Theory TAO_9_PLM
theory TAO_9_PLM
imports
TAO_8_Definitions
"HOL-Eisbach.Eisbach_Tools"
begin
section‹The Deductive System PLM›
text‹\label{TAO_PLM}›
declare meta_defs[no_atp] meta_aux[no_atp]
locale PLM = Axioms
begin
subsection‹Automatic Solver›
text‹\label{TAO_PLM_Solver}›
named_theorems PLM
named_theorems PLM_intro
named_theorems PLM_elim
named_theorems PLM_dest
named_theorems PLM_subst
method PLM_solver declares PLM_intro PLM_elim PLM_subst PLM_dest PLM
= ((assumption | (match axiom in A: "[[φ]]" for φ ⇒ ‹fact A[axiom_instance]›)
| fact PLM | rule PLM_intro | subst PLM_subst | subst (asm) PLM_subst
| fastforce | safe | drule PLM_dest | erule PLM_elim); (PLM_solver)?)
subsection‹Modus Ponens›
text‹\label{TAO_PLM_ModusPonens}›
lemma modus_ponens[PLM]:
"⟦[φ in v]; [φ ❙→ ψ in v]⟧ ⟹ [ψ in v]"
by (simp add: Semantics.T5)
subsection‹Axioms›
text‹\label{TAO_PLM_Axioms}›
interpretation Axioms .
declare axiom[PLM]
declare conn_defs[PLM]
subsection‹(Modally Strict) Proofs and Derivations›
text‹\label{TAO_PLM_ProofsAndDerivations}›
lemma vdash_properties_6[no_atp]:
"⟦[φ in v]; [φ ❙→ ψ in v]⟧ ⟹ [ψ in v]"
using modus_ponens .
lemma vdash_properties_9[PLM]:
"[φ in v] ⟹ [ψ ❙→ φ in v]"
using modus_ponens pl_1[axiom_instance] by blast
lemma vdash_properties_10[PLM]:
"[φ ❙→ ψ in v] ⟹ ([φ in v] ⟹ [ψ in v])"
using vdash_properties_6 .
attribute_setup deduction = ‹
Scan.succeed (Thm.rule_attribute []
(fn _ => fn thm => thm RS @{thm vdash_properties_10}))
›
subsection‹GEN and RN›
text‹\label{TAO_PLM_GEN_RN}›
lemma rule_gen[PLM]:
"⟦⋀α . [φ α in v]⟧ ⟹ [❙∀α . φ α in v]"
by (simp add: Semantics.T8)
lemma RN_2[PLM]:
"(⋀ v . [ψ in v] ⟹ [φ in v]) ⟹ ([❙□ψ in v] ⟹ [❙□φ in v])"
by (simp add: Semantics.T6)
lemma RN[PLM]:
"(⋀ v . [φ in v]) ⟹ [❙□φ in v]"
using qml_3[axiom_necessitation, axiom_instance] RN_2 by blast
subsection‹Negations and Conditionals›
text‹\label{TAO_PLM_NegationsAndConditionals}›
lemma if_p_then_p[PLM]:
"[φ ❙→ φ in v]"
using pl_1 pl_2 vdash_properties_10 axiom_instance by blast
lemma deduction_theorem[PLM,PLM_intro]:
"⟦[φ in v] ⟹ [ψ in v]⟧ ⟹ [φ ❙→ ψ in v]"
by (simp add: Semantics.T5)
lemmas CP = deduction_theorem
lemma ded_thm_cor_3[PLM]:
"⟦[φ ❙→ ψ in v]; [ψ ❙→ χ in v]⟧ ⟹ [φ ❙→ χ in v]"
by (meson pl_2 vdash_properties_10 vdash_properties_9 axiom_instance)
lemma ded_thm_cor_4[PLM]:
"⟦[φ ❙→ (ψ ❙→ χ) in v]; [ψ in v]⟧ ⟹ [φ ❙→ χ in v]"
by (meson pl_2 vdash_properties_10 vdash_properties_9 axiom_instance)
lemma useful_tautologies_1[PLM]:
"[❙¬❙¬φ ❙→ φ in v]"
by (meson pl_1 pl_3 ded_thm_cor_3 ded_thm_cor_4 axiom_instance)
lemma useful_tautologies_2[PLM]:
"[φ ❙→ ❙¬❙¬φ in v]"
by (meson pl_1 pl_3 ded_thm_cor_3 useful_tautologies_1
vdash_properties_10 axiom_instance)
lemma useful_tautologies_3[PLM]:
"[❙¬φ ❙→ (φ ❙→ ψ) in v]"
by (meson pl_1 pl_2 pl_3 ded_thm_cor_3 ded_thm_cor_4 axiom_instance)
lemma useful_tautologies_4[PLM]:
"[(❙¬ψ ❙→ ❙¬φ) ❙→ (φ ❙→ ψ) in v]"
by (meson pl_1 pl_2 pl_3 ded_thm_cor_3 ded_thm_cor_4 axiom_instance)
lemma useful_tautologies_5[PLM]:
"[(φ ❙→ ψ) ❙→ (❙¬ψ ❙→ ❙¬φ) in v]"
by (metis CP useful_tautologies_4 vdash_properties_10)
lemma useful_tautologies_6[PLM]:
"[(φ ❙→ ❙¬ψ) ❙→ (ψ ❙→ ❙¬φ) in v]"
by (metis CP useful_tautologies_4 vdash_properties_10)
lemma useful_tautologies_7[PLM]:
"[(❙¬φ ❙→ ψ) ❙→ (❙¬ψ ❙→ φ) in v]"
using ded_thm_cor_3 useful_tautologies_4 useful_tautologies_5
useful_tautologies_6 by blast
lemma useful_tautologies_8[PLM]:
"[φ ❙→ (❙¬ψ ❙→ ❙¬(φ ❙→ ψ)) in v]"
by (meson ded_thm_cor_3 CP useful_tautologies_5)
lemma useful_tautologies_9[PLM]:
"[(φ ❙→ ψ) ❙→ ((❙¬φ ❙→ ψ) ❙→ ψ) in v]"
by (metis CP useful_tautologies_4 vdash_properties_10)
lemma useful_tautologies_10[PLM]:
"[(φ ❙→ ❙¬ψ) ❙→ ((φ ❙→ ψ) ❙→ ❙¬φ) in v]"
by (metis ded_thm_cor_3 CP useful_tautologies_6)
lemma modus_tollens_1[PLM]:
"⟦[φ ❙→ ψ in v]; [❙¬ψ in v]⟧ ⟹ [❙¬φ in v]"
by (metis ded_thm_cor_3 ded_thm_cor_4 useful_tautologies_3
useful_tautologies_7 vdash_properties_10)
lemma modus_tollens_2[PLM]:
"⟦[φ ❙→ ❙¬ψ in v]; [ψ in v]⟧ ⟹ [❙¬φ in v]"
using modus_tollens_1 useful_tautologies_2
vdash_properties_10 by blast
lemma contraposition_1[PLM]:
"[φ ❙→ ψ in v] = [❙¬ψ ❙→ ❙¬φ in v]"
using useful_tautologies_4 useful_tautologies_5
vdash_properties_10 by blast
lemma contraposition_2[PLM]:
"[φ ❙→ ❙¬ψ in v] = [ψ ❙→ ❙¬φ in v]"
using contraposition_1 ded_thm_cor_3
useful_tautologies_1 by blast
lemma reductio_aa_1[PLM]:
"⟦[❙¬φ in v] ⟹ [❙¬ψ in v]; [❙¬φ in v] ⟹ [ψ in v]⟧ ⟹ [φ in v]"
using CP modus_tollens_2 useful_tautologies_1
vdash_properties_10 by blast
lemma reductio_aa_2[PLM]:
"⟦[φ in v] ⟹ [❙¬ψ in v]; [φ in v] ⟹ [ψ in v]⟧ ⟹ [❙¬φ in v]"
by (meson contraposition_1 reductio_aa_1)
lemma reductio_aa_3[PLM]:
"⟦[❙¬φ ❙→ ❙¬ψ in v]; [❙¬φ ❙→ ψ in v]⟧ ⟹ [φ in v]"
using reductio_aa_1 vdash_properties_10 by blast
lemma reductio_aa_4[PLM]:
"⟦[φ ❙→ ❙¬ψ in v]; [φ ❙→ ψ in v]⟧ ⟹ [❙¬φ in v]"
using reductio_aa_2 vdash_properties_10 by blast
lemma raa_cor_1[PLM]:
"⟦[φ in v]; [❙¬ψ in v] ⟹ [❙¬φ in v]⟧ ⟹ ([φ in v] ⟹ [ψ in v])"
using reductio_aa_1 vdash_properties_9 by blast
lemma raa_cor_2[PLM]:
"⟦[❙¬φ in v]; [❙¬ψ in v] ⟹ [φ in v]⟧ ⟹ ([❙¬φ in v] ⟹ [ψ in v])"
using reductio_aa_1 vdash_properties_9 by blast
lemma raa_cor_3[PLM]:
"⟦[φ in v]; [❙¬ψ ❙→ ❙¬φ in v]⟧ ⟹ ([φ in v] ⟹ [ψ in v])"
using raa_cor_1 vdash_properties_10 by blast
lemma raa_cor_4[PLM]:
"⟦[❙¬φ in v]; [❙¬ψ ❙→ φ in v]⟧ ⟹ ([❙¬φ in v] ⟹ [ψ in v])"
using raa_cor_2 vdash_properties_10 by blast
text‹
\begin{remark}
In contrast to PLM the classical introduction and elimination rules are proven
before the tautologies. The statements proven so far are sufficient
for the proofs and using the derived rules the tautologies can be derived
automatically.
