms(1) 0 twisted_partial_pullback_is_semialgebraic[of m f m l S0]
by (simp add: assms(2))
then have L: "is_semialgebraic (m + m + l) (diagonalize m l S1)"
using assms diagaonlize_is_semiaglebraic
by blast
have 1: "(tuple_partial_pullback m (fs @ [f]) l S)
= (augment m -` (diagonalize m l S1)) ∩ carrier (Q⇩p⇗m + l⇖)"
proof
show "tuple_partial_pullback m (fs @ [f]) l S ⊆
augment m -` diagonalize m l S1 ∩ carrier (Q⇩p⇗m + l⇖)"
proof fix x assume P0: "x ∈ tuple_partial_pullback m (fs @ [f]) l S "
show "x ∈ augment m -` diagonalize m l S1 ∩ carrier (Q⇩p⇗m + l⇖)"
proof
show "x ∈ carrier (Q⇩p⇗m + l⇖)"
using tuple_partial_pullback_closed P0
by blast
show "x ∈ augment m -` diagonalize m l S1"
proof-
obtain a where a_def: "a = take m x"
by blast
then have a_closed: "a ∈ carrier (Q⇩p⇗m⇖)"
using ‹x ∈ carrier (Q⇩p⇗m + l⇖)› le_add1 take_closed
by blast
obtain b where b_def: "b = drop m x"
by blast
then have b_closed: "b ∈ carrier (Q⇩p⇗l⇖)"
using ‹x ∈ carrier (Q⇩p⇗m + l⇖)› cartesian_power_drop
by blast
have x_eq: "x = a@b"
using a_def b_def
by (metis append_take_drop_id)
have X0: "a @ a @ b = augment m x"
by (metis a_def augment_def b_def)
have "a @ a @ b ∈ diagonalize m l S1"
proof-
have "length (a@a) = m + m"
using a_closed cartesian_power_car_memE length_append
by blast
then have "take (m + m) (a @ a @ b) = a@a"
by (metis append.assoc append_eq_conv_conj)
then have X00: "take (m + m) (a @ a @ b) ∈ Δ m"
using diagonalI[of "a@a"] a_def a_closed
by (metis append_eq_conv_conj cartesian_power_car_memE)
then have X01: "a @ a @ b ∈ cartesian_product (Δ m) (carrier (Q⇩p⇗l⇖))"
using a_closed b_closed cartesian_product_memI[of "Δ m" Q⇩p "m+m" "carrier (Q⇩p⇗l⇖)" l "a @ a @ b"]
unfolding diagonal_def
by (metis (no_types, lifting) X0 ‹x ∈ carrier (Q⇩p⇗m + l⇖)› augment_closed cartesian_power_drop mem_Collect_eq subsetI)
have X02: "twisted_partial_image m m f (a @ a @ b) = a @ ((f a)# b)"
using twisted_partial_image_eq[of a m a m b l _ f] a_closed b_closed
by blast
have "a @ a @ b ∈ S1"
proof-
have "twisted_partial_image m m f (a @ a @ b) ∈ S0"
proof-
have X020:"tuple_partial_image m fs (a @ ((f a)# b))
= (function_tuple_eval Q⇩p m fs a)@[f a]@b"
using tuple_partial_image_eq[of a m "(f a)# b" "l + 1" _ fs]
by (metis (no_types, lifting) a_closed append_Cons append_eq_conv_conj
cartesian_power_car_memE self_append_conv2 tuple_partial_image_def)
have X021: "(function_tuple_eval Q⇩p m fs a)@[f a]@b ∈ S"
proof-
have X0210: "(function_tuple_eval Q⇩p m fs a)@[f a]@b =
(function_tuple_eval Q⇩p m (fs@[f]) a)@b"
unfolding function_tuple_eval_def
by (metis (mono_tags, lifting) append.assoc list.simps(8) list.simps(9) map_append)
have X0211: "(function_tuple_eval Q⇩p m (fs@[f]) a)@b =
tuple_partial_image m (fs @ [f]) x"
using x_eq tuple_partial_image_eq[of a m b l x "fs@[f]"]
by (simp add: a_closed b_closed)
have "tuple_partial_image m (fs @ [f]) x ∈ S"
using P0 tuple_partial_pullback_memE(2)
by blast
then show ?thesis using X0211 X0210 by presburger
qed
have X022: "tuple_partial_image m fs (twisted_partial_image m m f (a @ a @ b))
= (function_tuple_eval Q⇩p m fs a)@[f a]@b"
proof-
have X0220: "tuple_partial_image m fs (twisted_partial_image m m f (a @ a @ b)) =
tuple_partial_image m fs (a @ ((f a)# b))"
using X02 by presburger
have X0221: "tuple_partial_image m fs (twisted_partial_image m m f (a @ a @ b)) =
(function_tuple_eval Q⇩p m fs a) @ ((f a)# b)"
using tuple_partial_image_eq
by (metis X02 X020 append_Cons self_append_conv2)
then show ?thesis
unfolding function_tuple_eval_def
by (metis X02 X020 X0221 append_same_eq)
qed
have X023: "tuple_partial_image m fs (twisted_partial_image m m f (a @ a @ b)) ∈ S"
using X02 X020 X021 by presburger
have "twisted_partial_image m m f (a @ a @ b) ∈ carrier (Q⇩p⇗m + (l+1)⇖)"
proof-
have "a @ ((f a)# b) ∈ carrier (Q⇩p⇗m + (l+1)⇖)"
apply(rule cartesian_power_car_memI)
apply (metis a_closed add.commute b_closed cartesian_power_car_memE
length_Cons length_append plus_1_eq_Suc)
proof-
have "f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
using assms(2) is_semialg_function_closed by blast
then have "f a ∈ carrier Q⇩p"
using a_closed assms
by blast
then show "set (a @ f a # b) ⊆ carrier Q⇩p"
using assms a_closed b_closed
by (meson cartesian_power_car_memE'' cartesian_power_concat(1) cartesian_power_cons)
qed
then show ?thesis
using X02
by presburger
qed
then show ?thesis
using S0_def X023 tuple_partial_pullback_def[of m fs "l+1" S ]
by blast
qed
then show ?thesis using X02 S1_def twisted_partial_pullback_def
by (metis (no_types, lifting) X0 ‹x ∈ carrier (Q⇩p⇗m + l⇖)› augment_closed
drop_drop local.partial_image_def twisted_partial_image_def
twisted_partial_pullback_memI)
qed
then show ?thesis using X01 diagonalize_def[of m l S1]
by blast
qed
then show ?thesis
by (metis X0 vimageI)
qed
qed
qed
show "augment m -` diagonalize m l S1 ∩ carrier (Q⇩p⇗m + l⇖) ⊆ tuple_partial_pullback m (fs @ [f]) l S"
proof
fix x
assume A: "x ∈ augment m -` diagonalize m l S1 ∩ carrier (Q⇩p⇗m + l⇖)"
then have X0: "x ∈ carrier (Q⇩p⇗m + l⇖)"
by blast
obtain a where a_def: "a = take m x"
by blast
then have a_closed: "a ∈ carrier (Q⇩p⇗m⇖)"
using X0 le_add1 take_closed by blast
obtain b where b_def: "b = drop m x"
by blast
then have a_closed: "b ∈ carrier (Q⇩p⇗l⇖)"
using X0 cartesian_power_drop
by blast
have X1: "augment m x = a@a@b"
using a_def augment_def b_def
by blast
have X2: "a@a@b ∈ diagonalize m l S1"
using A X1
by (metis Int_iff vimage_eq)
have X3: "a@a@b ∈ S1"
using X2 diagonalize_def
by blast
have X4: "twisted_partial_image m m f (a@a@b) ∈ S0"
using X3 S1_def twisted_partial_pullback_memE(2)
by blast
have X5: "a@((f a)#b) ∈ S0"
using X4 twisted_partial_image_eq[of a m a m b l _ f]
by (metis X0 a_closed a_def le_add1 take_closed)
have X6: "tuple_partial_image m fs (a@((f a)#b)) ∈ S"
using S0_def X5 tuple_partial_pullback_memE(2)
by blast
have X7: "((function_tuple_eval Q⇩p m fs a)@((f a)#b)) ∈ S"
using X6 using tuple_partial_image_eq
by (metis X0 a_def append_eq_conv_conj cartesian_power_car_memE
le_add1 take_closed tuple_partial_image_def)
have X8: "((function_tuple_eval Q⇩p m fs a)@((f a)#b)) =
tuple_partial_image m (fs @ [f]) x"
proof-
have X80: "tuple_partial_image m (fs @ [f]) x = (function_tuple_eval Q⇩p m (fs@[f]) a)@b"
using tuple_partial_image_def a_def b_def
by blast
then show ?thesis unfolding function_tuple_eval_def
by (metis (no_types, lifting) append_Cons append_eq_append_conv2 list.simps(9) map_append self_append_conv2)
qed
show "x ∈ tuple_partial_pullback m (fs @ [f]) l S"
using X8 X7 tuple_partial_pullback_def
by (metis X0 ‹is_function_tuple Q⇩p m (fs @ [f])›
tuple_partial_image_def tuple_partial_pullback_memI)
qed
qed
then show ?thesis
using augment_inverse_is_semialgebraic
by (simp add: L)
qed
qed
qed
lemma singleton_tuple_partial_pullback_is_semialg_map_tuple:
assumes "is_semialg_function_tuple m fs"
assumes "length fs = 1"
shows "is_semialg_map_tuple m fs"
proof(rule is_semialg_map_tupleI)
show "is_function_tuple Q⇩p m fs"
by (simp add: assms(1) semialg_function_tuple_is_function_tuple)
show "⋀k S. S ∈ semialg_sets (length fs + k) ⟹ is_semialgebraic (m + k) (tuple_partial_pullback m fs k S)"
proof- fix k S assume A: "S ∈ semialg_sets (length fs + k)"
show "is_semialgebraic (m + k) (tuple_partial_pullback m fs k S)"
proof-
obtain f where f_def: "fs = [f]"
using assms
by (metis One_nat_def length_0_conv length_Suc_conv)
have 0: "is_semialg_function m f"
using f_def assms is_semialg_function_tupleE'[of m fs f]
by simp
have 1: "⋀x. tuple_partial_image m fs x = partial_image m f x"
unfolding function_tuple_eval_def tuple_partial_image_def partial_image_def
by (metis (no_types, lifting) append_Cons append_Nil2 append_eq_append_conv_if
f_def list.simps(8) list.simps(9))
have 2: "tuple_partial_pullback m fs k S = partial_pullback m f k S"
proof
show "tuple_partial_pullback m fs k S ⊆ partial_pullback m f k S"
using 1 unfolding tuple_partial_pullback_def partial_pullback_def evimage_def
by (metis (no_types, lifting) set_eq_subset vimage_inter_cong)
show "partial_pullback m f k S ⊆ tuple_partial_pullback m fs k S"
using 1 unfolding tuple_partial_pullback_def partial_pullback_def evimage_def
by blast
qed
then show ?thesis
by (metis "0" A assms(2) is_semialg_functionE is_semialgebraicI)
qed
qed
qed
lemma empty_tuple_partial_pullback_is_semialg_map_tuple:
assumes "is_semialg_function_tuple m fs"
assumes "length fs = 0"
shows "is_semialg_map_tuple m fs"
apply(rule is_semialg_map_tupleI)
using assms(1) semialg_function_tuple_is_function_tuple apply blast
proof-
fix k S assume A: "S ∈ semialg_sets (length fs + k)"
then have 0: "is_semialgebraic k S"
by (metis add.left_neutral assms(2) is_semialgebraicI)
have 1: "tuple_partial_pullback m fs k S = cartesian_product (carrier (Q⇩p⇗m⇖)) S"
proof
have 1: "⋀x. function_tuple_eval Q⇩p m fs (take m x) = []"
using assms unfolding function_tuple_eval_def
by blast
show "tuple_partial_pullback m fs k S ⊆ cartesian_product (carrier (Q⇩p⇗m⇖)) S"
apply(rule subsetI) apply(rule cartesian_product_memI[of "carrier (Q⇩p⇗m⇖)" Q⇩p m S k])
apply blast using 0 is_semialgebraic_closed apply blast
using 0 assms unfolding 1 tuple_partial_pullback_def tuple_partial_image_def
apply (meson IntD2 le_add1 take_closed)
by (metis append_Nil evimageD evimage_def)
have 2: "cartesian_product (carrier (Q⇩p⇗m⇖)) S ⊆ carrier (Q⇩p⇗m + k⇖)"
using is_semialgebraic_closed[of k S] 0 assms cartesian_product_closed[of "carrier (Q⇩p⇗m⇖)" Q⇩p m S k] by blast
show "cartesian_product (carrier (Q⇩p⇗m⇖)) S ⊆ tuple_partial_pullback m fs k S"
apply(rule subsetI) apply(rule tuple_partial_pullback_memI)
using 2 apply blast
using assms semialg_function_tuple_is_function_tuple apply blast
unfolding 1
by (metis carrier_is_semialgebraic cartesian_product_memE(2) is_semialgebraic_closed self_append_conv2)
qed
show "is_semialgebraic (m + k) (tuple_partial_pullback m fs k S)"
unfolding 1
using "0" car_times_semialg_is_semialg by blast
qed
lemma tuple_partial_pullback_is_semialg_map_tuple:
assumes "is_semialg_function_tuple m fs"
shows "is_semialg_map_tuple m fs"
proof-
have "⋀n fs. is_semialg_function_tuple m fs ∧ length fs = n ⟹ is_semialg_map_tuple m fs"
proof- fix n