\end{remark}
›
lemma intro_elim_1[PLM]:
"⟦[φ in v]; [ψ in v]⟧ ⟹ [φ ❙& ψ in v]"
unfolding conj_def using ded_thm_cor_4 if_p_then_p modus_tollens_2 by blast
lemmas "❙&I" = intro_elim_1
lemma intro_elim_2_a[PLM]:
"[φ ❙& ψ in v] ⟹ [φ in v]"
unfolding conj_def using CP reductio_aa_1 by blast
lemma intro_elim_2_b[PLM]:
"[φ ❙& ψ in v] ⟹ [ψ in v]"
unfolding conj_def using pl_1 CP reductio_aa_1 axiom_instance by blast
lemmas "❙&E" = intro_elim_2_a intro_elim_2_b
lemma intro_elim_3_a[PLM]:
"[φ in v] ⟹ [φ ❙∨ ψ in v]"
unfolding disj_def using ded_thm_cor_4 useful_tautologies_3 by blast
lemma intro_elim_3_b[PLM]:
"[ψ in v] ⟹ [φ ❙∨ ψ in v]"
by (simp only: disj_def vdash_properties_9)
lemmas "❙∨I" = intro_elim_3_a intro_elim_3_b
lemma intro_elim_4_a[PLM]:
"⟦[φ ❙∨ ψ in v]; [φ ❙→ χ in v]; [ψ ❙→ χ in v]⟧ ⟹ [χ in v]"
unfolding disj_def by (meson reductio_aa_2 vdash_properties_10)
lemma intro_elim_4_b[PLM]:
"⟦[φ ❙∨ ψ in v]; [❙¬φ in v]⟧ ⟹ [ψ in v]"
unfolding disj_def using vdash_properties_10 by blast
lemma intro_elim_4_c[PLM]:
"⟦[φ ❙∨ ψ in v]; [❙¬ψ in v]⟧ ⟹ [φ in v]"
unfolding disj_def using raa_cor_2 vdash_properties_10 by blast
lemma intro_elim_4_d[PLM]:
"⟦[φ ❙∨ ψ in v]; [φ ❙→ χ in v]; [ψ ❙→ Θ in v]⟧ ⟹ [χ ❙∨ Θ in v]"
unfolding disj_def using contraposition_1 ded_thm_cor_3 by blast
lemma intro_elim_4_e[PLM]:
"⟦[φ ❙∨ ψ in v]; [φ ❙≡ χ in v]; [ψ ❙≡ Θ in v]⟧ ⟹ [χ ❙∨ Θ in v]"
unfolding equiv_def using "❙&E"(1) intro_elim_4_d by blast
lemmas "❙∨E" = intro_elim_4_a intro_elim_4_b intro_elim_4_c intro_elim_4_d
lemma intro_elim_5[PLM]:
"⟦[φ ❙→ ψ in v]; [ψ ❙→ φ in v]⟧ ⟹ [φ ❙≡ ψ in v]"
by (simp only: equiv_def "❙&I")
lemmas "❙≡I" = intro_elim_5
lemma intro_elim_6_a[PLM]:
"⟦[φ ❙≡ ψ in v]; [φ in v]⟧ ⟹ [ψ in v]"
unfolding equiv_def using "❙&E"(1) vdash_properties_10 by blast
lemma intro_elim_6_b[PLM]:
"⟦[φ ❙≡ ψ in v]; [ψ in v]⟧ ⟹ [φ in v]"
unfolding equiv_def using "❙&E"(2) vdash_properties_10 by blast
lemma intro_elim_6_c[PLM]:
"⟦[φ ❙≡ ψ in v]; [❙¬φ in v]⟧ ⟹ [❙¬ψ in v]"
unfolding equiv_def using "❙&E"(2) modus_tollens_1 by blast
lemma intro_elim_6_d[PLM]:
"⟦[φ ❙≡ ψ in v]; [❙¬ψ in v]⟧ ⟹ [❙¬φ in v]"
unfolding equiv_def using "❙&E"(1) modus_tollens_1 by blast
lemma intro_elim_6_e[PLM]:
"⟦[φ ❙≡ ψ in v]; [ψ ❙≡ χ in v]⟧ ⟹ [φ ❙≡ χ in v]"
by (metis equiv_def ded_thm_cor_3 "❙&E" "❙≡I")
lemma intro_elim_6_f[PLM]:
"⟦[φ ❙≡ ψ in v]; [φ ❙≡ χ in v]⟧ ⟹ [χ ❙≡ ψ in v]"
by (metis equiv_def ded_thm_cor_3 "❙&E" "❙≡I")
lemmas "❙≡E" = intro_elim_6_a intro_elim_6_b intro_elim_6_c
intro_elim_6_d intro_elim_6_e intro_elim_6_f
lemma intro_elim_7[PLM]:
"[φ in v] ⟹ [❙¬❙¬φ in v]"
using if_p_then_p modus_tollens_2 by blast
lemmas "❙¬❙¬I" = intro_elim_7
lemma intro_elim_8[PLM]:
"[❙¬❙¬φ in v] ⟹ [φ in v]"
using if_p_then_p raa_cor_2 by blast
lemmas "❙¬❙¬E" = intro_elim_8
context
begin
private lemma NotNotI[PLM_intro]:
"[φ in v] ⟹ [❙¬(❙¬φ) in v]"
by (simp add: "❙¬❙¬I")
private lemma NotNotD[PLM_dest]:
"[❙¬(❙¬φ) in v] ⟹ [φ in v]"
using "❙¬❙¬E" by blast
private lemma ImplI[PLM_intro]:
"([φ in v] ⟹ [ψ in v]) ⟹ [φ ❙→ ψ in v]"
using CP .
private lemma ImplE[PLM_elim, PLM_dest]:
"[φ ❙→ ψ in v] ⟹ ([φ in v] ⟹ [ψ in v])"
using modus_ponens .
private lemma ImplS[PLM_subst]:
"[φ ❙→ ψ in v] = ([φ in v] ⟶ [ψ in v])"
using ImplI ImplE by blast
private lemma NotI[PLM_intro]:
"([φ in v] ⟹ (⋀ψ .[ψ in v])) ⟹ [❙¬φ in v]"
using CP modus_tollens_2 by blast
private lemma NotE[PLM_elim,PLM_dest]:
"[❙¬φ in v] ⟹ ([φ in v] ⟶ (∀ψ .[ψ in v]))"
using "❙∨I"(2) "❙∨E"(3) by blast
private lemma NotS[PLM_subst]:
"[❙¬φ in v] = ([φ in v] ⟶ (∀ψ .[ψ in v]))"
using NotI NotE by blast
private lemma ConjI[PLM_intro]:
"⟦[φ in v]; [ψ in v]⟧ ⟹ [φ ❙& ψ in v]"
using "❙&I" by blast
private lemma ConjE[PLM_elim,PLM_dest]:
"[φ ❙& ψ in v] ⟹ (([φ in v] ∧ [ψ in v]))"
using CP "❙&E" by blast
private lemma ConjS[PLM_subst]:
"[φ ❙& ψ in v] = (([φ in v] ∧ [ψ in v]))"
using ConjI ConjE by blast
private lemma DisjI[PLM_intro]:
"[φ in v] ∨ [ψ in v] ⟹ [φ ❙∨ ψ in v]"
using "❙∨I" by blast
private lemma DisjE[PLM_elim,PLM_dest]:
"[φ ❙∨ ψ in v] ⟹ [φ in v] ∨ [ψ in v]"
using CP "❙∨E"(1) by blast
private lemma DisjS[PLM_subst]:
"[φ ❙∨ ψ in v] = ([φ in v] ∨ [ψ in v])"
using DisjI DisjE by blast
private lemma EquivI[PLM_intro]:
"⟦[φ in v] ⟹ [ψ in v];[ψ in v] ⟹ [φ in v]⟧ ⟹ [φ ❙≡ ψ in v]"
using CP "❙≡I" by blast
private lemma EquivE[PLM_elim,PLM_dest]:
"[φ ❙≡ ψ in v] ⟹ (([φ in v] ⟶ [ψ in v]) ∧ ([ψ in v] ⟶ [φ in v]))"
using "❙≡E"(1) "❙≡E"(2) by blast
private lemma EquivS[PLM_subst]:
"[φ ❙≡ ψ in v] = ([φ in v] ⟷ [ψ in v])"
using EquivI EquivE by blast
private lemma NotOrD[PLM_dest]:
"¬[φ ❙∨ ψ in v] ⟹ ¬[φ in v] ∧ ¬[ψ in v]"
using "❙∨I" by blast
private lemma NotAndD[PLM_dest]:
"¬[φ ❙& ψ in v] ⟹ ¬[φ in v] ∨ ¬[ψ in v]"
using "❙&I" by blast
private lemma NotEquivD[PLM_dest]:
"¬[φ ❙≡ ψ in v] ⟹ [φ in v] ≠ [ψ in v]"
by (meson NotI contraposition_1 "❙≡I" vdash_properties_9)
private lemma BoxI[PLM_intro]:
"(⋀ v . [φ in v]) ⟹ [❙□φ in v]"
using RN by blast
private lemma NotBoxD[PLM_dest]:
"¬[❙□φ in v] ⟹ (∃ v . ¬[φ in v])"
using BoxI by blast
private lemma AllI[PLM_intro]:
"(⋀ x . [φ x in v]) ⟹ [❙∀ x . φ x in v]"
using rule_gen by blast
lemma NotAllD[PLM_dest]:
"¬[❙∀ x . φ x in v] ⟹ (∃ x . ¬[φ x in v])"
using AllI by fastforce
end
lemma oth_class_taut_1_a[PLM]:
"[❙¬(φ ❙& ❙¬φ) in v]"
by PLM_solver
lemma oth_class_taut_1_b[PLM]:
"[❙¬(φ ❙≡ ❙¬φ) in v]"
by PLM_solver
lemma oth_class_taut_2[PLM]:
"[φ ❙∨ ❙¬φ in v]"
by PLM_solver
lemma oth_class_taut_3_a[PLM]:
"[(φ ❙& φ) ❙≡ φ in v]"
by PLM_solver
lemma oth_class_taut_3_b[PLM]:
"[(φ ❙& ψ) ❙≡ (ψ ❙& φ) in v]"
by PLM_solver
lemma oth_class_taut_3_c[PLM]:
"[(φ ❙& (ψ ❙& χ)) ❙≡ ((φ ❙& ψ) ❙& χ) in v]"
by PLM_solver
lemma oth_class_taut_3_d[PLM]:
"[(φ ❙∨ φ) ❙≡ φ in v]"
by PLM_solver
lemma oth_class_taut_3_e[PLM]:
"[(φ ❙∨ ψ) ❙≡ (ψ ❙∨ φ) in v]"
by PLM_solver
lemma oth_class_taut_3_f[PLM]:
"[(φ ❙∨ (ψ ❙∨ χ)) ❙≡ ((φ ❙∨ ψ) ❙∨ χ) in v]"
by PLM_solver
lemma oth_class_taut_3_g[PLM]:
"[(φ ❙≡ ψ) ❙≡ (ψ ❙≡ φ) in v]"
by PLM_solver
lemma oth_class_taut_3_i[PLM]:
"[(φ ❙≡ (ψ ❙≡ χ)) ❙≡ ((φ ❙≡ ψ) ❙≡ χ) in v]"
by PLM_solver
lemma oth_class_taut_4_a[PLM]:
"[φ ❙≡ φ in v]"
by PLM_solver
lemma oth_class_taut_4_b[PLM]:
"[φ ❙≡ ❙¬❙¬φ in v]"
by PLM_solver
lemma oth_class_taut_5_a[PLM]:
"[(φ ❙→ ψ) ❙≡ ❙¬(φ ❙& ❙¬ψ) in v]"
by PLM_solver
lemma oth_class_taut_5_b[PLM]:
"[❙¬(φ ❙→ ψ) ❙≡ (φ ❙& ❙¬ψ) in v]"
by PLM_solver
lemma oth_class_taut_5_c[PLM]:
"[(φ ❙→ ψ) ❙→ ((ψ ❙→ χ) ❙→ (φ ❙→ χ)) in v]"
by PLM_solver
lemma oth_class_taut_5_d[PLM]:
"[(φ ❙≡ ψ) ❙≡ (❙¬φ ❙≡ ❙¬ψ) in v]"
by PLM_solver
lemma oth_class_taut_5_e[PLM]:
"[(φ ❙≡ ψ) ❙→ ((φ ❙→ χ) ❙≡ (ψ ❙→ χ)) in v]"
by PLM_solver
lemma oth_class_taut_5_f[PLM]:
"[(φ ❙≡ ψ) ❙→ ((χ ❙→ φ) ❙≡ (χ ❙→ ψ)) in v]"
by PLM_solver
lemma oth_class_taut_5_g[PLM]:
"[(φ ❙≡ ψ) ❙→ ((φ ❙≡ χ) ❙≡ (ψ ❙≡ χ)) in v]"
by PLM_solver
lemma oth_class_taut_5_h[PLM]:
"[(φ ❙≡ ψ) ❙→ ((χ ❙≡ φ) ❙≡ (χ ❙≡ ψ)) in v]"
by PLM_solver
lemma oth_class_taut_5_i[PLM]:
"[(φ ❙≡ ψ) ❙≡ ((φ ❙& ψ) ❙∨ (❙¬φ ❙& ❙¬ψ)) in v]"
by PLM_solver
lemma oth_class_taut_5_j[PLM]:
"[(❙¬(φ ❙≡ ψ)) ❙≡ ((φ ❙& ❙¬ψ) ❙∨ (❙¬φ ❙& ψ)) in v]"
by PLM_solver
lemma oth_class_taut_5_k[PLM]:
"[(φ ❙→ ψ) ❙≡ (❙¬φ ❙∨ ψ) in v]"
by PLM_solver
lemma oth_class_taut_6_a[PLM]:
"[(φ ❙& ψ) ❙≡ ❙¬(❙¬φ ❙∨ ❙¬ψ) in v]"
by PLM_solver
lemma oth_class_taut_6_b[PLM]:
"[(φ ❙∨ ψ) ❙≡ ❙¬(❙¬φ ❙& ❙¬ψ) in v]"
by PLM_solver
lemma oth_class_taut_6_c[PLM]:
"[❙¬(φ ❙& ψ) ❙≡ (❙¬φ ❙∨ ❙¬ψ) in v]"
by PLM_solver
lemma oth_class_taut_6_d[PLM]:
"[❙¬(φ ❙∨ ψ) ❙≡ (❙¬φ ❙& ❙¬ψ) in v]"
by PLM_solver
lemma oth_class_taut_7_a[PLM]:
"[(φ ❙& (ψ ❙∨ χ)) ❙≡ ((φ ❙& ψ) ❙∨ (φ ❙& χ)) in v]"
by PLM_solver
lemma oth_class_taut_7_b[PLM]:
"[(φ ❙∨ (ψ ❙& χ)) ❙≡ ((φ ❙∨ ψ) ❙& (φ ❙∨ χ)) in v]"
by PLM_solver
lemma oth_class_taut_8_a[PLM]:
"[((φ ❙& ψ) ❙→ χ) ❙→ (φ ❙→ (ψ ❙→ χ)) in v]"
by PLM_solver
lemma oth_class_taut_8_b[PLM]:
"[(φ ❙→ (ψ ❙→ χ)) ❙→ ((φ ❙& ψ) ❙→ χ) in v]"