show " ⋀ fs. is_semialg_function_tuple m fs ∧ length fs = n ⟹ is_semialg_map_tuple m fs"
apply(induction n)
using singleton_tuple_partial_pullback_is_semialg_map_tuple empty_tuple_partial_pullback_is_semialg_map_tuple apply blast
proof-
fix n fs
assume IH: "(⋀fs. is_semialg_function_tuple m fs ∧ length fs = n ⟹ is_semialg_map_tuple m fs)"
assume A: "is_semialg_function_tuple m fs ∧ length fs = Suc n"
then obtain gs f where gs_f_def: "fs = gs@[f]"
by (metis length_Suc_conv list.discI rev_exhaust)
have gs_length: "length gs = n"
using gs_f_def
by (metis A length_append_singleton nat.inject)
have 0: "set gs ⊆ set fs"
by (simp add: gs_f_def subsetI)
have 1: "is_semialg_function_tuple m gs"
apply(rule is_semialg_function_tupleI)
using 0 A gs_f_def is_semialg_function_tupleE'[of m fs]
by blast
then have 2: "is_semialg_map_tuple m gs"
using IH gs_length
by blast
have 3: "is_semialg_function m f"
using gs_f_def A
by (metis gs_length is_semialg_function_tupleE lessI nth_append_length)
then show "is_semialg_map_tuple m fs"
using assms 2 gs_f_def tuple_partial_pullback_is_semialg_map_tuple_induct
by blast
qed
qed
then show ?thesis
using assms by blast
qed
subsubsection‹Semialgebraic Functions are Closed under Composition with Semialgebraic Tuples›
lemma function_tuple_comp_partial_pullback:
assumes "is_semialg_function_tuple m fs"
assumes "length fs = n"
assumes "is_semialg_function n f"
assumes "S ⊆ carrier (Q⇩p⇗1+k⇖)"
shows "partial_pullback m (function_tuple_comp Q⇩p fs f) k S =
tuple_partial_pullback m fs k (partial_pullback n f k S)"
proof-
have 0: "⋀x. partial_image m (function_tuple_comp Q⇩p fs f) x =
partial_image n f (tuple_partial_image m fs x)"
unfolding partial_image_def function_tuple_comp_def tuple_partial_image_def
using comp_apply[of f "function_tuple_eval Q⇩p 0 fs"]
unfolding function_tuple_eval_def
proof -
fix x :: "((nat ⇒ int) × (nat ⇒ int)) set list"
assume a1: "⋀x. (f ∘ (λx. map (λf. f x) fs)) x = f (map (λf. f x) fs)"
have f2: "∀f rs. drop n (map f fs @ (rs::((nat ⇒ int) × (nat ⇒ int)) set list)) = rs"
by (simp add: assms(2))
have "∀f rs. take n (map f fs @ (rs::((nat ⇒ int) × (nat ⇒ int)) set list)) = map f fs"
by (simp add: assms(2))
then show "(f ∘ (λrs. map (λf. f rs) fs)) (take m x) # drop m x =
f (take n (map (λf. f (take m x)) fs @ drop m x)) # drop n (map (λf. f (take m x)) fs @ drop m x)"
using f2 a1 by presburger
qed
show "partial_pullback m (function_tuple_comp Q⇩p fs f) k S =
tuple_partial_pullback m fs k (partial_pullback n f k S)"
proof
show "partial_pullback m (function_tuple_comp Q⇩p fs f) k S ⊆ tuple_partial_pullback m fs k (partial_pullback n f k S)"
proof fix x assume A: "x ∈ partial_pullback m (function_tuple_comp Q⇩p fs f) k S"
then have 1: "partial_image m (function_tuple_comp Q⇩p fs f) x ∈ S"
using partial_pullback_memE(2) by blast
have 2: " partial_image n f (tuple_partial_image m fs x) ∈ S"
using 0 1
by presburger
have 3: "x ∈ carrier (Q⇩p⇗m + k⇖)"
using A assms
by (metis partial_pullback_memE(1))
have 4: "tuple_partial_image m fs x ∈ partial_pullback n f k S"
apply(rule partial_pullback_memI)
apply (metis "0" "3" add_cancel_left_left assms(1) assms(2) cartesian_power_drop drop0
list.inject local.partial_image_def not_gr_zero semialg_function_tuple_is_function_tuple
tuple_partial_image_closed)
by (metis "2" local.partial_image_def)
show " x ∈ tuple_partial_pullback m fs k (partial_pullback n f k S)"
apply(rule tuple_partial_pullback_memI)
apply (simp add: "3")
using assms(1) semialg_function_tuple_is_function_tuple apply blast
by (metis "4" tuple_partial_image_def)
qed
show " tuple_partial_pullback m fs k (partial_pullback n f k S) ⊆ partial_pullback m (function_tuple_comp Q⇩p fs f) k S"
proof fix x assume A: "x ∈ tuple_partial_pullback m fs k (partial_pullback n f k S)"
show "x ∈ partial_pullback m (function_tuple_comp Q⇩p fs f) k S "
proof-
have "partial_image n f (tuple_partial_image m fs x) ∈ S"
using A partial_pullback_memE(2) tuple_partial_pullback_memE(2)
by blast
show ?thesis
apply(rule partial_pullback_memI)
apply (meson A subset_eq tuple_partial_pullback_closed)
by (metis "0" ‹local.partial_image n f (tuple_partial_image m fs x) ∈ S›
local.partial_image_def)
qed
qed
qed
qed
lemma semialg_function_tuple_comp:
assumes "is_semialg_function_tuple m fs"
assumes "length fs = n"
assumes "is_semialg_function n f"
shows "is_semialg_function m (function_tuple_comp Q⇩p fs f)"
proof(rule is_semialg_functionI)
show "function_tuple_comp Q⇩p fs f ∈ carrier (Q⇩p⇗m⇖) → carrier Q⇩p"
using function_tuple_comp_closed[of f Q⇩p n fs] assms(1) assms(2)
assms(3) is_semialg_function_closed semialg_function_tuple_is_function_tuple
by blast
show "⋀k S. S ∈ semialg_sets (1 + k) ⟹ is_semialgebraic (m + k) (partial_pullback m (function_tuple_comp Q⇩p fs f) k S)"
proof- fix k S
assume A0: "S ∈ semialg_sets (1 + k)"
show "is_semialgebraic (m + k) (partial_pullback m (function_tuple_comp Q⇩p fs f) k S)"
proof-
have 0: "partial_pullback m (function_tuple_comp Q⇩p fs f) k S =
tuple_partial_pullback m fs k (partial_pullback n f k S)"
using function_tuple_comp_partial_pullback[of m fs n f S k] assms
‹S ∈ semialg_sets (1 + k)› is_semialgebraicI is_semialgebraic_closed
by blast
have 1: "is_semialgebraic (n + k) (partial_pullback n f k S)"
using assms A0 is_semialg_functionE is_semialgebraicI
by blast
have 2: "is_semialgebraic (m + k) (tuple_partial_pullback m fs k (partial_pullback n f k S))"
using 1 0 assms tuple_partial_pullback_is_semialg_map_tuple[of m fs]
is_semialg_map_tupleE[of m fs k "partial_pullback n f k S"]
by blast
then show ?thesis
using 0
by simp
qed
qed
qed
subsubsection‹Algebraic Operations on Semialgebraic Functions›
text‹Defining the set of extensional semialgebraic functions›
definition Qp_add_fun where
"Qp_add_fun xs = xs!0 ⊕⇘Q⇩p⇙ xs!1"
definition Qp_mult_fun where
"Qp_mult_fun xs = xs!0 ⊗ xs!1"
text‹Inversion function on first coordinates of Qp tuples. Arbitrarily redefined at 0 to map to 0›
definition Qp_invert where
"Qp_invert xs = (if ((xs!0) = 𝟬) then 𝟬 else (inv (xs!0)))"
text‹Addition is semialgebraic›
lemma addition_is_semialg:
"is_semialg_function 2 Qp_add_fun"
proof-
have 0: "⋀x. x ∈ carrier (Q⇩p⇗2⇖) ⟹ Qp_add_fun x = Qp_ev (pvar Q⇩p 0 ⊕⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1) x"
proof- fix x assume A: "x ∈ carrier (Q⇩p⇗2⇖)"
have "Qp_ev (pvar Q⇩p 0 ⊕⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1) x = (Qp_ev (pvar Q⇩p 0) x) ⊕⇘Q⇩p⇙ (Qp_ev (pvar Q⇩p 1) x)"
by (metis A One_nat_def eval_at_point_add pvar_closed less_Suc_eq numeral_2_eq_2)
then show " Qp_add_fun x = Qp_ev (pvar Q⇩p 0 ⊕⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1) x"
by (metis A Qp_add_fun_def add_vars_def add_vars_rep one_less_numeral_iff
pos2 semiring_norm(76))
qed
then have 1: "restrict Qp_add_fun (carrier (Q⇩p⇗2⇖)) =
restrict (Qp_ev (pvar Q⇩p 0 ⊕⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1)) (carrier (Q⇩p⇗2⇖))"
by (meson restrict_ext)
have "is_semialg_function 2 (Qp_ev (pvar Q⇩p 0 ⊕⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1))"
using poly_is_semialg[of "pvar Q⇩p 0 ⊕⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1"]
by (meson MP.add.m_closed local.pvar_closed one_less_numeral_iff pos2 semiring_norm(76))
then show ?thesis
using 1 semialg_function_on_carrier[of 2 "Qp_add_fun" "Qp_ev (pvar Q⇩p 0 ⊕⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1)"]
semialg_function_on_carrier
by presburger
qed
text‹Multiplication is semialgebraic:›
lemma multiplication_is_semialg:
"is_semialg_function 2 Qp_mult_fun"
proof-
have 0: "⋀x. x ∈ carrier (Q⇩p⇗2⇖) ⟹ Qp_mult_fun x = Qp_ev (pvar Q⇩p 0 ⊗⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1) x"
proof- fix x assume A: "x ∈ carrier (Q⇩p⇗2⇖)"
have "Qp_ev (pvar Q⇩p 0 ⊗⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1) x =
(Qp_ev (pvar Q⇩p 0) x) ⊗ (Qp_ev (pvar Q⇩p 1) x)"
by (metis A One_nat_def eval_at_point_mult pvar_closed less_Suc_eq numeral_2_eq_2)
then show " Qp_mult_fun x = Qp_ev (pvar Q⇩p 0 ⊗⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1) x"
by (metis A Qp_mult_fun_def mult_vars_def mult_vars_rep
one_less_numeral_iff pos2 semiring_norm(76))
qed
then have 1: "restrict Qp_mult_fun (carrier (Q⇩p⇗2⇖)) =
restrict (Qp_ev (pvar Q⇩p 0 ⊗⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1)) (carrier (Q⇩p⇗2⇖))"
by (meson restrict_ext)
have "is_semialg_function 2 (Qp_ev (pvar Q⇩p 0 ⊗⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1))"
using poly_is_semialg[of "pvar Q⇩p 0 ⊗⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1"]
by (meson MP.m_closed local.pvar_closed one_less_numeral_iff pos2 semiring_norm(76))
thus ?thesis
using 1 semialg_function_on_carrier[of 2 "Qp_mult_fun" "Qp_ev (pvar Q⇩p 0 ⊗⇘Q⇩p[𝒳⇘2⇙]⇙ pvar Q⇩p 1)"]
semialg_function_on_carrier
by presburger
qed
text‹Inversion is semialgebraic:›
lemma(in field) field_nat_pow_inv:
assumes "a ∈ carrier R"
assumes "a ≠ 𝟬"
shows "inv (a [^] (n::nat)) = (inv a) [^] (n :: nat)"
apply(induction n)
using inv_one local.nat_pow_0 apply presburger
using assms nat_pow_of_inv
by (metis Units_one_closed field_inv(2) field_inv(3) unit_factor)
lemma Qp_invert_basic_semialg:
assumes "is_basic_semialg (1 + k) S"
shows "is_semialgebraic (1 + k) (partial_pullback 1 Qp_invert k S)"
proof-
obtain P n where P_n_def: "(n::nat) ≠ 0 ∧ P ∈ carrier (Q⇩p[𝒳⇘1+k⇙]) ∧ S = basic_semialg_set (1+k) n P ∧ P ∈ carrier (Q⇩p[𝒳⇘1+k⇙])"
using assms is_basic_semialg_def
by meson
obtain d::nat where d_def: "d = deg (coord_ring Q⇩p k) (to_univ_poly (Suc k) 0 P)"
by auto
obtain l where l_def: "l = ((- d) mod n)"
by blast
have 10: "n > 0"
using P_n_def
by blast
have 11: "l ≥ 0"
using 10 by (simp add: l_def)
have 1: "int n dvd l + int d"
by (simp add: l_def ac_simps mod_0_imp_dvd mod_add_right_eq)
then obtain m::int where m_def: "l + int d = int n * m" ..
with 10 have ‹m = (l + d) div n›
by simp
with 10 11 have 2: "m ≥ 0"
by (simp add: div_int_pos_iff)
obtain N where N_def: "N = m * n"
by blast
from 11 have 3: "N ≥ d"
using m_def by (simp add: N_def ac_simps)
have 4: "deg (coord_ring Q⇩p k) (to_univ_poly (Suc k) 0 P) ≤ nat N"
using d_def N_def 3
by linarith
have 5: " P ∈ carrier (coord_ring Q⇩p (Suc k))"
by (metis P_n_def plus_1_eq_Suc)
have 6: " ∃q∈carrier (coord_ring Q⇩p (Suc k)).
∀x∈carrier Q⇩p - {𝟬}. ∀a∈carrier (Q⇩p⇗k⇖). Qp_ev q (insert_at_index a x 0) = (x[^]nat N) ⊗ Qp_ev P (insert_at_index a (inv x) 0)"
using 3 4 d_def to_univ_poly_one_over_poly''[of 0 k P "nat N"] "5" Qp.field_axioms
by blast
obtain q where q_def: "q ∈ carrier (coord_ring Q⇩p (Suc k)) ∧ ( ∀ x ∈ carrier Q⇩p - {𝟬}. ( ∀ a ∈ carrier (Q⇩p⇗k⇖).
eval_at_point Q⇩p (insert_at_index a x 0) q = (x[^] (nat N)) ⊗ (eval_at_point Q⇩p (insert_at_index a (inv x) 0) P)))"
using 6
by blast
obtain T where T_def: "T = basic_semialg_set (1+k) n q"
by auto
have "is_basic_semialg (1 + k) T"
proof-
have "q ∈ carrier ( Q⇩p[𝒳⇘Suc k⇙])"
using q_def
by presburger
then show ?thesis
using T_def is_basic_semialg_def
by (metis P_n_def plus_1_eq_Suc)
qed
then have T_semialg: "is_semialgebraic (1+k) T"
using T_def basic_semialg_is_semialg[of "1+k" T] is_semialgebraicI
by blast
obtain Nz where Nz_def: "Nz = {xs ∈ carrier (Q⇩p⇗Suc k⇖). xs!0 ≠ 𝟬}"
by blast
have Nz_semialg: "is_semialgebraic (1+k) Nz"
proof-
obtain Nzc where Nzc_def: "Nzc = {xs ∈ carrier (Q⇩p⇗Suc k⇖). xs!0 = 𝟬}"
by blast
have 0: "Nzc = zero_set Q⇩p (Suc k) (pvar Q⇩p 0)"
unfolding zero_set_def
using Nzc_def
by (metis (no_types, lifting) Collect_cong eval_pvar zero_less_Suc)
have 1: "is_algebraic Q⇩p (1+k) Nzc"
using 0 pvar_closed[of ]
by (metis is_algebraicI' plus_1_eq_Suc zero_less_Suc)
then have 2: "is_semialgebraic (1+k) Nzc"
using is_algebraic_imp_is_semialg by blast
have 3: "Nz = carrier (Q⇩p⇗Suc k⇖) - Nzc"
using Nz_def Nzc_def
by blast
then show ?thesis
using 2
by (simp add: complement_is_semialg)
qed
have 7: "(partial_pullback 1 Qp_invert k S) ∩ Nz = T ∩ Nz"
proof
show "partial_pullback 1 Qp_invert k S ∩ Nz ⊆ T ∩ Nz"
proof fix c assume A: "c ∈ partial_pullback 1 Qp_invert k S ∩ Nz"
show "c ∈ T ∩ Nz"
proof-
have c_closed: "c ∈ carrier (Q⇩p⇗1+k⇖)"
using A partial_pullback_closed[of 1 Qp_invert k S]
by blast
obtain x a where xa_def: "c = (x#a)"
using c_closed
by (metis Suc_eq_plus1 add.commute cartesian_power_car_memE length_Suc_conv)
have x_closed: "x ∈ carrier Q⇩p"
using xa_def c_closed
by (metis (no_types, lifting) append_Cons cartesian_power_decomp
list.inject Qp.to_R1_to_R Qp.to_R_pow_closed)
have a_closed: "a ∈ carrier (Q⇩p⇗k⇖)"
using xa_def c_closed
by (metis One_nat_def cartesian_power_drop drop0 drop_Suc_Cons)
have 0: "c ∈ Nz"
using A by blast
then have "x ≠ 𝟬"
using Nz_def xa_def
by (metis (mono_tags, lifting) mem_Collect_eq nth_Cons_0)
have 1: "Qp_invert [x] = inv x"
unfolding Qp_invert_def
by (metis ‹x ≠ 𝟬› nth_Cons_0)
have 2: "partial_image 1 Qp_invert c ∈ S"
using A partial_pullback_memE[of c 1 "Qp_invert" k S]
by blast
have 3: "inv x # a ∈ S"
proof-
have 30: "[x] = take 1 c"
by (simp add: xa_def)
have 31: "a = drop 1 c"
by (simp add: xa_def)
show ?thesis
using 1 30 31 partial_image_def[of 1 "Qp_invert" c] xa_def "2"
by metis
qed
obtain y where y_def: "y ∈ carrier Q⇩p ∧ eval_at_point Q⇩p (inv x # a) P = y [^] n"
using 3 P_n_def basic_semialg_set_memE(2)
by blast
then have 4: "x [^] (nat N) ⊗ eval_at_point Q⇩p (inv x # a) P
= x [^] (nat N) ⊗ y [^] n"
by presburger
have 5: "x [^] (nat N) ⊗ y [^] n = ((x[^]m)⊗y)[^]n"
proof-
have 50: "x [^] (N) ⊗ y [^] n = x [^] (m*n) ⊗ y [^] n"
using N_def by blast
have 51: "x [^] (m*n) = (x[^]m)[^]n"
using Qp_int_nat_pow_pow ‹x ≠ 𝟬› not_nonzero_Qp x_closed
by metis
have 52: "x [^] (m*n)⊗ y [^] n = ((x[^]m) ⊗ y) [^] n"
proof-
have 0: "x [^] (m*n)⊗ y [^] n= (x[^]m)[^]n ⊗ (y[^] n)"
using "51" by presburger
have 1: "(x[^]m)[^]n ⊗ (y[^] n) = ((x[^]m) ⊗ y) [^] n"
apply(induction n)
using Qp.nat_pow_0 Qp.one_closed Qp.r_one apply presburger
using x_closed y_def
by (metis Qp.nat_pow_distrib Qp.nonzero_closed Qp_int_pow_nonzero ‹x ≠ 𝟬› not_nonzero_Qp)
then show ?thesis
using "0" by blast
qed
have 53: "x [^] N = x [^] (nat N)"
using 11 m_def N_def by (simp add: ac_simps)
then show ?thesis
using 50 52
by presburger
qed
have 6: "x [^] (nat N) ⊗ eval_at_point Q⇩p (inv x # a) P = ((x[^]m)⊗y)[^]n"
using "4" "5"
by blast
have 7: "eval_at_point Q⇩p c q = ((x[^]m)⊗y)[^]n"
proof-
have 70: "(insert_at_index a (inv x) 0) = inv x # a"
using insert_at_index.simps
by (metis (no_types, lifting) append_eq_append_conv2 append_same_eq append_take_drop_id drop0 same_append_eq)
have 71: "(insert_at_index a x) 0 = x # a"
by simp
then show ?thesis using 6 q_def
by (metis "70" DiffI ‹x ≠ 𝟬› a_closed empty_iff insert_iff x_closed xa_def)
qed
have 8: "(x[^]m)⊗y ∈ carrier Q⇩p"
proof-
have 80: "x[^]m ∈ carrier Q⇩p"
using ‹x ≠ 𝟬› x_closed Qp_int_pow_nonzero[of x m] unfolding nonzero_def
by blast
then show ?thesis
using y_def by blast
qed
then have "c ∈ T"
using T_def basic_semialg_set_def "7" c_closed by blast
then show ?thesis
by (simp add: ‹c ∈ T› "0")
qed
qed
show "T ∩ Nz ⊆ partial_pullback 1 Qp_invert k S ∩ Nz"
proof fix x assume A: "x ∈ T ∩ Nz"
show " x ∈ partial_pullback 1 Qp_invert k S ∩ Nz "
proof-
have " x ∈ partial_pullback 1 Qp_invert k S"
proof(rule partial_pullback_memI)
show x_closed: "x ∈ carrier (Q⇩p⇗1+k⇖)"
using T_def A
by (meson IntD1 basic_semialg_set_memE(1))
show "Qp_invert (take 1 x) # drop 1 x ∈ S"
proof-
have 00: "x!0 ≠ 𝟬"
using A Nz_def
by blast
then have 0: "Qp_invert (take 1 x) # drop 1 x = inv (x!0) # drop 1 x"
unfolding Qp_invert_def
by (smt One_nat_def lessI nth_take)
have "drop 1 x ∈ carrier (Q⇩p⇗k⇖)"
using ‹x ∈ carrier (Q⇩p⇗1+k⇖)› cartesian_power_drop by blast
obtain a where a_def: "a = (x!0)"
by blast
have a_closed: "a ∈ carrier Q⇩p"
using 00 a_def A Nz_def cartesian_power_car_memE'[of x Q⇩p "Suc k" 0] inv_in_frac(1)
by blast
have a_nz: "a ≠ 𝟬"
using a_def Nz_def A
by blast
obtain b where b_def: "b = drop 1 x"
by blast
have b_closed: "b ∈ carrier (Q⇩p⇗k⇖)"
using b_def A Nz_def ‹drop 1 x ∈ carrier (Q⇩p⇗k⇖)›
by blast
have abx: "x = a#b"
using a_def b_def x_closed
by (metis (no_types, lifting) One_nat_def append_Cons append_Nil
append_eq_conv_conj cartesian_power_car_memE cartesian_power_decomp
lessI nth_take Qp.to_R1_to_R)
have 1: "Qp_invert (take 1 x) # drop 1 x = (inv a)#b"
using "0" a_def b_def
by blast
have 22: "eval_at_point Q⇩p (insert_at_index b a 0) q =
(a[^] (nat N)) ⊗ (eval_at_point Q⇩p (insert_at_index b (inv a) 0) P)"
using q_def a_closed a_nz b_closed
by blast
obtain c where c_def: "c ∈ carrier Q⇩p ∧ Qp_ev q x = (c[^]n)"
using A T_def unfolding basic_semialg_set_def
by blast
obtain c' where c'_def: "c' = (inv a)[^]m ⊗ c"
by blast
have c'_closed: "c' ∈ carrier Q⇩p"
using c_def a_def a_closed a_nz Qp_int_pow_nonzero nonzero_def
c'_def inv_in_frac(3) Qp.m_closed Qp.nonzero_closed by presburger
have 3: "(eval_at_point Q⇩p ((inv a) # b) P) = (c'[^]n)"
proof-
have 30: "x = insert_at_index b a 0"
using abx
by simp
have 31: "(c[^]n) =
(a[^] (nat N)) ⊗ (eval_at_point Q⇩p (insert_at_index b (inv a) 0) P)"
using 22 30 c_def
by blast
have 32: "insert_at_index b (inv a) 0 = (inv a) # b"
using insert_at_index.simps
by (metis drop0 self_append_conv2 take0)
have 33: "(c[^]n) =
(a[^] (nat N)) ⊗ (eval_at_point Q⇩p ((inv a) # b) P)"
using "31" "32" by presburger
have 34: "(inv a) # b ∈ carrier (Q⇩p⇗1+k⇖)"
apply(rule cartesian_power_car_memI'')
apply (metis b_closed cartesian_power_car_memE length_Suc_conv plus_1_eq_Suc)
using a_closed a_nz b_closed
apply (metis One_nat_def inv_in_frac(1) take0 take_Suc_Cons Qp.to_R1_closed)
by (metis abx b_closed b_def drop_Cons' not_Cons_self2)
have 35: "(eval_at_point Q⇩p ((inv a) # b) P) ∈ carrier Q⇩p"
using 34 P_n_def eval_at_point_closed
by blast
have "inv(a[^] (nat N)) ⊗ (c[^]n) =
inv(a[^] (nat N)) ⊗ ((a[^] (nat N)) ⊗ (eval_at_point Q⇩p ((inv a) # b) P))"
using 31 "33" by presburger
then have 6: "inv(a[^] (nat N)) ⊗ (c[^]n) =
inv(a[^] (nat N)) ⊗ (a[^] (nat N)) ⊗ (eval_at_point Q⇩p ((inv a) # b) P)"
using 35 monoid.m_assoc[of Q⇩p] Qp.monoid_axioms Qp.nat_pow_closed
Qp.nonzero_pow_nonzero a_nz inv_in_frac(1) local.a_closed by presburger
have 37:"inv(a[^] (nat N)) ⊗ (c[^]n) = (eval_at_point Q⇩p ((inv a) # b) P)"
proof-
have "inv(a[^] (nat N)) ⊗ (a[^] (nat N)) = 𝟭 "
using a_closed a_nz Qp.nat_pow_closed Qp.nonzero_pow_nonzero field_inv(1)
by blast
then have "inv(a[^] (nat N)) ⊗ (c[^]n) =
𝟭 ⊗ (eval_at_point Q⇩p ((inv a) # b) P)"
using 6 by presburger