by PLM_solver
lemma oth_class_taut_9_a[PLM]:
"[(φ ❙& ψ) ❙→ φ in v]"
by PLM_solver
lemma oth_class_taut_9_b[PLM]:
"[(φ ❙& ψ) ❙→ ψ in v]"
by PLM_solver
lemma oth_class_taut_10_a[PLM]:
"[φ ❙→ (ψ ❙→ (φ ❙& ψ)) in v]"
by PLM_solver
lemma oth_class_taut_10_b[PLM]:
"[(φ ❙→ (ψ ❙→ χ)) ❙≡ (ψ ❙→ (φ ❙→ χ)) in v]"
by PLM_solver
lemma oth_class_taut_10_c[PLM]:
"[(φ ❙→ ψ) ❙→ ((φ ❙→ χ) ❙→ (φ ❙→ (ψ ❙& χ))) in v]"
by PLM_solver
lemma oth_class_taut_10_d[PLM]:
"[(φ ❙→ χ) ❙→ ((ψ ❙→ χ) ❙→ ((φ ❙∨ ψ) ❙→ χ)) in v]"
by PLM_solver
lemma oth_class_taut_10_e[PLM]:
"[(φ ❙→ ψ) ❙→ ((χ ❙→ Θ) ❙→ ((φ ❙& χ) ❙→ (ψ ❙& Θ))) in v]"
by PLM_solver
lemma oth_class_taut_10_f[PLM]:
"[((φ ❙& ψ) ❙≡ (φ ❙& χ)) ❙≡ (φ ❙→ (ψ ❙≡ χ)) in v]"
by PLM_solver
lemma oth_class_taut_10_g[PLM]:
"[((φ ❙& ψ) ❙≡ (χ ❙& ψ)) ❙≡ (ψ ❙→ (φ ❙≡ χ)) in v]"
by PLM_solver
attribute_setup equiv_lr = ‹
Scan.succeed (Thm.rule_attribute []
(fn _ => fn thm => thm RS @{thm "❙≡E"(1)}))
›
attribute_setup equiv_rl = ‹
Scan.succeed (Thm.rule_attribute []
(fn _ => fn thm => thm RS @{thm "❙≡E"(2)}))
›
attribute_setup equiv_sym = ‹
Scan.succeed (Thm.rule_attribute []
(fn _ => fn thm => thm RS @{thm oth_class_taut_3_g[equiv_lr]}))
›
attribute_setup conj1 = ‹
Scan.succeed (Thm.rule_attribute []
(fn _ => fn thm => thm RS @{thm "❙&E"(1)}))
›
attribute_setup conj2 = ‹
Scan.succeed (Thm.rule_attribute []
(fn _ => fn thm => thm RS @{thm "❙&E"(2)}))
›
attribute_setup conj_sym = ‹
Scan.succeed (Thm.rule_attribute []
(fn _ => fn thm => thm RS @{thm oth_class_taut_3_b[equiv_lr]}))
›
subsection‹Identity›
text‹\label{TAO_PLM_Identity}›
lemma id_eq_prop_prop_1[PLM]:
"[(F::Π⇩1) ❙= F in v]"
unfolding identity_defs by PLM_solver
lemma id_eq_prop_prop_2[PLM]:
"[((F::Π⇩1) ❙= G) ❙→ (G ❙= F) in v]"
by (meson id_eq_prop_prop_1 CP ded_thm_cor_3 l_identity[axiom_instance])
lemma id_eq_prop_prop_3[PLM]:
"[(((F::Π⇩1) ❙= G) ❙& (G ❙= H)) ❙→ (F ❙= H) in v]"
by (metis l_identity[axiom_instance] ded_thm_cor_4 CP "❙&E")
lemma id_eq_prop_prop_4_a[PLM]:
"[(F::Π⇩2) ❙= F in v]"
unfolding identity_defs by PLM_solver
lemma id_eq_prop_prop_4_b[PLM]:
"[(F::Π⇩3) ❙= F in v]"
unfolding identity_defs by PLM_solver
lemma id_eq_prop_prop_5_a[PLM]:
"[((F::Π⇩2) ❙= G) ❙→ (G ❙= F) in v]"
by (meson id_eq_prop_prop_4_a CP ded_thm_cor_3 l_identity[axiom_instance])
lemma id_eq_prop_prop_5_b[PLM]:
"[((F::Π⇩3) ❙= G) ❙→ (G ❙= F) in v]"
by (meson id_eq_prop_prop_4_b CP ded_thm_cor_3 l_identity[axiom_instance])
lemma id_eq_prop_prop_6_a[PLM]:
"[(((F::Π⇩2) ❙= G) ❙& (G ❙= H)) ❙→ (F ❙= H) in v]"
by (metis l_identity[axiom_instance] ded_thm_cor_4 CP "❙&E")
lemma id_eq_prop_prop_6_b[PLM]:
"[(((F::Π⇩3) ❙= G) ❙& (G ❙= H)) ❙→ (F ❙= H) in v]"
by (metis l_identity[axiom_instance] ded_thm_cor_4 CP "❙&E")
lemma id_eq_prop_prop_7[PLM]:
"[(p::Π⇩0) ❙= p in v]"
unfolding identity_defs by PLM_solver
lemma id_eq_prop_prop_7_b[PLM]:
"[(p::𝗈) ❙= p in v]"
unfolding identity_defs by PLM_solver
lemma id_eq_prop_prop_8[PLM]:
"[((p::Π⇩0) ❙= q) ❙→ (q ❙= p) in v]"
by (meson id_eq_prop_prop_7 CP ded_thm_cor_3 l_identity[axiom_instance])
lemma id_eq_prop_prop_8_b[PLM]:
"[((p::𝗈) ❙= q) ❙→ (q ❙= p) in v]"
by (meson id_eq_prop_prop_7_b CP ded_thm_cor_3 l_identity[axiom_instance])
lemma id_eq_prop_prop_9[PLM]:
"[(((p::Π⇩0) ❙= q) ❙& (q ❙= r)) ❙→ (p ❙= r) in v]"
by (metis l_identity[axiom_instance] ded_thm_cor_4 CP "❙&E")
lemma id_eq_prop_prop_9_b[PLM]:
"[(((p::𝗈) ❙= q) ❙& (q ❙= r)) ❙→ (p ❙= r) in v]"
by (metis l_identity[axiom_instance] ded_thm_cor_4 CP "❙&E")
lemma eq_E_simple_1[PLM]:
"[(x ❙=⇩E y) ❙≡ (⦇O!,x⦈ ❙& ⦇O!,y⦈ ❙& ❙□(❙∀F . ⦇F,x⦈ ❙≡ ⦇F,y⦈)) in v]"
proof (rule "❙≡I"; rule CP)
assume 1: "[x ❙=⇩E y in v]"
have "[❙∀ x y . ((x⇧P) ❙=⇩E (y⇧P)) ❙≡ (⦇O!,x⇧P⦈ ❙& ⦇O!,y⇧P⦈
❙& ❙□(❙∀F . ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈)) in v]"
unfolding identity⇩E_infix_def identity⇩E_def
apply (rule lambda_predicates_2_2[axiom_universal, axiom_universal, axiom_instance])
by show_proper
moreover have "[❙∃ α . (α⇧P) ❙= x in v]"
apply (rule cqt_5_mod[where ψ="λ x . x ❙=⇩E y", axiom_instance,deduction])
unfolding identity⇩E_infix_def
apply (rule SimpleExOrEnc.intros)
using 1 unfolding identity⇩E_infix_def by auto
moreover have "[❙∃ β . (β⇧P) ❙= y in v]"
apply (rule cqt_5_mod[where ψ="λ y . x ❙=⇩E y",axiom_instance,deduction])
unfolding identity⇩E_infix_def
apply (rule SimpleExOrEnc.intros) using 1
unfolding identity⇩E_infix_def by auto
ultimately have "[(x ❙=⇩E y) ❙≡ (⦇O!,x⦈ ❙& ⦇O!,y⦈
❙& ❙□(❙∀F . ⦇F,x⦈ ❙≡ ⦇F,y⦈)) in v]"
using cqt_1_κ[axiom_instance,deduction, deduction] by meson
thus "[(⦇O!,x⦈ ❙& ⦇O!,y⦈ ❙& ❙□(❙∀F . ⦇F,x⦈ ❙≡ ⦇F,y⦈)) in v]"
using 1 "❙≡E"(1) by blast
next
assume 1: "[⦇O!,x⦈ ❙& ⦇O!,y⦈ ❙& ❙□(❙∀F. ⦇F,x⦈ ❙≡ ⦇F,y⦈) in v]"