then show ?thesis using 35 Qp.l_one by blast
qed
have 38:"(inv a)[^] (nat N) ⊗ (c[^]n) = (eval_at_point Q⇩p ((inv a) # b) P)"
using 37 group.nat_pow_inv[of Q⇩p a "nat N"] a_closed Qp.field_axioms field.field_nat_pow_inv[of Q⇩p]
by (metis a_nz)
have 39:"((inv a)[^]m) [^] ⇘Q⇩p⇙ n ⊗ (c[^]n) = (eval_at_point Q⇩p ((inv a) # b) P)"
using 2 38 monoid.nat_pow_pow[of Q⇩p "inv a" ] N_def
by (smt "3" Qp_int_nat_pow_pow a_closed a_nz inv_in_frac(3) of_nat_0_le_iff pow_nat)
have 310:"((((inv a)[^]m) ⊗ c)[^]n) = (eval_at_point Q⇩p ((inv a) # b) P)"
proof-
have AA: "(inv a)[^]m ∈ carrier Q⇩p"
using Qp_int_pow_nonzero nonzero_def a_closed a_nz inv_in_frac(3) Qp.nonzero_closed
by presburger
have "((inv a)[^]m) [^] ⇘Q⇩p⇙ n ⊗ (c[^]n) = ((((inv a)[^]m) ⊗ c)[^]n)"
using Qp.nat_pow_distrib[of "(inv a)[^]m" c n] a_closed a_def c_def AA by blast
then show ?thesis
using "39" by blast
qed
then show ?thesis using c'_def
by blast
qed
have 4: "inv a # b ∈ carrier (Q⇩p⇗1+k⇖)"
by (metis a_closed a_nz add.commute b_closed cartesian_power_cons inv_in_frac(1))
then have 5: "((inv a) # b) ∈ S"
using 3 P_n_def c'_closed basic_semialg_set_memI[of "(inv a) # b" "1 + k" c' P n]
by blast
have 6: "Qp_invert (take 1 x) # drop 1 x = inv a # b"
using a_def b_def unfolding Qp_invert_def using "1" Qp_invert_def
by blast
show ?thesis using 5 6
by presburger
qed
qed
then show ?thesis
using A by blast
qed
qed
qed
have 8: "is_semialgebraic (1+k) ((partial_pullback 1 Qp_invert k S) ∩ Nz)"
using "7" Nz_semialg T_semialg intersection_is_semialg
by auto
have 9: "(partial_pullback 1 Qp_invert k S) - Nz = {xs ∈ carrier (Q⇩p⇗Suc k⇖). xs!0 = 𝟬} ∩S"
proof
show "partial_pullback 1 Qp_invert k S - Nz ⊆ {xs ∈ carrier (Q⇩p⇗Suc k⇖). xs ! 0 = 𝟬} ∩ S"
proof fix x assume A: " x ∈ partial_pullback 1 Qp_invert k S - Nz"
have 0: "x ∈ carrier (Q⇩p⇗Suc k⇖)"
using A
by (metis DiffD1 partial_pullback_memE(1) plus_1_eq_Suc)
have 1: "take 1 x ∈ carrier (Q⇩p⇗1⇖)"
by (metis "0" le_add1 plus_1_eq_Suc take_closed)
have 2: "drop 1 x ∈ carrier (Q⇩p⇗k⇖)"
using "0" cartesian_power_drop plus_1_eq_Suc
by presburger
have 3: " x = take 1 x @ drop 1 x "
using 0
by (metis append_take_drop_id)
have 4: "Qp_invert (take 1 x) # drop 1 x ∈ S"
using A partial_pullback_memE'[of "take 1 x" 1 "drop 1 x" k x Qp_invert S] 1 2 3
by blast
have 5: "x!0 = 𝟬"
using A 0 Nz_def by blast
have 6: "Qp_invert (take 1 x) # drop 1 x = x"
proof-
have "(take 1 x) =[x!0]"
using 0
by (metis "1" "3" append_Cons nth_Cons_0 Qp.to_R1_to_R)
then have "Qp_invert (take 1 x) = 𝟬"
unfolding Qp_invert_def using 5
by (metis less_one nth_take)
then show ?thesis using 0 5
by (metis "3" Cons_eq_append_conv ‹take 1 x = [x ! 0]› self_append_conv2)
qed
have "x ∈ S"
using 6 4
by presburger
then show "x ∈ {xs ∈ carrier (Q⇩p⇗Suc k⇖). xs ! 0 = 𝟬} ∩ S"
using Nz_def A 0
by blast
qed
show "{xs ∈ carrier (Q⇩p⇗Suc k⇖). xs ! 0 = 𝟬} ∩ S ⊆ partial_pullback 1 Qp_invert k S - Nz"
proof fix x assume A: "x ∈ {xs ∈ carrier (Q⇩p⇗Suc k⇖). xs ! 0 = 𝟬} ∩ S"
have A0: "x ∈ carrier (Q⇩p⇗Suc k⇖)"
using A by blast
have A1: "x!0 = 𝟬"
using A by blast
have A2: "x ∈ S"
using A by blast
show " x ∈ partial_pullback 1 Qp_invert k S - Nz"
proof
show "x ∉ Nz"
using Nz_def A1 by blast
show " x ∈ partial_pullback 1 Qp_invert k S"
proof(rule partial_pullback_memI)
show "x ∈ carrier (Q⇩p⇗1+k⇖)"
using A0
by (simp add: A0)
show "Qp_invert (take 1 x) # drop 1 x ∈ S"
proof-
have "Qp_invert (take 1 x) = 𝟬"
unfolding Qp_invert_def using A0 A1
by (metis less_numeral_extra(1) nth_take)
then have "Qp_invert (take 1 x) # drop 1 x = x"
using A0 A1 A2
by (metis (no_types, lifting) Cons_eq_append_conv Qp_invert_def ‹x ∈ carrier (Q⇩p⇗1+k⇖)›
append_take_drop_id inv_in_frac(2) le_add_same_cancel1 self_append_conv2
take_closed Qp.to_R1_to_R Qp.to_R_pow_closed zero_le)
then show ?thesis
using A2 by presburger
qed
qed
qed
qed
qed
have 10: "is_semialgebraic (1+k) {xs ∈ carrier (Q⇩p⇗Suc k⇖). xs!0 = 𝟬}"
proof-
have "{xs ∈ carrier (Q⇩p⇗Suc k⇖). xs!0 = 𝟬} = V⇘Q⇩p⇙ (Suc k) (pvar Q⇩p 0)"
unfolding zero_set_def using eval_pvar[of 0 "Suc k"] Qp.cring_axioms
by blast
then show ?thesis using
is_zero_set_imp_basic_semialg pvar_closed[of 0 "Suc k"] Qp.cring_axioms
is_zero_set_imp_semialg plus_1_eq_Suc zero_less_Suc
by presburger
qed
have 11: "is_semialgebraic (1+k) ({xs ∈ carrier (Q⇩p⇗Suc k⇖). xs!0 = 𝟬} ∩S)"
using 10 assms basic_semialg_is_semialgebraic intersection_is_semialg
by blast
have 12: "(partial_pullback 1 Qp_invert k S) = ((partial_pullback 1 Qp_invert k S) ∩ Nz) ∪
((partial_pullback 1 Qp_invert k S) - Nz)"
by blast
have 13: "is_semialgebraic (1+k) ((partial_pullback 1 Qp_invert k S) - Nz)"
using 11 9 by metis
show ?thesis
using 8 12 13
by (metis "7" Int_Diff_Un Int_commute plus_1_eq_Suc union_is_semialgebraic)
qed
lemma Qp_invert_is_semialg:
"is_semialg_function 1 Qp_invert"
proof(rule is_semialg_functionI')
show 0: "Qp_invert ∈ carrier (Q⇩p⇗1⇖) → carrier Q⇩p"
proof fix x
assume A: "x ∈ carrier (Q⇩p⇗1⇖)"
then obtain a where a_def: "x = [a]"
by (metis Qp.to_R1_to_R)
have a_closed: "a ∈ carrier Q⇩p"
using a_def A cartesian_power_concat(1) last_closed'
by blast
show " Qp_invert x ∈ carrier Q⇩p"
apply(cases "a = 𝟬")
unfolding Qp_invert_def using a_def a_closed
apply (meson Qp.to_R_to_R1)
by (metis a_closed a_def inv_in_frac(1) Qp.to_R_to_R1)
qed
show "⋀k S. S ∈ basic_semialgs (1 + k) ⟹ is_semialgebraic (1 + k) (partial_pullback 1 Qp_invert k S)"
using Qp_invert_basic_semialg
by blast
qed
lemma Taylor_deg_1_expansion'':
assumes "f ∈ carrier Q⇩p_x"
assumes "⋀n. f n ∈ 𝒪⇩p"
assumes "a ∈ 𝒪⇩p "
assumes "b ∈ 𝒪⇩p"
shows "∃c c' c''. c = to_fun f a ∧ c' = deriv f a ∧ c ∈ 𝒪⇩p ∧ c' ∈ 𝒪⇩p ∧c'' ∈ 𝒪⇩p ∧
to_fun f (b) = c ⊕ c' ⊗ (b ⊖ a) ⊕ (c'' ⊗ (b ⊖ a)[^](2::nat))"
proof-
obtain S where S_def: "S = (Q⇩p ⦇ carrier := 𝒪⇩p ⦈)"
by blast
have 1: "f ∈ carrier (UP S)"
unfolding S_def using val_ring_subring UPQ.poly_cfs_subring[of 𝒪⇩p f] assms
by blast
have 2: " f ∈ carrier (UP (Q⇩p⦇carrier := 𝒪⇩p⦈))"
using val_ring_subring 1 assms poly_cfs_subring[of 𝒪⇩p]
by blast
have 3: "∃c∈𝒪⇩p. f ∙ b = f ∙ a ⊕ UPQ.deriv f a ⊗ (b ⊖ a) ⊕ c ⊗ (b ⊖ a) [^] (2::nat)"
using UP_subring_taylor_appr'[of 𝒪⇩p f b a] UP_subring_taylor_appr[of 𝒪⇩p f b a] val_ring_subring 1 2 assms
by blast
then show ?thesis
using UP_subring_taylor_appr[of 𝒪⇩p f b a] assms UP_subring_deriv_closed[of 𝒪⇩p f a]
UP_subring_eval_closed[of 𝒪⇩p f a] 2 val_ring_subring by blast
qed
end
subsection‹Sets Defined by Residues of Valuation Ring Elements›
sublocale padic_fields < Res: cring "Zp_res_ring (Suc n)"
using p_residues residues.cring
by blast
context padic_fields
begin
definition Qp_res where
"Qp_res x n = to_Zp x n "
lemma Qp_res_closed:
assumes "x ∈ 𝒪⇩p"
shows "Qp_res x n ∈ carrier (Zp_res_ring n)"
unfolding Qp_res_def using assms val_ring_memE residue_closed to_Zp_closed by blast
lemma Qp_res_add:
assumes "x ∈ 𝒪⇩p"
assumes "y ∈ 𝒪⇩p"
shows "Qp_res (x ⊕ y) n = Qp_res x n ⊕⇘Zp_res_ring n⇙ Qp_res y n"
unfolding Qp_res_def
using assms residue_of_sum to_Zp_add by presburger
lemma Qp_res_mult:
assumes "x ∈ 𝒪⇩p"
assumes "y ∈ 𝒪⇩p"
shows "Qp_res (x ⊗ y) n = Qp_res x n ⊗⇘Zp_res_ring n⇙ Qp_res y n"
unfolding Qp_res_def
using assms residue_of_prod to_Zp_mult by presburger
lemma Qp_res_diff:
assumes "x ∈ 𝒪⇩p"
assumes "y ∈ 𝒪⇩p"
shows "Qp_res (x ⊖ y) n = Qp_res x n ⊖⇘Zp_res_ring n⇙ Qp_res y n"
unfolding Qp_res_def
using assms residue_of_diff to_Zp_minus
by (meson val_ring_res)
lemma Qp_res_zero:
shows "Qp_res 𝟬 n = 0"
unfolding Qp_res_def to_Zp_zero
using residue_of_zero(2) by blast
lemma Qp_res_one:
assumes "n > 0"
shows "Qp_res 𝟭 n = (1::int)"
using assms
unfolding Qp_res_def to_Zp_one
using residue_of_one(2) by blast
lemma Qp_res_nat_inc:
shows "Qp_res ([(n::nat)]⋅𝟭) n = n mod p^n"
unfolding Qp_res_def unfolding to_Zp_nat_inc
using Zp_nat_inc_res by blast
lemma Qp_res_int_inc:
shows "Qp_res ([(k::int)]⋅𝟭) n = k mod p^n"
unfolding Qp_res_def unfolding to_Zp_int_inc
using Zp_int_inc_res by blast
lemma Qp_poly_res_monom:
assumes "a ∈ 𝒪⇩p"
assumes "x ∈ 𝒪⇩p"
assumes "Qp_res a n = 0"
assumes "k > 0"
shows "Qp_res (up_ring.monom (UP Q⇩p) a k ∙ x) n = 0"
proof-
have 0: "up_ring.monom (UP Q⇩p) a k ∙ x = a ⊗ x [^] k"
apply(rule UPQ.to_fun_monom[of a x k])