have "[❙∀ x y . ((x⇧P) ❙=⇩E (y⇧P)) ❙≡ (⦇O!,x⇧P⦈ ❙& ⦇O!,y⇧P⦈
❙& ❙□(❙∀F . ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈)) in v]"
unfolding identity⇩E_def identity⇩E_infix_def
apply (rule lambda_predicates_2_2[axiom_universal, axiom_universal, axiom_instance])
by show_proper
moreover have "[❙∃ α . (α⇧P) ❙= x in v]"
apply (rule cqt_5_mod[where ψ="λ x . ⦇O!,x⦈",axiom_instance,deduction])
apply (rule SimpleExOrEnc.intros)
using 1[conj1,conj1] by auto
moreover have "[❙∃ β . (β⇧P) ❙= y in v]"
apply (rule cqt_5_mod[where ψ="λ y . ⦇O!,y⦈",axiom_instance,deduction])
apply (rule SimpleExOrEnc.intros)
using 1[conj1,conj2] by auto
ultimately have "[(x ❙=⇩E y) ❙≡ (⦇O!,x⦈ ❙& ⦇O!,y⦈
❙& ❙□(❙∀F . ⦇F,x⦈ ❙≡ ⦇F,y⦈)) in v]"
using cqt_1_κ[axiom_instance,deduction, deduction] by meson
thus "[(x ❙=⇩E y) in v]" using 1 "❙≡E"(2) by blast
qed
lemma eq_E_simple_2[PLM]:
"[(x ❙=⇩E y) ❙→ (x ❙= y) in v]"
unfolding identity_defs by PLM_solver
lemma eq_E_simple_3[PLM]:
"[(x ❙= y) ❙≡ ((⦇O!,x⦈ ❙& ⦇O!,y⦈ ❙& ❙□(❙∀F . ⦇F,x⦈ ❙≡ ⦇F,y⦈))
❙∨ (⦇A!,x⦈ ❙& ⦇A!,y⦈ ❙& ❙□(❙∀F. ⦃x,F⦄ ❙≡ ⦃y,F⦄))) in v]"
using eq_E_simple_1
apply - unfolding identity_defs
by PLM_solver
lemma id_eq_obj_1[PLM]: "[(x⇧P) ❙= (x⇧P) in v]"
proof -
have "[(❙◇⦇E!, x⇧P⦈) ❙∨ (❙¬❙◇⦇E!, x⇧P⦈) in v]"
using PLM.oth_class_taut_2 by simp
hence "[(❙◇⦇E!, x⇧P⦈) in v] ∨ [(❙¬❙◇⦇E!, x⇧P⦈) in v]"
using CP "❙∨E"(1) by blast
moreover {
assume "[(❙◇⦇E!, x⇧P⦈) in v]"
hence "[⦇❙λx. ❙◇⦇E!,x⇧P⦈,x⇧P⦈ in v]"
apply (rule lambda_predicates_2_1[axiom_instance, equiv_rl, rotated])
by show_proper
hence "[⦇❙λx. ❙◇⦇E!,x⇧P⦈,x⇧P⦈ ❙& ⦇❙λx. ❙◇⦇E!,x⇧P⦈,x⇧P⦈
❙& ❙□(❙∀F. ⦇F,x⇧P⦈ ❙≡ ⦇F,x⇧P⦈) in v]"
apply - by PLM_solver
hence "[(x⇧P) ❙=⇩E (x⇧P) in v]"
using eq_E_simple_1[equiv_rl] unfolding Ordinary_def by fast
}
moreover {
assume "[(❙¬❙◇⦇E!, x⇧P⦈) in v]"
hence "[⦇❙λx. ❙¬❙◇⦇E!,x⇧P⦈,x⇧P⦈ in v]"
apply (rule lambda_predicates_2_1[axiom_instance, equiv_rl, rotated])
by show_proper
hence "[⦇❙λx. ❙¬❙◇⦇E!,x⇧P⦈,x⇧P⦈ ❙& ⦇❙λx. ❙¬❙◇⦇E!,x⇧P⦈,x⇧P⦈
❙& ❙□(❙∀F. ⦃x⇧P,F⦄ ❙≡ ⦃x⇧P,F⦄) in v]"
apply - by PLM_solver
}
ultimately show ?thesis unfolding identity_defs Ordinary_def Abstract_def
using "❙∨I" by blast
qed
lemma id_eq_obj_2[PLM]:
"[((x⇧P) ❙= (y⇧P)) ❙→ ((y⇧P) ❙= (x⇧P)) in v]"
by (meson l_identity[axiom_instance] id_eq_obj_1 CP ded_thm_cor_3)
lemma id_eq_obj_3[PLM]:
"[((x⇧P) ❙= (y⇧P)) ❙& ((y⇧P) ❙= (z⇧P)) ❙→ ((x⇧P) ❙= (z⇧P)) in v]"
by (metis l_identity[axiom_instance] ded_thm_cor_4 CP "❙&E")
end
text‹
\begin{remark}
To unify the statements of the properties of equality a type class is introduced.
\end{remark}
›
class id_eq = quantifiable_and_identifiable +
assumes id_eq_1: "[(x :: 'a) ❙= x in v]"
assumes id_eq_2: "[((x :: 'a) ❙= y) ❙→ (y ❙= x) in v]"
assumes id_eq_3: "[((x :: 'a) ❙= y) ❙& (y ❙= z) ❙→ (x ❙= z) in v]"
instantiation ν :: id_eq
begin
instance proof
fix x :: ν and v
show "[x ❙= x in v]"
using PLM.id_eq_obj_1
by (simp add: identity_ν_def)
next
fix x y::ν and v
show "[x ❙= y ❙→ y ❙= x in v]"
using PLM.id_eq_obj_2
by (simp add: identity_ν_def)
next
fix x y z::ν and v
show "[((x ❙= y) ❙& (y ❙= z)) ❙→ x ❙= z in v]"
using PLM.id_eq_obj_3
by (simp add: identity_ν_def)
qed
end
instantiation 𝗈 :: id_eq
begin
instance proof
fix x :: 𝗈 and v
show "[x ❙= x in v]"
using PLM.id_eq_prop_prop_7 .
next
fix x y :: 𝗈 and v
show "[x ❙= y ❙→ y ❙= x in v]"
using PLM.id_eq_prop_prop_8 .
next
fix x y z :: 𝗈 and v
show "[((x ❙= y) ❙& (y ❙= z)) ❙→ x ❙= z in v]"
using PLM.id_eq_prop_prop_9 .
qed
end
instantiation Π⇩1 :: id_eq
begin
instance proof
fix x :: Π⇩1 and v
show "[x ❙= x in v]"
using PLM.id_eq_prop_prop_1 .
next
fix x y :: Π⇩1 and v
show "[x ❙= y ❙→ y ❙= x in v]"
using PLM.id_eq_prop_prop_2 .
next
fix x y z :: Π⇩1 and v
show "[((x ❙= y) ❙& (y ❙= z)) ❙→ x ❙= z in v]"
using PLM.id_eq_prop_prop_3 .
qed
end
instantiation Π⇩2 :: id_eq
begin
instance proof
fix x :: Π⇩2 and v
show "[x ❙= x in v]"
using PLM.id_eq_prop_prop_4_a .
next
fix x y :: Π⇩2 and v
show "[x ❙= y ❙→ y ❙= x in v]"
using PLM.id_eq_prop_prop_5_a .
next
fix x y z :: Π⇩2 and v
show "[((x ❙= y) ❙& (y ❙= z)) ❙→ x ❙= z in v]"
using PLM.id_eq_prop_prop_6_a .
qed
end
instantiation Π⇩3 :: id_eq
begin
instance proof
fix x :: Π⇩3 and v
show "[x ❙= x in v]"
using PLM.id_eq_prop_prop_4_b .
next
fix x y :: Π⇩3 and v
show "[x ❙= y ❙→ y ❙= x in v]"
using PLM.id_eq_prop_prop_5_b .
next
fix x y z :: Π⇩3 and v
show "[((x ❙= y) ❙& (y ❙= z)) ❙→ x ❙= z in v]"
using PLM.id_eq_prop_prop_6_b .
qed
end
context PLM
begin
lemma id_eq_1[PLM]:
"[(x::'a::id_eq) ❙= x in v]"
using id_eq_1 .
lemma id_eq_2[PLM]:
"[((x::'a::id_eq) ❙= y) ❙→ (y ❙= x) in v]"
using id_eq_2 .
lemma id_eq_3[PLM]:
"[((x::'a::id_eq) ❙= y) ❙& (y ❙= z) ❙→ (x ❙= z) in v]"
using id_eq_3 .
attribute_setup eq_sym = ‹
Scan.succeed (Thm.rule_attribute []
(fn _ => fn thm => thm RS @{thm id_eq_2[deduction]}))
›
lemma all_self_eq_1[PLM]:
"[❙□(❙∀ α :: 'a::id_eq . α ❙= α) in v]"
by PLM_solver
lemma all_self_eq_2[PLM]:
"[❙∀α :: 'a::id_eq . ❙□(α ❙= α) in v]"
by PLM_solver
lemma t_id_t_proper_1[PLM]:
"[τ ❙= τ' ❙→ (❙∃ β . (β⇧P) ❙= τ) in v]"
proof (rule CP)
assume "[τ ❙= τ' in v]"
moreover {
assume "[τ ❙=⇩E τ' in v]"
hence "[❙∃ β . (β⇧P) ❙= τ in v]"
apply -
apply (rule cqt_5_mod[where ψ="λ τ . τ ❙=⇩E τ'", axiom_instance, deduction])
subgoal unfolding identity_defs by (rule SimpleExOrEnc.intros)
by simp
}
moreover {
assume "[⦇A!,τ⦈ ❙& ⦇A!,τ'⦈ ❙& ❙□(❙∀F. ⦃τ,F⦄ ❙≡ ⦃τ',F⦄) in v]"
hence "[❙∃ β . (β⇧P) ❙= τ in v]"
apply -
apply (rule cqt_5_mod[where ψ="λ τ . ⦇A!,τ⦈", axiom_instance, deduction])
subgoal unfolding identity_defs by (rule SimpleExOrEnc.intros)
by PLM_solver
}
ultimately show "[❙∃ β . (β⇧P) ❙= τ in v]" unfolding identity⇩κ_def
using intro_elim_4_b reductio_aa_1 by blast
qed
lemma t_id_t_proper_2[PLM]: "[τ ❙= τ' ❙→ (❙∃ β . (β⇧P) ❙= τ') in v]"
proof (rule CP)
assume "[τ ❙= τ' in v]"
moreover {
assume "[τ ❙=⇩E τ' in v]"
hence "[❙∃ β . (β⇧P) ❙= τ' in v]"
apply -
apply (rule cqt_5_mod[where ψ="λ τ' . τ ❙=⇩E τ'", axiom_instance, deduction])
subgoal unfolding identity_defs by (rule SimpleExOrEnc.intros)
by simp
}
moreover {
assume "[⦇A!,τ⦈ ❙& ⦇A!,τ'⦈ ❙& ❙□(❙∀F. ⦃τ,F⦄ ❙≡ ⦃τ',F⦄) in v]"
hence "[❙∃ β . (β⇧P) ❙= τ' in v]"
apply -
apply (rule cqt_5_mod[where ψ="λ τ . ⦇A!,τ⦈", axiom_instance, deduction])
subgoal unfolding identity_defs by (rule SimpleExOrEnc.intros)
by PLM_solver
}
ultimately show "[❙∃ β . (β⇧P) ❙= τ' in v]" unfolding identity⇩κ_def
using intro_elim_4_b reductio_aa_1 by blast
qed
lemma id_nec[PLM]: "[((α::'a::id_eq) ❙= (β)) ❙≡ ❙□((α) ❙= (β)) in v]"
apply (rule "❙≡I")
using l_identity[where φ = "(λ β . ❙□((α) ❙= (β)))", axiom_instance]
id_eq_1 RN ded_thm_cor_4 unfolding identity_ν_def
apply blast
using qml_2[axiom_instance] by blast
lemma id_nec_desc[PLM]:
"[((❙ιx. φ x) ❙= (❙ιx. ψ x)) ❙≡ ❙□((❙ιx. φ x) ❙= (❙ιx. ψ x)) in v]"
proof (cases "[(❙∃ α. (α⇧P) ❙= (❙ιx . φ x)) in v] ∧ [(❙∃ β. (β⇧P) ❙= (❙ιx . ψ x)) in v]")
assume "[(❙∃ α. (α⇧P) ❙= (❙ιx . φ x)) in v] ∧ [(❙∃ β. (β⇧P) ❙= (❙ιx . ψ x)) in v]"
then obtain α and β where
"[(α⇧P) ❙= (❙ιx . φ x) in v] ∧ [(β⇧P) ❙= (❙ιx . ψ x) in v]"
apply - unfolding conn_defs by PLM_solver
moreover {
moreover have "[(α) ❙= (β) ❙≡ ❙□((α) ❙= (β)) in v]" by PLM_solver
ultimately have "[((❙ιx. φ x) ❙= (β⇧P) ❙≡ ❙□((❙ιx. φ x) ❙= (β⇧P))) in v]"
using l_identity[where φ="λ α . (α) ❙= (β⇧P) ❙≡ ❙□((α) ❙= (β⇧P))", axiom_instance]
modus_ponens unfolding identity_ν_def by metis
}
ultimately show ?thesis
using l_identity[where φ="λ α . (❙ιx . φ x) ❙= (α)
❙≡ ❙□((❙ιx . φ x) ❙= (α))", axiom_instance]
modus_ponens by metis
next
assume "¬([(❙∃ α. (α⇧P) ❙= (❙ιx . φ x)) in v] ∧ [(❙∃ β. (β⇧P) ❙= (❙ιx . ψ x)) in v])"
hence "¬[⦇A!,(❙ιx . φ x)⦈ in v] ∧ ¬[(❙ιx . φ x) ❙=⇩E (❙ιx . ψ x) in v]
∨ ¬[⦇A!,(❙ιx . ψ x)⦈ in v] ∧ ¬[(❙ιx . φ x) ❙=⇩E (❙ιx . ψ x) in v]"
unfolding identity⇩E_infix_def
using cqt_5[axiom_instance] PLM.contraposition_1 SimpleExOrEnc.intros
vdash_properties_10 by meson
hence "¬[(❙ιx . φ x) ❙= (❙ιx . ψ x) in v]"
apply - unfolding identity_defs by PLM_solver
thus ?thesis apply - apply PLM_solver
using qml_2[axiom_instance, deduction] by auto
qed
subsection‹Quantification›
text‹\label{TAO_PLM_Quantification}›
lemma rule_ui[PLM,PLM_elim,PLM_dest]:
"[❙∀α . φ α in v] ⟹ [φ β in v]"
by (meson cqt_1[axiom_instance, deduction])
lemmas "❙∀E" = rule_ui
lemma rule_ui_2[PLM,PLM_elim,PLM_dest]:
"⟦[❙∀α . φ (α⇧P) in v]; [❙∃ α . (α)⇧P ❙= β in v]⟧ ⟹ [φ β in v]"
using cqt_1_κ[axiom_instance, deduction, deduction] by blast
lemma cqt_orig_1[PLM]:
"[(❙∀α. φ α) ❙→ φ β in v]"
by PLM_solver
lemma cqt_orig_2[PLM]:
"[(❙∀α. φ ❙→ ψ α) ❙→ (φ ❙→ (❙∀α. ψ α)) in v]"
by PLM_solver
lemma universal[PLM]:
"(⋀α . [φ α in v]) ⟹ [❙∀ α . φ α in v]"
using rule_gen .
lemmas "❙∀I" = universal
lemma cqt_basic_1[PLM]:
"[(❙∀α. (❙∀β . φ α β)) ❙≡ (❙∀β. (❙∀α. φ α β)) in v]"
by PLM_solver
lemma cqt_basic_2[PLM]:
"[(❙∀α. φ α ❙≡ ψ α) ❙≡ ((❙∀α. φ α ❙→ ψ α) ❙& (❙∀α. ψ α ❙→ φ α)) in v]"
by PLM_solver
lemma cqt_basic_3[PLM]:
"[(❙∀α. φ α ❙≡ ψ α) ❙→ ((❙∀α. φ α) ❙≡ (❙∀α. ψ α)) in v]"
by PLM_solver
lemma cqt_basic_4[PLM]:
"[(❙∀α. φ α ❙& ψ α) ❙≡ ((❙∀α. φ α) ❙& (❙∀α. ψ α)) in v]"
by PLM_solver
lemma cqt_basic_6[PLM]:
"[(❙∀α. (❙∀α. φ α)) ❙≡ (❙∀α. φ α) in v]"
by PLM_solver
lemma cqt_basic_7[PLM]:
"[(φ ❙→ (❙∀α . ψ α)) ❙≡ (❙∀α.(φ ❙→ ψ α)) in v]"
by PLM_solver
lemma cqt_basic_8[PLM]:
"[((❙∀α. φ α) ❙∨ (❙∀α. ψ α)) ❙→ (❙∀α. (φ α ❙∨ ψ α)) in v]"
by PLM_solver
lemma cqt_basic_9[PLM]:
"[((❙∀α. φ α ❙→ ψ α) ❙& (❙∀α. ψ α ❙→ χ α)) ❙→ (❙∀α. φ α ❙→ χ α) in v]"
by PLM_solver
lemma cqt_basic_10[PLM]:
"[((❙∀α. φ α ❙≡ ψ α) ❙& (❙∀α. ψ α ❙≡ χ α)) ❙→ (❙∀α. φ α ❙≡ χ α) in v]"
by PLM_solver
lemma cqt_basic_11[PLM]:
"[(❙∀α. φ α ❙≡ ψ α) ❙≡ (❙∀α. ψ α ❙≡ φ α) in v]"
by PLM_solver
lemma cqt_basic_12[PLM]:
"[(❙∀α. φ α) ❙≡ (❙∀β. φ β) in v]"
by PLM_solver
lemma existential[PLM,PLM_intro]:
"[φ α in v] ⟹ [❙∃ α. φ α in v]"
unfolding exists_def by PLM_solver
lemmas "❙∃I" = existential
lemma instantiation_[PLM,PLM_elim,PLM_dest]:
"⟦[❙∃α . φ α in v]; (⋀α.[φ α in v] ⟹ [ψ in v])⟧ ⟹ [ψ in v]"
unfolding exists_def by PLM_solver
lemma Instantiate:
assumes "[❙∃ x . φ x in v]"
obtains x where "[φ x in v]"
apply (insert assms) unfolding exists_def by PLM_solver
lemmas "❙∃E" = Instantiate
lemma cqt_further_1[PLM]:
"[(❙∀α. φ α) ❙→ (❙∃α. φ α) in v]"
by PLM_solver
lemma cqt_further_2[PLM]:
"[(❙¬(❙∀α. φ α)) ❙≡ (❙∃α. ❙¬φ α) in v]"
unfolding exists_def by PLM_solver
lemma cqt_further_3[PLM]:
"[(❙∀α. φ α) ❙≡ ❙¬(❙∃α. ❙¬φ α) in v]"
unfolding exists_def by PLM_solver
lemma cqt_further_4[PLM]:
"[(❙¬(❙∃α. φ α)) ❙≡ (❙∀α. ❙¬φ α) in v]"
unfolding exists_def by PLM_solver
lemma cqt_further_5[PLM]:
"[(❙∃α. φ α ❙& ψ α) ❙→ ((❙∃α. φ α) ❙& (❙∃α. ψ α)) in v]"
unfolding exists_def by PLM_solver
lemma cqt_further_6[PLM]:
"[(❙∃α. φ α ❙∨ ψ α) ❙≡ ((❙∃α. φ α) ❙∨ (❙∃α. ψ α)) in v]"
unfolding exists_def by PLM_solver
lemma cqt_further_10[PLM]:
"[(φ (α::'a::id_eq) ❙& (❙∀ β . φ β ❙→ β ❙= α)) ❙≡ (❙∀ β . φ β ❙≡ β ❙= α) in v]"
apply PLM_solver
using l_identity[axiom_instance, deduction, deduction] id_eq_2[deduction]
apply blast
using id_eq_1 by auto
lemma cqt_further_11[PLM]:
"[((❙∀α. φ α) ❙& (❙∀α. ψ α)) ❙→ (❙∀α. φ α ❙≡ ψ α) in v]"
by PLM_solver
lemma cqt_further_12[PLM]:
"[((❙¬(❙∃α. φ α)) ❙& (❙¬(❙∃α. ψ α))) ❙→ (❙∀α. φ α ❙≡ ψ α) in v]"
unfolding exists_def by PLM_solver
lemma cqt_further_13[PLM]:
"[((❙∃α. φ α) ❙& (❙¬(❙∃α. ψ α))) ❙→ (❙¬(❙∀α. φ α ❙≡ ψ α)) in v]"
unfolding exists_def by PLM_solver
lemma cqt_further_14[PLM]:
"[(❙∃α. ❙∃β. φ α β) ❙≡ (❙∃β. ❙∃α. φ α β) in v]"
unfolding exists_def by PLM_solver
lemma nec_exist_unique[PLM]:
"[(❙∀ x. φ x ❙→ ❙□(φ x)) ❙→ ((❙∃!x. φ x) ❙→ (❙∃!x. ❙□(φ x))) in v]"
proof (rule CP)
assume a: "[❙∀x. φ x ❙→ ❙□φ x in v]"
show "[(❙∃!x. φ x) ❙→ (❙∃!x. ❙□φ x) in v]"
proof (rule CP)
assume "[(❙∃!x. φ x) in v]"
hence "[❙∃α. φ α ❙& (❙∀β. φ β ❙→ β ❙= α) in v]"
by (simp only: exists_unique_def)
then obtain α where 1:
"[φ α ❙& (❙∀β. φ β ❙→ β ❙= α) in v]"
by (rule "❙∃E")
{
fix β
have "[❙□φ β ❙→ β ❙= α in v]"
by (metis "1" Semantics.T5 Semantics.T6 cqt_orig_1 oth_class_taut_9_b)
}
hence "[❙∀β. ❙□φ β ❙→ β ❙= α in v]" by (rule "❙∀I")
moreover have "[❙□(φ α) in v]"
using 1 "❙&E"(1) a vdash_properties_10 cqt_orig_1[deduction]
by fast
ultimately have "[❙∃α. ❙□(φ α) ❙& (❙∀β. ❙□φ β ❙→ β ❙= α) in v]"
using "❙&I" "❙∃I" by fast
thus "[(❙∃!x. ❙□φ x) in v]"
unfolding exists_unique_def by assumption
qed
qed
subsection‹Actuality and Descriptions›
text‹\label{TAO_PLM_ActualityAndDescriptions}›
lemma nec_imp_act[PLM]: "[❙□φ ❙→ ❙𝒜φ in v]"
apply (rule CP)
using qml_act_2[axiom_instance, equiv_lr]
qml_2[axiom_actualization, axiom_instance]
logic_actual_nec_2[axiom_instance, equiv_lr, deduction]
by blast
lemma act_conj_act_1[PLM]:
"[❙𝒜(❙𝒜φ ❙→ φ) in v]"
using equiv_def logic_actual_nec_2[axiom_instance]
logic_actual_nec_4[axiom_instance] "❙&E"(2) "❙≡E"(2)
by metis
lemma act_conj_act_2[PLM]:
"[❙𝒜(φ ❙→ ❙𝒜φ) in v]"
using logic_actual_nec_2[axiom_instance] qml_act_1[axiom_instance]
ded_thm_cor_3 "❙≡E"(2) nec_imp_act
by blast
lemma act_conj_act_3[PLM]:
"[(❙𝒜φ ❙& ❙𝒜ψ) ❙→ ❙𝒜(φ ❙& ψ) in v]"
unfolding conn_defs
by (metis logic_actual_nec_2[axiom_instance]
logic_actual_nec_1[axiom_instance]
"❙≡E"(2) CP "❙≡E"(4) reductio_aa_2
vdash_properties_10)
lemma act_conj_act_4[PLM]:
"[❙𝒜(❙𝒜φ ❙≡ φ) in v]"
unfolding equiv_def
by (PLM_solver PLM_intro: act_conj_act_3[where φ="❙𝒜φ ❙→ φ"
and ψ="φ ❙→ ❙𝒜φ", deduction])
lemma closure_act_1a[PLM]:
"[❙𝒜❙𝒜(❙𝒜φ ❙≡ φ) in v]"
using logic_actual_nec_4[axiom_instance]
act_conj_act_4 "❙≡E"(1)
by blast
lemma closure_act_1b[PLM]:
"[❙𝒜❙𝒜❙𝒜(❙𝒜φ ❙≡ φ) in v]"
using logic_actual_nec_4[axiom_instance]
act_conj_act_4 "❙≡E"(1)
by blast
lemma closure_act_1c[PLM]:
"[❙𝒜❙𝒜❙𝒜❙𝒜(❙𝒜φ ❙≡ φ) in v]"
using logic_actual_nec_4[axiom_instance]
act_conj_act_4 "❙≡E"(1)
by blast
lemma closure_act_2[PLM]:
"[❙∀α. ❙𝒜(❙𝒜(φ α) ❙≡ φ α) in v]"
by PLM_solver
lemma closure_act_3[PLM]:
"[❙𝒜(❙∀α. ❙𝒜(φ α) ❙≡ φ α) in v]"
by (PLM_solver PLM_intro: logic_actual_nec_3[axiom_instance, equiv_rl])
lemma closure_act_4[PLM]:
"[❙𝒜(❙∀α⇩1 α⇩2. ❙𝒜(φ α⇩1 α⇩2) ❙≡ φ α⇩1 α⇩2) in v]"
by (PLM_solver PLM_intro: logic_actual_nec_3[axiom_instance, equiv_rl])
lemma closure_act_4_b[PLM]:
"[❙𝒜(❙∀α⇩1 α⇩2 α⇩3. ❙𝒜(φ α⇩1 α⇩2 α⇩3) ❙≡ φ α⇩1 α⇩2 α⇩3) in v]"
by (PLM_solver PLM_intro: logic_actual_nec_3[axiom_instance, equiv_rl])
lemma closure_act_4_c[PLM]:
"[❙𝒜(❙∀α⇩1 α⇩2 α⇩3 α⇩4. ❙𝒜(φ α⇩1 α⇩2 α⇩3 α⇩4) ❙≡ φ α⇩1 α⇩2 α⇩3 α⇩4) in v]"
by (PLM_solver PLM_intro: logic_actual_nec_3[axiom_instance, equiv_rl])
lemma RA[PLM,PLM_intro]:
"([φ in dw]) ⟹ [❙𝒜φ in dw]"
using logic_actual[necessitation_averse_axiom_instance, equiv_rl] .