using assms val_ring_memE apply blast
using assms val_ring_memE by blast
have 1: "x[^]k ∈ 𝒪⇩p"
using assms val_ring_nat_pow_closed by blast
show ?thesis unfolding 0
using Qp_res_mult[of a "x[^]k" n] assms
using "1" residue_times_zero_r by presburger
qed
lemma Qp_poly_res_zero:
assumes "q ∈ carrier (UP Q⇩p)"
assumes "⋀i. q i ∈ 𝒪⇩p"
assumes "⋀i. Qp_res (q i) n = 0"
assumes "x ∈ 𝒪⇩p"
shows "Qp_res (q ∙ x) n = 0"
proof-
have "(∀i. q i ∈ 𝒪⇩p ∧ Qp_res (q i) n = 0) ⟶ Qp_res (q ∙ x) n = 0"
proof(rule UPQ.poly_induct[of q], rule assms, rule )
fix p assume A: "p ∈ carrier (UP Q⇩p)" " deg Q⇩p p = 0" " ∀i. p i ∈ 𝒪⇩p ∧ Qp_res (p i) n = 0"
have 0: "p ∙ x = p 0"
using assms
by (metis A(1) A(2) val_ring_memE UPQ.ltrm_deg_0 UPQ.to_fun_ctrm)
show "Qp_res (p ∙ x) n = 0"
unfolding 0 using A by blast
next
fix p
assume A0: "(⋀q. q ∈ carrier (UP Q⇩p) ⟹ deg Q⇩p q < deg Q⇩p p ⟹ (∀i. q i ∈ 𝒪⇩p ∧ Qp_res (q i) n = 0) ⟶ Qp_res (q ∙ x) n = 0)"
"p ∈ carrier (UP Q⇩p)" "0 < deg Q⇩p p"
show "(∀i. p i ∈ 𝒪⇩p ∧ Qp_res (p i) n = 0) ⟶ Qp_res (p ∙ x) n = 0"
proof assume A1: " ∀i. p i ∈ 𝒪⇩p ∧ Qp_res (p i) n = 0"
obtain k where k_def: "k = deg Q⇩p p"
by blast
obtain q where q_def: "q = UPQ.trunc p"
by blast
have q_closed: "q ∈ carrier (UP Q⇩p)"
unfolding q_def
using A0(2) UPQ.trunc_closed by blast
have q_deg: "deg Q⇩p q < deg Q⇩p p"
unfolding q_def
using A0(2) A0(3) UPQ.trunc_degree by blast
have 9: "⋀i. i < deg Q⇩p p ⟹ q i = p i"
unfolding q_def
using A0(2) UPQ.trunc_cfs by blast
have 90: "⋀i. ¬ i < deg Q⇩p p ⟹ q i = 𝟬"
unfolding q_def
proof -
fix i :: nat
assume "¬ i < deg Q⇩p p"
then have "deg Q⇩p q < i"
using q_deg by linarith
then show "Cring_Poly.truncate Q⇩p p i = 𝟬"
using UPQ.deg_gtE q_closed q_def by blast
qed
have 10: "(∀i. q i ∈ 𝒪⇩p ∧ Qp_res (q i) n = 0)"
proof fix i
show "q i ∈ 𝒪⇩p ∧ Qp_res (q i) n = 0"
apply(cases "i < deg Q⇩p p")
using A1 9[of i] apply presburger
unfolding q_def using Qp_res_zero 90
by (metis q_def zero_in_val_ring)
qed
have 11: "Qp_res (q ∙ x) n = 0"
using 10 A1 A0 q_closed q_deg by blast
have 12: "p = q ⊕⇘UP Q⇩p⇙ up_ring.monom (UP Q⇩p) (p k) k"
unfolding k_def q_def
using A0(2) UPQ.trunc_simps(1) by blast
have 13: "p ∙ x = q ∙ x ⊕ (up_ring.monom (UP Q⇩p) (p k) k) ∙ x"
proof-
have 0: " (q ⊕⇘UP Q⇩p⇙ up_ring.monom (UP Q⇩p) (p k) k) ∙ x = q ∙ x ⊕ up_ring.monom (UP Q⇩p) (p k) k ∙ x"
apply(rule UPQ.to_fun_plus)
using A0(2) UPQ.ltrm_closed k_def apply blast
unfolding q_def apply(rule UPQ.trunc_closed, rule A0)
using assms val_ring_memE by blast
show ?thesis
using 0 12 by metis
qed
have 14: "(up_ring.monom (UP Q⇩p) (p k) k) ∙ x ∈ 𝒪⇩p"
apply(rule val_ring_poly_eval)
using A0(2) UPQ.ltrm_closed k_def apply blast
using UPQ.cfs_monom[of "p k" k ] A1 zero_in_val_ring
using A0(2) UPQ.ltrm_cfs k_def apply presburger
using assms(4) by blast
have 15: "Qp_res ((up_ring.monom (UP Q⇩p) (p k) k) ∙ x) n = 0"
apply(rule Qp_poly_res_monom)
using A1 apply blast using assms apply blast
using A1 apply blast unfolding k_def using A0 by blast
have 16: "Qp_res (q ∙ x) n = 0"
using A0 10 11 by blast
have 17: "q ∙ x ∈ 𝒪⇩p"
apply(rule val_ring_poly_eval, rule q_closed)
using 10 apply blast by(rule assms)
have 18: "Qp_res (q ∙ x ⊕ (up_ring.monom (UP Q⇩p) (p k) k) ∙ x) n = 0"
using Qp_res_add[of "q ∙ x" "up_ring.monom (UP Q⇩p) (p k) k ∙ x" n] 14 17
unfolding 15 16
by (metis "10" Qp_res_add UPQ.cfs_add UPQ.coeff_of_sum_diff_degree0 q_closed q_deg)
show "Qp_res (p ∙ x) n = 0"
using 13 18 by metis
qed
qed
thus ?thesis using assms by blast
qed
lemma Qp_poly_res_eval_0:
assumes "f ∈ carrier (UP Q⇩p)"
assumes "g ∈ carrier (UP Q⇩p)"
assumes "x ∈ 𝒪⇩p"
assumes "⋀i. f i ∈ 𝒪⇩p"
assumes "⋀i. g i ∈ 𝒪⇩p"
assumes "⋀i. Qp_res (f i) n = Qp_res (g i) n"
shows "Qp_res (f ∙ x) n = Qp_res (g ∙ x) n"
proof-
obtain F where F_def: "F = f ⊖⇘UP Q⇩p⇙g"
by blast
have F_closed: "F ∈ carrier (UP Q⇩p)"
unfolding F_def
using assms by blast
have F_cfs: "⋀i. F i = (f i) ⊖ (g i)"
unfolding F_def
using assms UPQ.cfs_minus by blast
have F_cfs_res: "⋀i. Qp_res (F i) n = Qp_res (f i) n ⊖⇘Zp_res_ring n⇙ Qp_res (g i) n"
unfolding F_cfs apply(rule Qp_res_diff)
using assms apply blast using assms by blast
have 0: "⋀i. Qp_res (f i) n = Qp_res (g i) n"
using assms by blast
have F_cfs_res': "⋀i. Qp_res (F i) n = 0"
unfolding F_cfs_res 0
by (metis diff_self mod_0 residue_minus)
have 1: "⋀i. F i ∈ 𝒪⇩p"
unfolding F_cfs using assms
using val_ring_minus_closed by blast
have 2: "Qp_res (F ∙ x) n = 0"
by(rule Qp_poly_res_zero, rule F_closed, rule 1, rule F_cfs_res', rule assms)
have 3: "F ∙ x = f ∙ x ⊖ g ∙ x"
unfolding F_def using assms
by (meson assms UPQ.to_fun_diff val_ring_memE)
have 4: "Qp_res (F ∙ x) n = Qp_res (f ∙ x) n ⊖⇘Zp_res_ring n⇙ Qp_res (g ∙ x) n"
unfolding 3 apply(rule Qp_res_diff, rule val_ring_poly_eval, rule assms)
using assms apply blast using assms apply blast
apply(rule val_ring_poly_eval, rule assms)
using assms apply blast by(rule assms)
have 5: "f ∙ x ∈ 𝒪⇩p"
apply(rule val_ring_poly_eval, rule assms)
using assms apply blast using assms by blast
have 6: "g ∙ x ∈ 𝒪⇩p"
apply(rule val_ring_poly_eval, rule assms)
using assms apply blast by(rule assms)
show "Qp_res (f ∙ x) n = Qp_res (g ∙ x) n"
using 5 6 2 Qp_res_closed[of "f ∙ x" n] Qp_res_closed[of "g ∙ x" n]
unfolding 4
proof -
assume "Qp_res (f ∙ x) n ⊖⇘Zp_res_ring n⇙ Qp_res (g ∙ x) n = 0"
then show ?thesis
by (metis (no_types) Qp_res_def 5 6 res_diff_zero_fact(1) residue_of_diff to_Zp_closed val_ring_memE)
qed
qed
lemma Qp_poly_res_eval_1:
assumes "f ∈ carrier (UP Q⇩p)"
assumes "x ∈ 𝒪⇩p"
assumes "y ∈ 𝒪⇩p"
assumes "⋀i. f i ∈ 𝒪⇩p"
assumes "Qp_res x n = Qp_res y n"
shows "Qp_res (f ∙ x) n = Qp_res (f ∙ y) n"
proof-
have "(∀i. f i ∈ 𝒪⇩p) ⟶ Qp_res (f ∙ x) n = Qp_res (f ∙ y) n"
apply(rule UPQ.poly_induct[of f], rule assms)
proof fix f assume A: "f ∈ carrier (UP Q⇩p)" "deg Q⇩p f = 0" "∀i. f i ∈ 𝒪⇩p"
show "Qp_res (f ∙ x) n = Qp_res (f ∙ y) n"
proof-
obtain a where a_def: "a ∈ carrier Q⇩p ∧ f = to_polynomial Q⇩p a"
using assms
by (metis A(1) A(2) UPQ.lcf_closed UPQ.to_poly_inverse)
have a_eq: "f = to_polynomial Q⇩p a"
using a_def by blast
have 0: "f ∙ x = a"
using a_def assms unfolding a_eq
by (meson UPQ.to_fun_to_poly val_ring_memE)
have 1: "f ∙ y = a"
using a_def assms unfolding a_eq
by (meson UPQ.to_fun_to_poly val_ring_memE)
show " Qp_res (f ∙ x) n = Qp_res (f ∙ y) n"
unfolding 0 1 by blast
qed
next
fix f
assume A: " (⋀q. q ∈ carrier (UP Q⇩p) ⟹ deg Q⇩p q < deg Q⇩p f ⟹ (∀i. q i ∈ 𝒪⇩p) ⟶ Qp_res (q ∙ x) n = Qp_res (q ∙ y) n)"
"f ∈ carrier (UP Q⇩p)" " 0 < deg Q⇩p f"
show "(∀i. f i ∈ 𝒪⇩p) ⟶ Qp_res (f ∙ x) n = Qp_res (f ∙ y) n"
proof assume A1: "∀i. f i ∈ 𝒪⇩p"
obtain q where q_def: "q = UPQ.trunc f"
by blast
have q_closed: "q ∈ carrier (UP Q⇩p)"
using q_def A UPQ.trunc_closed by presburger
have q_deg: "deg Q⇩p q < deg Q⇩p f"
using q_def A UPQ.trunc_degree by blast
have q_cfs: "∀i. q i ∈ 𝒪⇩p"
proof fix i show "q i ∈ 𝒪⇩p"
apply(cases "i < deg Q⇩p f")
unfolding q_def using A A1 UPQ.trunc_cfs
apply presburger
using q_deg q_closed
proof -
assume "¬ i < deg Q⇩p f"
then have "deg Q⇩p f ≤ i"
by (meson diff_is_0_eq neq0_conv zero_less_diff)
then show "Cring_Poly.truncate Q⇩p f i ∈ 𝒪⇩p"
by (metis (no_types) UPQ.deg_eqI diff_is_0_eq' le_trans nat_le_linear neq0_conv q_closed q_def q_deg zero_in_val_ring zero_less_diff)
qed
qed
hence 0: "Qp_res (q ∙ x) n = Qp_res (q ∙ y) n"
using A q_closed q_deg by blast
have 1: "Qp_res (UPQ.ltrm f ∙ x) n = Qp_res (UPQ.ltrm f ∙ y) n"
proof-
have 10: "UPQ.ltrm f ∙ x = (f (deg Q⇩p f)) ⊗ x[^](deg Q⇩p f)"
using A assms A1 UPQ.to_fun_monom val_ring_memE by presburger
have 11: "UPQ.ltrm f ∙ y = (f (deg Q⇩p f)) ⊗ y[^](deg Q⇩p f)"
using A assms A1 UPQ.to_fun_monom val_ring_memE by presburger
obtain d where d_def: "d = deg Q⇩p f"
by blast
have 12: "Qp_res (x[^]d) n = Qp_res (y[^]d) n"
apply(induction d)
using Qp.nat_pow_0 apply presburger
using Qp_res_mult assms Qp.nat_pow_Suc val_ring_nat_pow_closed by presburger
hence 13: "Qp_res (x [^] deg Q⇩p f) n = Qp_res (y [^] deg Q⇩p f) n"
unfolding d_def by blast
have 14: "x [^] deg Q⇩p f ∈ 𝒪⇩p"
using assms val_ring_nat_pow_closed by blast
have 15: "y [^] deg Q⇩p f ∈ 𝒪⇩p"
using assms val_ring_nat_pow_closed by blast
have 16: "Qp_res (f (deg Q⇩p f) ⊗ x [^] deg Q⇩p f) n = Qp_res (f (deg Q⇩p f)) n ⊗⇘residue_ring (p ^ n)⇙ Qp_res (x [^] deg Q⇩p f) n"
apply(rule Qp_res_mult[of "f (deg Q⇩p f)" " x[^](deg Q⇩p f)" n])
using A1 apply blast by(rule 14)
have 17: "Qp_res (f (deg Q⇩p f) ⊗ y [^] deg Q⇩p f) n = Qp_res (f (deg Q⇩p f)) n ⊗⇘residue_ring (p ^ n)⇙ Qp_res (y [^] deg Q⇩p f) n"
apply(rule Qp_res_mult[of "f (deg Q⇩p f)" " y[^](deg Q⇩p f)" n])
using A1 apply blast by(rule 15)
show ?thesis
unfolding 10 11 16 17 13 by blast
qed
have f_decomp: "f = q ⊕⇘UP Q⇩p⇙ UPQ.ltrm f"
using A unfolding q_def
using UPQ.trunc_simps(1) by blast
have 2: "f ∙ x = q ∙ x ⊕ (UPQ.ltrm f ∙ x)"
using A f_decomp q_closed q_cfs
by (metis val_ring_memE UPQ.ltrm_closed UPQ.to_fun_plus assms(2))
have 3: "f ∙ y = q ∙ y ⊕ (UPQ.ltrm f ∙ y)"
using A f_decomp q_closed q_cfs
by (metis val_ring_memE UPQ.ltrm_closed UPQ.to_fun_plus assms(3))
show 4: " Qp_res (f ∙ x) n = Qp_res (f ∙ y) n "
unfolding 2 3 using assms q_cfs Qp_res_add 0 1
by (metis (no_types, opaque_lifting) "2" "3" A(2) A1 Qp_res_def poly_eval_cong)
qed
qed
thus ?thesis using assms by blast
qed
lemma Qp_poly_res_eval_2:
assumes "f ∈ carrier (UP Q⇩p)"
assumes "g ∈ carrier (UP Q⇩p)"
assumes "x ∈ 𝒪⇩p"
assumes "y ∈ 𝒪⇩p"
assumes "⋀i. f i ∈ 𝒪⇩p"
assumes "⋀i. g i ∈ 𝒪⇩p"
assumes "⋀i. Qp_res (f i) n = Qp_res (g i) n"
assumes "Qp_res x n = Qp_res y n"
shows "Qp_res (f ∙ x) n = Qp_res (g ∙ y) n"
proof-
have 0: "Qp_res (f ∙ x) n = Qp_res (g ∙ x) n"
using Qp_poly_res_eval_0 assms by blast
have 1: "Qp_res (g ∙ x) n = Qp_res (g ∙ y) n"
using Qp_poly_res_eval_1 assms by blast
show ?thesis unfolding 0 1 by blast
qed
definition poly_res_class where
"poly_res_class n d f = {q ∈ carrier (UP Q⇩p). deg Q⇩p q ≤ d ∧ (∀i. q i ∈ 𝒪⇩p ∧ Qp_res (f i) n = Qp_res (q i) n) }"
lemma poly_res_class_closed:
assumes "f ∈ carrier (UP Q⇩p)"
assumes "g ∈ carrier (UP Q⇩p)"
assumes "deg Q⇩p f ≤ d"
assumes "deg Q⇩p g ≤ d"
assumes "g ∈ poly_res_class n d f"
shows "poly_res_class n d f = poly_res_class n d g"
unfolding poly_res_class_def
apply(rule equalityI)
apply(rule subsetI)
unfolding mem_Collect_eq apply(rule conjI, blast, rule conjI, blast)
using assms unfolding poly_res_class_def mem_Collect_eq
apply presburger
apply(rule subsetI) unfolding mem_Collect_eq
apply(rule conjI, blast, rule conjI, blast)
using assms unfolding poly_res_class_def mem_Collect_eq
by presburger
lemma poly_res_class_memE:
assumes "f ∈ poly_res_class n d g"
shows "f ∈ carrier (UP Q⇩p)"
"deg Q⇩p f ≤ d"
"f i ∈ 𝒪⇩p"
"Qp_res (g i) n = Qp_res (f i) n"
using assms unfolding poly_res_class_def mem_Collect_eq apply blast
using assms unfolding poly_res_class_def mem_Collect_eq apply blast
using assms unfolding poly_res_class_def mem_Collect_eq apply blast
using assms unfolding poly_res_class_def mem_Collect_eq by blast
definition val_ring_polys where
"val_ring_polys = {f ∈ carrier (UP Q⇩p). (∀i. f i ∈ 𝒪⇩p)} "
lemma val_ring_polys_closed:
"val_ring_polys ⊆ carrier (UP Q⇩p)"
unfolding val_ring_polys_def by blast
lemma val_ring_polys_memI:
assumes "f ∈ carrier (UP Q⇩p)"
assumes "⋀i. f i ∈ 𝒪⇩p"
shows "f ∈ val_ring_polys"
using assms unfolding val_ring_polys_def by blast
lemma val_ring_polys_memE:
assumes "f ∈ val_ring_polys"
shows "f ∈ carrier (UP Q⇩p)"
"f i ∈ 𝒪⇩p"
using assms unfolding val_ring_polys_def apply blast
using assms unfolding val_ring_polys_def by blast
definition val_ring_polys_grad where
"val_ring_polys_grad d = {f ∈ val_ring_polys. deg Q⇩p f ≤ d}"
lemma val_ring_polys_grad_closed:
"val_ring_polys_grad d ⊆ val_ring_polys"
unfolding val_ring_polys_grad_def by blast
lemma val_ring_polys_grad_closed':
"val_ring_polys_grad d ⊆ carrier (UP Q⇩p)"
unfolding val_ring_polys_grad_def val_ring_polys_def by blast
lemma val_ring_polys_grad_memI:
assumes "f ∈ carrier (UP Q⇩p)"
assumes "⋀i. f i ∈ 𝒪⇩p"
assumes "deg Q⇩p f ≤ d"
shows "f ∈ val_ring_polys_grad d"
using assms unfolding val_ring_polys_grad_def val_ring_polys_def by blast
lemma val_ring_polys_grad_memE:
assumes "f ∈ val_ring_polys_grad d"
shows "f ∈ carrier (UP Q⇩p)"
"deg Q⇩p f ≤ d"
"f i ∈ 𝒪⇩p"
using assms unfolding val_ring_polys_grad_def val_ring_polys_def apply blast
using assms unfolding val_ring_polys_grad_def val_ring_polys_def apply blast
using assms unfolding val_ring_polys_grad_def val_ring_polys_def by blast
lemma poly_res_classes_in_val_ring_polys_grad:
assumes "f ∈ val_ring_polys_grad d"
shows "poly_res_class n d f ⊆ val_ring_polys_grad d"
apply(rule subsetI, rule val_ring_polys_grad_memI)
apply(rule poly_res_class_memE[of _ n d f], blast)
apply(rule poly_res_class_memE[of _ n d f], blast)
by(rule poly_res_class_memE[of _ n d f], blast)
lemma poly_res_class_disjoint:
assumes "f ∈ val_ring_polys_grad d"
assumes "f ∉ poly_res_class n d g"
shows "poly_res_class n d f ∩ poly_res_class n d g = {}"
apply(rule equalityI)
apply(rule subsetI)
using assms
unfolding poly_res_class_def mem_Collect_eq Int_iff
apply (metis val_ring_polys_grad_memE(1) val_ring_polys_grad_memE(2) val_ring_polys_grad_memE(3))
by blast
lemma poly_res_class_refl:
assumes "f ∈ val_ring_polys_grad d"
shows "f ∈ poly_res_class n d f"
unfolding poly_res_class_def mem_Collect_eq
using assms val_ring_polys_grad_memE(1) val_ring_polys_grad_memE(2) val_ring_polys_grad_memE(3) by blast
lemma poly_res_class_memI:
assumes "f ∈ carrier (UP Q⇩p)"
assumes "deg Q⇩p f ≤ d"
assumes "⋀i. f i ∈ 𝒪⇩p"
assumes "⋀i. Qp_res (f i) n = Qp_res (g i) n"
shows "f ∈ poly_res_class n d g"
unfolding poly_res_class_def mem_Collect_eq using assms
by metis
definition poly_res_classes where
"poly_res_classes n d = poly_res_class n d ` val_ring_polys_grad d"
lemma poly_res_classes_disjoint:
assumes "A ∈ poly_res_classes n d"
assumes "B ∈ poly_res_classes n d"
assumes "g ∈ A - B"
shows "A ∩ B = {}"
proof-
obtain a where a_def: "a ∈ val_ring_polys_grad d ∧ A = poly_res_class n d a"
using assms unfolding poly_res_classes_def by blast
obtain b where b_def: "b ∈ val_ring_polys_grad d ∧ B = poly_res_class n d b"
using assms unfolding poly_res_classes_def by blast
have 0: "⋀f. f ∈ A ∩ B ⟹ False"
proof-
fix f assume A: "f ∈ A ∩ B"
have 1: "∃i. Qp_res (g i) n ≠ Qp_res (f i) n"
proof(rule ccontr)
assume B: "∄i. Qp_res (g i) n ≠ Qp_res (f i) n"
then have 2: "⋀i. Qp_res (g i) n = Qp_res (f i) n"
by blast
have 3: "g ∈ poly_res_class n d a"
using a_def assms by blast
have 4: "⋀i. Qp_res (b i) n = Qp_res (f i) n"
apply(rule poly_res_class_memE[of _ n d])
using assms A b_def by blast
have 5: "⋀i. Qp_res (a i) n = Qp_res (g i) n"
apply(rule poly_res_class_memE[of _ n d])
using assms A a_def by blast
have 6: "g ∈ poly_res_class n d b"
apply(rule poly_res_class_memI, rule poly_res_class_memE[of _ n d a], rule 3,
rule poly_res_class_memE[of _ n d a], rule 3, rule poly_res_class_memE[of _ n d a], rule 3)
unfolding 2 4 by blast
show False using 6 b_def assms by blast
qed
then obtain i where i_def: "Qp_res (g i) n ≠ Qp_res (f i) n"
by blast
have 2: "⋀i. Qp_res (a i) n = Qp_res (f i) n"
apply(rule poly_res_class_memE[of _ n d])
using A a_def by blast
have 3: "⋀i. Qp_res (b i) n = Qp_res (f i) n"
apply(rule poly_res_class_memE[of _ n d])
using A b_def by blast
have 4: "⋀i. Qp_res (a i) n = Qp_res (g i) n"
apply(rule poly_res_class_memE[of _ n d])
using assms a_def by blast
show False using i_def 2 unfolding 4 2 by blast
qed
show ?thesis using 0 by blast
qed
definition int_fun_to_poly where
"int_fun_to_poly (f::nat ⇒ int) i = [(f i)]⋅𝟭"
lemma int_fun_to_poly_closed:
assumes "⋀i. i > d ⟹ f i = 0"
shows "int_fun_to_poly f ∈ carrier (UP Q⇩p)"
apply(rule UPQ.UP_car_memI[of d])
using assms unfolding int_fun_to_poly_def
using Qp.int_inc_zero apply presburger
by(rule Qp.int_inc_closed)
lemma int_fun_to_poly_deg:
assumes "⋀i. i > d ⟹ f i = 0"
shows "deg Q⇩p (int_fun_to_poly f) ≤ d"
apply(rule UPQ.deg_leqI, rule int_fun_to_poly_closed, rule assms, blast)
unfolding int_fun_to_poly_def using assms
using Qp.int_inc_zero by presburger
lemma Qp_res_mod_triv:
assumes "a ∈ 𝒪⇩p"
shows "Qp_res a n mod p ^ n = Qp_res a n"
using assms Qp_res_closed[of a n]
by (meson mod_pos_pos_trivial p_residue_ring_car_memE(1) p_residue_ring_car_memE(2))
lemma int_fun_to_poly_is_class_wit:
assumes "f ∈ poly_res_class n d g"
shows "(int_fun_to_poly (λi::nat. Qp_res (f i) n)) ∈ poly_res_class n d g"
proof(rule poly_res_class_memI[of ], rule int_fun_to_poly_closed[of d])
show 0: "⋀i. d < i ⟹ Qp_res (f i) n = 0"
proof- fix i assume A: "d < i"
hence 0: "deg Q⇩p f < i"
using A assms poly_res_class_memE(2)[of f n d g]
by linarith
have 1: "f i = 𝟬"
using 0 assms poly_res_class_memE[of f n d g]
using UPQ.UP_car_memE(2) by blast
show "Qp_res (f i) n = 0"
unfolding 1 Qp_res_zero by blast
qed
show "deg Q⇩p (int_fun_to_poly (λi. Qp_res (f i) n)) ≤ d"
by(rule int_fun_to_poly_deg, rule 0, blast)
show "⋀i. int_fun_to_poly (λi. Qp_res (f i) n) i ∈ 𝒪⇩p"
unfolding int_fun_to_poly_def
using Qp.int_mult_closed Qp_val_ringI val_of_int_inc by blast
show "⋀i. Qp_res (int_fun_to_poly (λi. Qp_res (f i) n) i) n = Qp_res (g i) n"
unfolding int_fun_to_poly_def Qp_res_int_inc
using Qp_res_mod_triv assms poly_res_class_memE(4) Qp_res_closed UPQ.cfs_closed
by (metis poly_res_class_memE(3))
qed
lemma finite_support_funs_finite:
"finite (({..d} → carrier (Zp_res_ring n)) ∩ {(f::nat ⇒ int). ∀i > d. f i = 0})"
proof-
have 0: "finite (Π⇩E i ∈ {..d}.carrier (Zp_res_ring n))"
apply(rule finite_PiE, blast)
using residue_ring_card[of n] by blast
obtain g where g_def: "g = (λf. (λi::nat. if i ∈ {..d} then f i else (0::int)))"
by blast
have 1: "g ` (Π⇩E i ∈ {..d}.carrier (Zp_res_ring n)) = (({..d} → carrier (Zp_res_ring n)) ∩ {(f::nat ⇒ int). ∀i > d. f i = 0})"
proof(rule equalityI, rule subsetI)
fix x assume A: "x ∈ g ` ({..d} →⇩E carrier (residue_ring (p ^ n)))"
obtain f where f_def: "f ∈ (Π⇩E i ∈ {..d}.carrier (Zp_res_ring n)) ∧ x = g f"
using A by blast
have x_eq: "x = g f"
using f_def by blast
show "x ∈ ({..d} → carrier (residue_ring (p ^ n))) ∩ {f. ∀i>d. f i = 0}"
proof(rule, rule)
fix i assume A: "i ∈ {..d}"
show "x i ∈ carrier (Zp_res_ring n)"
proof(cases "i ∈ {..d}")
case True
then have T0: "f i ∈ carrier (Zp_res_ring n)"
using f_def by blast
have "x i = f i"
unfolding x_eq g_def
using True by metis
thus ?thesis using T0 by metis
next
case False
then have F0: "x i = 0"
unfolding x_eq g_def by metis
show ?thesis
unfolding F0
by (metis residue_mult_closed residue_times_zero_r)
qed
next
show "x ∈ {f. ∀i>d. f i = 0}"
proof(rule, rule, rule)
fix i assume A: "d < i"
then have 0: "i ∉ {..d}"
by simp
thus "x i = 0"
unfolding x_eq g_def
by metis
qed
qed
next
show "({..d} → carrier (residue_ring (p ^ n))) ∩ {f. ∀i>d. f i = 0}
⊆ g ` ({..d} →⇩E carrier (residue_ring (p ^ n)))"
proof(rule subsetI)
fix x
assume A: " x ∈ ({..d} → carrier (residue_ring (p ^ n))) ∩ {f. ∀i>d. f i = 0}"
show " x ∈ g ` ({..d} →⇩E carrier (residue_ring (p ^ n)))"
proof-
obtain h where h_def: "h = restrict x {..d}"
by blast
have 0: "⋀i. i ∈ {..d} ⟹ h i = x i"
unfolding h_def restrict_apply by metis
have 1: "⋀i. i ∉ {..d} ⟹ h i = undefined"
unfolding h_def restrict_apply by metis
have 2: "⋀i. i ∈ {..d} ⟹ h i ∈ carrier (Zp_res_ring n)"
using A 0 unfolding 0 by blast
have 3: "h ∈ {..d} →⇩E carrier (residue_ring (p ^ n))"
by(rule, rule 2, blast, rule 1, blast)
have 4: "⋀i. i ∉ {..d} ⟹ x i = 0"
using A unfolding Int_iff mem_Collect_eq
by (metis atMost_iff eq_imp_le le_simps(1) linorder_neqE_nat)
have 5: "x = g h"
proof fix i
show "x i = g h i"
unfolding g_def
apply(cases "i ∈ {..d}")
using 0 apply metis unfolding 4
by metis
qed
show ?thesis unfolding 5 using 3 by blast
qed
qed
qed
have 2: "finite (g ` (Π⇩E i ∈ {..d}.carrier (Zp_res_ring n)))"
using 0 by blast
show ?thesis using 2 unfolding 1 by blast
qed
lemma poly_res_classes_finite:
"finite (poly_res_classes n d)"
proof-
have 0: "poly_res_class n d ` int_fun_to_poly ` (({..d} → carrier (Zp_res_ring n)) ∩ {(f::nat ⇒ int). ∀i > d. f i = 0}) = poly_res_classes n d"
proof(rule equalityI, rule subsetI)
fix x assume A: " x ∈ poly_res_class n d ` int_fun_to_poly ` (({..d} → carrier (residue_ring (p ^ n))) ∩ {f. ∀i>d. f i = 0})"
then obtain f where f_def: "f ∈ ({..d} → carrier (residue_ring (p ^ n))) ∩ {f. ∀i>d. f i = 0} ∧
x = poly_res_class n d (int_fun_to_poly f)"
by blast
have x_eq: "x = poly_res_class n d (int_fun_to_poly f)"
using f_def by blast
show "x ∈ poly_res_classes n d"
proof-
have 0: "int_fun_to_poly f ∈ val_ring_polys_grad d"
apply(rule val_ring_polys_grad_memI, rule int_fun_to_poly_closed[of d])
using f_def apply blast
using int_fun_to_poly_def
apply (metis Qp.int_inc_closed padic_fields.int_fun_to_poly_def padic_fields.val_of_int_inc padic_fields_axioms val_ring_memI)
apply(rule int_fun_to_poly_deg)
using f_def by blast
show ?thesis unfolding poly_res_classes_def x_eq
using 0 by blast
qed
next
show "poly_res_classes n d
⊆ poly_res_class n d `
int_fun_to_poly `
(({..d} → carrier (residue_ring (p ^ n))) ∩
{f. ∀i>d. f i = 0})"
proof(rule subsetI)
fix x assume A: " x ∈ poly_res_classes n d"
show "x ∈ poly_res_class n d ` int_fun_to_poly ` (({..d} → carrier (residue_ring (p ^ n))) ∩ {f. ∀i>d. f i = 0})"
proof-
obtain f where f_def: "f ∈ val_ring_polys_grad d ∧ x = poly_res_class n d f"
using A unfolding poly_res_classes_def by blast
have x_eq: "x = poly_res_class n d f"
using f_def by blast
obtain h where h_def: "h = (λi::nat. Qp_res (f i) n)"
by blast
have 0: "⋀i. i > d ⟹ f i = 𝟬"
proof- fix i assume A: "i > d"
have "i > deg Q⇩p f"
apply(rule le_less_trans[of _ d])
using f_def unfolding val_ring_polys_grad_def val_ring_polys_def mem_Collect_eq
apply blast
by(rule A)
then show "f i = 𝟬"
using f_def unfolding val_ring_polys_grad_def val_ring_polys_def mem_Collect_eq
using UPQ.deg_leE by blast
qed
have 1: "⋀i. i > d ⟹ h i = 0"
unfolding h_def 0 Qp_res_zero by blast
have 2: "x = poly_res_class n d (int_fun_to_poly h)"
unfolding x_eq
apply(rule poly_res_class_closed)
using f_def unfolding val_ring_polys_grad_def val_ring_polys_def mem_Collect_eq apply blast
apply(rule int_fun_to_poly_closed[of d], rule 1, blast)
using f_def unfolding val_ring_polys_grad_def val_ring_polys_def mem_Collect_eq apply blast
apply(rule int_fun_to_poly_deg, rule 1, blast)
unfolding h_def
apply(rule int_fun_to_poly_is_class_wit, rule poly_res_class_refl)
using f_def by blast
have 3: "h ∈ ({..d} → carrier (residue_ring (p ^ n))) ∩ {f. ∀i>d. f i = 0}"
apply(rule , rule )
unfolding h_def apply(rule Qp_res_closed, rule val_ring_polys_grad_memE[of _ d])
using f_def apply blast
unfolding mem_Collect_eq apply(rule, rule)
unfolding 0 Qp_res_zero by blast
show ?thesis
unfolding 2 using 3 by blast
qed
qed
qed
have 1: "finite (poly_res_class n d ` int_fun_to_poly ` (({..d} → carrier (Zp_res_ring n)) ∩ {(f::nat ⇒ int). ∀i > d. f i = 0}))"
using finite_support_funs_finite by blast
show ?thesis using 1 unfolding 0 by blast
qed
lemma Qp_res_eq_zeroI:
assumes "a ∈ 𝒪⇩p"
assumes "val a ≥ n"
shows "Qp_res a n = 0"
proof-
have 0: "val_Zp (to_Zp a) ≥ n"
using assms to_Zp_val by presburger
have 1: "to_Zp a n = 0"
apply(rule zero_below_val_Zp, rule to_Zp_closed)
using val_ring_closed assms apply blast
by(rule 0)
thus ?thesis unfolding Qp_res_def by blast
qed
lemma Qp_res_eqI:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
assumes "Qp_res (a ⊖ b) n = 0"
shows "Qp_res a n = Qp_res b n"
using assms by (metis Qp_res_def val_ring_memE res_diff_zero_fact(1) to_Zp_closed to_Zp_minus)
lemma Qp_res_eqI':
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
assumes "val (a ⊖ b) ≥ n"
shows "Qp_res a n = Qp_res b n"
apply(rule Qp_res_eqI, rule assms, rule assms, rule Qp_res_eq_zeroI)
using assms Q⇩p_def Zp_def ι_def padic_fields.val_ring_minus_closed padic_fields_axioms apply blast
by(rule assms)
lemma Qp_res_eqE:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
assumes "Qp_res a n = Qp_res b n"
shows "val (a ⊖ b) ≥ n"
proof-
have 0: "val (a ⊖ b) = val_Zp (to_Zp a ⊖⇘Z⇩p⇙ to_Zp b)"
using assms
by (metis to_Zp_minus to_Zp_val val_ring_minus_closed)
have 1: "(to_Zp a ⊖⇘Z⇩p⇙ to_Zp b) n = 0"
using assms unfolding Qp_res_def
by (meson val_ring_memE res_diff_zero_fact'' to_Zp_closed)
have 2: "val_Zp (to_Zp a ⊖⇘Z⇩p⇙ to_Zp b) ≥ n"
apply(cases "to_Zp a ⊖⇘Z⇩p⇙ to_Zp b = 𝟬⇘Z⇩p⇙")
proof -
assume a1: "to_Zp a ⊖⇘Z⇩p⇙ to_Zp b = 𝟬⇘Z⇩p⇙"
have "∀n. eint (int n) ≤ val_Zp 𝟬⇘Z⇩p⇙"
by (metis (no_types) Zp.r_right_minus_eq Zp.zero_closed val_Zp_dist_def val_Zp_dist_res_eq2)
then show ?thesis
using a1 by presburger
next
assume a1: "to_Zp a ⊖⇘Z⇩p⇙ to_Zp b ≠ 𝟬⇘Z⇩p⇙"
have 00: "to_Zp a ⊖⇘Z⇩p⇙ to_Zp b ∈ carrier Z⇩p"
using assms
by (meson val_ring_memE Zp.cring_simprules(4) to_Zp_closed)
show ?thesis
using 1 a1 ord_Zp_geq[of "to_Zp a ⊖⇘Z⇩p⇙ to_Zp b" n] 00
val_ord_Zp[of "to_Zp a ⊖⇘Z⇩p⇙ to_Zp b"] eint_ord_code by metis
qed
thus ?thesis unfolding 0 by blast
qed
lemma notin_closed:
"(¬ ((c::eint) ≤ x ∧ x ≤ d)) = (x < c ∨ d < x)"
by auto
lemma Qp_res_neqI:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
assumes "val (a ⊖ b) < n"
shows "Qp_res a n ≠ Qp_res b n"
apply(rule ccontr)
using Qp_res_eqE[of a b n] assms
using notin_closed by blast
lemma Qp_res_equal:
assumes "a ∈ 𝒪⇩p"
assumes "l = Qp_res a n"
shows "Qp_res a n = Qp_res ([l]⋅𝟭) n "
unfolding Qp_res_int_inc assms using assms Qp_res_mod_triv by presburger
definition Qp_res_class where
"Qp_res_class n b = {a ∈ 𝒪⇩p. Qp_res a n = Qp_res b n}"
definition Qp_res_classes where
"Qp_res_classes n = Qp_res_class n ` 𝒪⇩p"
lemma val_ring_int_inc_closed:
"[(k::int)]⋅𝟭 ∈ 𝒪⇩p"
proof-
have 0: "[(k::int)]⋅𝟭 = ι ([(k::int)]⋅⇘Z⇩p⇙𝟭⇘Z⇩p⇙)"
using inc_of_int by blast
thus ?thesis
by blast
qed
lemma val_ring_nat_inc_closed:
"[(k::nat)]⋅𝟭 ∈ 𝒪⇩p"
proof-
have 0: "[k]⋅𝟭 = ι ([k]⋅⇘Z⇩p⇙𝟭⇘Z⇩p⇙)"
using inc_of_nat by blast
thus ?thesis
by blast
qed
lemma Qp_res_classes_wits:
"Qp_res_classes n = (λl::int. Qp_res_class n ([l]⋅𝟭)) ` (carrier (Zp_res_ring n))"
proof-
obtain F where F_def: "F = (λl::int. Qp_res_class n ([l]⋅𝟭))"
by blast
have 0: "Qp_res_classes n = F ` (carrier (Zp_res_ring n))"
proof(rule equalityI, rule subsetI)
fix x assume A: "x ∈ Qp_res_classes n"
then obtain a where a_def: "a ∈ 𝒪⇩p ∧ x = Qp_res_class n a"
unfolding Qp_res_classes_def by blast
have 1: "Qp_res a n = Qp_res ([(Qp_res a n)]⋅𝟭) n "
apply(rule Qp_res_equal)
using a_def apply blast by blast
have 2: "Qp_res_class n a = Qp_res_class n ([(Qp_res a n)]⋅𝟭)"
unfolding Qp_res_class_def using 1 by metis
have 3: "x = Qp_res_class n ([(Qp_res a n)]⋅𝟭)"
using a_def unfolding 2 by blast
have 4: "a ∈ 𝒪⇩p"
using a_def by blast
show " x ∈ F ` carrier (Zp_res_ring n)"
unfolding F_def 3
using Qp_res_closed[of a n] 4 by blast
next
show "F ` carrier (residue_ring (p ^ n)) ⊆ Qp_res_classes n"
proof(rule subsetI)
fix x assume A: "x ∈ F ` (carrier (Zp_res_ring n))"
then obtain l where l_def: "l ∈ carrier (Zp_res_ring n) ∧ x = F l"
using A by blast
have 0: "x = F l"
using l_def by blast
show "x ∈ Qp_res_classes n"
unfolding 0 F_def Qp_res_classes_def using val_ring_int_inc_closed by blast
qed
qed
then show ?thesis unfolding F_def by blast
qed
lemma Qp_res_classes_finite:
"finite (Qp_res_classes n)"
by (metis Qp_res_classes_wits finite_atLeastLessThan_int finite_imageI p_res_ring_car)
definition Qp_cong_set where
"Qp_cong_set α a = {x ∈ 𝒪⇩p. to_Zp x α = a α}"
lemma Qp_cong_set_as_ball:
assumes "a ∈ carrier Z⇩p"
assumes "a α = 0"
shows "Qp_cong_set α a = B⇘α⇙[𝟬]"
proof-
have 0: "ι a ∈ carrier Q⇩p"
using assms inc_closed[of a] by blast
show ?thesis
proof
show "Qp_cong_set α a ⊆ B⇘α⇙[𝟬]"
proof fix x assume A: "x ∈ Qp_cong_set α a"
show "x ∈ B⇘α ⇙[𝟬]"
proof(rule c_ballI)
show t0: "x ∈ carrier Q⇩p"
using A unfolding Qp_cong_set_def
using val_ring_memE by blast
show "eint (int α) ≤ val (x ⊖ 𝟬)"
proof-
have t1: "to_Zp x α = 0"
using A unfolding Qp_cong_set_def
by (metis (mono_tags, lifting) assms(2) mem_Collect_eq)
have t2: "val_Zp (to_Zp x) ≥ α"
apply(cases "to_Zp x = 𝟬⇘Z⇩p⇙")
apply (metis Zp.r_right_minus_eq Zp.zero_closed val_Zp_dist_def val_Zp_dist_res_eq2)
using ord_Zp_geq[of "to_Zp x" α] A unfolding Qp_cong_set_def
by (metis (no_types, lifting) val_ring_memE eint_ord_simps(1) t1 to_Zp_closed to_Zp_def val_ord_Zp)
then show ?thesis using A unfolding Qp_cong_set_def mem_Collect_eq
using val_ring_memE
by (metis Qp_res_eqE Qp_res_eq_zeroI Qp_res_zero to_Zp_val zero_in_val_ring)
qed
qed
qed
show "B⇘int α⇙[𝟬] ⊆ Qp_cong_set α a"
proof fix x assume A: "x ∈ B⇘int α⇙[𝟬]"
then have 0: "val x ≥ α"
using assms c_ballE[of x α 𝟬]
by (smt Qp.minus_closed Qp.r_right_minus_eq Qp_diff_diff)
have 1: "to_Zp x ∈ carrier Z⇩p"
using A 0 assms c_ballE(1) to_Zp_closed by blast
have 2: "x ∈ 𝒪⇩p"
using 0 A val_ringI c_ballE
by (smt Q⇩p_def Zp_def ι_def eint_ord_simps(1) of_nat_0 of_nat_le_0_iff val_ring_ord_criterion padic_fields_axioms val_ord' zero_in_val_ring)
then have "val_Zp (to_Zp x) ≥ α"
using 0 1 A assms c_ballE[of x α 𝟬] to_Zp_val by presburger
then have "to_Zp x α = 0"
using 1 zero_below_val_Zp by blast
then show " x ∈ Qp_cong_set α a"
unfolding Qp_cong_set_def using assms(2) 2
by (metis (mono_tags, lifting) mem_Collect_eq)
qed
qed
qed
lemma Qp_cong_set_as_ball':
assumes "a ∈ carrier Z⇩p"
assumes "val_Zp a < eint (int α)"
shows "Qp_cong_set α a = B⇘α⇙[(ι a)]"
proof
show "Qp_cong_set α a ⊆ B⇘α⇙[ι a]"
proof fix x
assume A: "x ∈ Qp_cong_set α a"
then have 0: "to_Zp x α = a α"
unfolding Qp_cong_set_def by blast
have 1: "x ∈ 𝒪⇩p"
using A unfolding Qp_cong_set_def by blast
have 2: "to_Zp x ∈ carrier Z⇩p"
using 1 val_ring_memE to_Zp_closed by blast
have 3: "val_Zp (to_Zp x ⊖⇘Z⇩p⇙ a) ≥ α"
using 0 assms 2 val_Zp_dist_def val_Zp_dist_res_eq2 by presburger
have 4: "val_Zp (to_Zp x ⊖⇘Z⇩p⇙ a) > val_Zp a"
using 3 assms(2) less_le_trans[of "val_Zp a" "eint (int α)" "val_Zp (to_Zp x ⊖⇘Z⇩p⇙ a)" ]
by blast
then have 5: "val_Zp (to_Zp x) = val_Zp a"
using assms 2 equal_val_Zp by blast
have 7: "val (x ⊖ (ι a)) ≥ α"
using 3 5 1 by (metis "2" Zp.minus_closed assms(1) inc_of_diff to_Zp_inc val_of_inc)
then show "x ∈ B⇘int α⇙[ι a]"
using c_ballI[of x α "ι a"] 1 assms val_ring_memE by blast
qed
show "B⇘int α⇙[ι a] ⊆ Qp_cong_set α a"
proof fix x
assume A: "x ∈ B⇘int α⇙[ι a]"
then have 0: "val (x ⊖ ι a) ≥ α"
using c_ballE by blast
have 1: "val (ι a) = val_Zp a"
using assms Zp_def ι_def padic_fields.val_of_inc padic_fields_axioms
by metis
then have 2: "val (x ⊖ ι a) > val (ι a)"
using 0 assms less_le_trans[of "val (ι a)" "eint (int α)" "val (x ⊖ ι a)"]
by metis
have "ι a ∈ carrier Q⇩p"
using assms(1) inc_closed by blast
then have B: "val x = val (ι a)"
using 2 A assms c_ballE(1)[of x α "ι a"]
by (metis ultrametric_equal_eq)
have 3: "val_Zp (to_Zp x) = val_Zp a"
by (metis "1" A ‹val x = val (ι a)› assms(1) c_ballE(1) to_Zp_val val_pos val_ringI)
have 4: "val_Zp (to_Zp x ⊖⇘Z⇩p⇙ a) ≥ α"
using 0 A 3
by (metis B Zp.minus_closed assms(1) c_ballE(1) inc_of_diff to_Zp_closed to_Zp_inc val_of_inc val_pos val_ring_val_criterion)
then have 5: "to_Zp x α = a α"
by (meson A Zp.minus_closed assms(1) c_ballE(1) res_diff_zero_fact(1) to_Zp_closed zero_below_val_Zp)
have 6: "x ∈ 𝒪⇩p"
proof-
have "val x ≥ 0"
using B assms 1 val_pos by presburger
then show ?thesis
using A c_ballE(1) val_ringI by blast
qed
then show "x ∈ Qp_cong_set α a" unfolding Qp_cong_set_def
using "5" by blast
qed
qed
lemma Qp_cong_set_is_univ_semialgebraic:
assumes "a ∈ carrier Z⇩p"
shows "is_univ_semialgebraic (Qp_cong_set α a)"
proof(cases "a α = 0")
case True
then show ?thesis
using ball_is_univ_semialgebraic[of 𝟬 α] Qp.zero_closed Qp_cong_set_as_ball assms
by metis
next
case False
then have "α ≠ 0"
using assms residues_closed[of a 0]
by (meson p_res_ring_0')
then obtain n where n_def: "Suc n = α"
by (metis lessI less_Suc_eq_0_disj)
then have "val_Zp a < eint (int α)"
using below_val_Zp_zero[of a n]
by (smt False assms eint_ile eint_ord_simps(1) eint_ord_simps(2) zero_below_val_Zp)
then show ?thesis
using ball_is_univ_semialgebraic[of "ι a" α] Qp.zero_closed Qp_cong_set_as_ball'[of a α] assms
inc_closed by presburger
qed
lemma constant_res_set_semialg:
assumes "l ∈ carrier (Zp_res_ring n)"
shows "is_univ_semialgebraic {x ∈ 𝒪⇩p. Qp_res x n = l}"
proof-
have 0: "{x ∈ 𝒪⇩p. Qp_res x n = l} = Qp_cong_set n ([l]⋅⇘Z⇩p⇙𝟭⇘Z⇩p⇙)"
apply(rule equalityI')
unfolding mem_Collect_eq Qp_cong_set_def Qp_res_def
apply (metis val_ring_memE Zp_int_inc_rep nat_le_linear p_residue_padic_int to_Zp_closed)
using assms
by (metis Zp_int_inc_res mod_pos_pos_trivial p_residue_ring_car_memE(1) p_residue_ring_car_memE(2))
show ?thesis unfolding 0
apply(rule Qp_cong_set_is_univ_semialgebraic)
by(rule Zp.int_inc_closed)
qed
end
end