lemma RA_2[PLM,PLM_intro]:
"([ψ in dw] ⟹ [φ in dw]) ⟹ ([❙𝒜ψ in dw] ⟹ [❙𝒜φ in dw])"
using RA logic_actual[necessitation_averse_axiom_instance] intro_elim_6_a by blast
context
begin
private lemma ActualE[PLM,PLM_elim,PLM_dest]:
"[❙𝒜φ in dw] ⟹ [φ in dw]"
using logic_actual[necessitation_averse_axiom_instance, equiv_lr] .
private lemma NotActualD[PLM_dest]:
"¬[❙𝒜φ in dw] ⟹ ¬[φ in dw]"
using RA by metis
private lemma ActualImplI[PLM_intro]:
"[❙𝒜φ ❙→ ❙𝒜ψ in v] ⟹ [❙𝒜(φ ❙→ ψ) in v]"
using logic_actual_nec_2[axiom_instance, equiv_rl] .
private lemma ActualImplE[PLM_dest, PLM_elim]:
"[❙𝒜(φ ❙→ ψ) in v] ⟹ [❙𝒜φ ❙→ ❙𝒜ψ in v]"
using logic_actual_nec_2[axiom_instance, equiv_lr] .
private lemma NotActualImplD[PLM_dest]:
"¬[❙𝒜(φ ❙→ ψ) in v] ⟹ ¬[❙𝒜φ ❙→ ❙𝒜ψ in v]"
using ActualImplI by blast
private lemma ActualNotI[PLM_intro]:
"[❙¬❙𝒜φ in v] ⟹ [❙𝒜❙¬φ in v]"
using logic_actual_nec_1[axiom_instance, equiv_rl] .
lemma ActualNotE[PLM_elim,PLM_dest]:
"[❙𝒜❙¬φ in v] ⟹ [❙¬❙𝒜φ in v]"
using logic_actual_nec_1[axiom_instance, equiv_lr] .
lemma NotActualNotD[PLM_dest]:
"¬[❙𝒜❙¬φ in v] ⟹ ¬[❙¬❙𝒜φ in v]"
using ActualNotI by blast
private lemma ActualConjI[PLM_intro]:
"[❙𝒜φ ❙& ❙𝒜ψ in v] ⟹ [❙𝒜(φ ❙& ψ) in v]"
unfolding equiv_def
by (PLM_solver PLM_intro: act_conj_act_3[deduction])
private lemma ActualConjE[PLM_elim,PLM_dest]:
"[❙𝒜(φ ❙& ψ) in v] ⟹ [❙𝒜φ ❙& ❙𝒜ψ in v]"
unfolding conj_def by PLM_solver
private lemma ActualEquivI[PLM_intro]:
"[❙𝒜φ ❙≡ ❙𝒜ψ in v] ⟹ [❙𝒜(φ ❙≡ ψ) in v]"
unfolding equiv_def
by (PLM_solver PLM_intro: act_conj_act_3[deduction])
private lemma ActualEquivE[PLM_elim, PLM_dest]:
"[❙𝒜(φ ❙≡ ψ) in v] ⟹ [❙𝒜φ ❙≡ ❙𝒜ψ in v]"
unfolding equiv_def by PLM_solver
private lemma ActualBoxI[PLM_intro]:
"[❙□φ in v] ⟹ [❙𝒜(❙□φ) in v]"
using qml_act_2[axiom_instance, equiv_lr] .
private lemma ActualBoxE[PLM_elim, PLM_dest]:
"[❙𝒜(❙□φ) in v] ⟹ [❙□φ in v]"
using qml_act_2[axiom_instance, equiv_rl] .
private lemma NotActualBoxD[PLM_dest]:
"¬[❙𝒜(❙□φ) in v] ⟹ ¬[❙□φ in v]"
using ActualBoxI by blast
private lemma ActualDisjI[PLM_intro]:
"[❙𝒜φ ❙∨ ❙𝒜ψ in v] ⟹ [❙𝒜(φ ❙∨ ψ) in v]"
unfolding disj_def by PLM_solver
private lemma ActualDisjE[PLM_elim,PLM_dest]:
"[❙𝒜(φ ❙∨ ψ) in v] ⟹ [❙𝒜φ ❙∨ ❙𝒜ψ in v]"
unfolding disj_def by PLM_solver
private lemma NotActualDisjD[PLM_dest]:
"¬[❙𝒜(φ ❙∨ ψ) in v] ⟹ ¬[❙𝒜φ ❙∨ ❙𝒜ψ in v]"
using ActualDisjI by blast
private lemma ActualForallI[PLM_intro]:
"[❙∀ x . ❙𝒜(φ x) in v] ⟹ [❙𝒜(❙∀ x . φ x) in v]"
using logic_actual_nec_3[axiom_instance, equiv_rl] .
lemma ActualForallE[PLM_elim,PLM_dest]:
"[❙𝒜(❙∀ x . φ x) in v] ⟹ [❙∀ x . ❙𝒜(φ x) in v]"
using logic_actual_nec_3[axiom_instance, equiv_lr] .
lemma NotActualForallD[PLM_dest]:
"¬[❙𝒜(❙∀ x . φ x) in v] ⟹ ¬[❙∀ x . ❙𝒜(φ x) in v]"
using ActualForallI by blast
lemma ActualActualI[PLM_intro]:
"[❙𝒜φ in v] ⟹ [❙𝒜❙𝒜φ in v]"
using logic_actual_nec_4[axiom_instance, equiv_lr] .
lemma ActualActualE[PLM_elim,PLM_dest]:
"[❙𝒜❙𝒜φ in v] ⟹ [❙𝒜φ in v]"
using logic_actual_nec_4[axiom_instance, equiv_rl] .
lemma NotActualActualD[PLM_dest]:
"¬[❙𝒜❙𝒜φ in v] ⟹ ¬[❙𝒜φ in v]"
using ActualActualI by blast
end
lemma ANeg_1[PLM]:
"[❙¬❙𝒜φ ❙≡ ❙¬φ in dw]"
by PLM_solver
lemma ANeg_2[PLM]:
"[❙¬❙𝒜❙¬φ ❙≡ φ in dw]"
by PLM_solver
lemma Act_Basic_1[PLM]:
"[❙𝒜φ ❙∨ ❙𝒜❙¬φ in v]"
by PLM_solver
lemma Act_Basic_2[PLM]:
"[❙𝒜(φ ❙& ψ) ❙≡ (❙𝒜φ ❙& ❙𝒜ψ) in v]"
by PLM_solver
lemma Act_Basic_3[PLM]:
"[❙𝒜(φ ❙≡ ψ) ❙≡ ((❙𝒜(φ ❙→ ψ)) ❙& (❙𝒜(ψ ❙→ φ))) in v]"
by PLM_solver
lemma Act_Basic_4[PLM]:
"[(❙𝒜(φ ❙→ ψ) ❙& ❙𝒜(ψ ❙→ φ)) ❙≡ (❙𝒜φ ❙≡ ❙𝒜ψ) in v]"
by PLM_solver
lemma Act_Basic_5[PLM]:
"[❙𝒜(φ ❙≡ ψ) ❙≡ (❙𝒜φ ❙≡ ❙𝒜ψ) in v]"
by PLM_solver
lemma Act_Basic_6[PLM]:
"[❙◇φ ❙≡ ❙𝒜(❙◇φ) in v]"
unfolding diamond_def by PLM_solver
lemma Act_Basic_7[PLM]:
"[❙𝒜φ ❙≡ ❙□❙𝒜φ in v]"
by (simp add: qml_2[axiom_instance] qml_act_1[axiom_instance] "❙≡I")
lemma Act_Basic_8[PLM]:
"[❙𝒜(❙□φ) ❙→ ❙□❙𝒜φ in v]"
by (metis qml_act_2[axiom_instance] CP Act_Basic_7 "❙≡E"(1)
"❙≡E"(2) nec_imp_act vdash_properties_10)
lemma Act_Basic_9[PLM]:
"[❙□φ ❙→ ❙□❙𝒜φ in v]"
using qml_act_1[axiom_instance] ded_thm_cor_3 nec_imp_act by blast
lemma Act_Basic_10[PLM]:
"[❙𝒜(φ ❙∨ ψ) ❙≡ ❙𝒜φ ❙∨ ❙𝒜ψ in v]"
by PLM_solver
lemma Act_Basic_11[PLM]:
"[❙𝒜(❙∃α. φ α) ❙≡ (❙∃α.❙𝒜(φ α)) in v]"
proof -
have "[❙𝒜(❙∀ α . ❙¬φ α) ❙≡ (❙∀ α . ❙𝒜❙¬φ α) in v]"
using logic_actual_nec_3[axiom_instance] by blast
hence "[❙¬❙𝒜(❙∀ α . ❙¬φ α) ❙≡ ❙¬(❙∀ α . ❙𝒜❙¬φ α) in v]"
using oth_class_taut_5_d[equiv_lr] by blast
moreover have "[❙𝒜❙¬(❙∀ α . ❙¬φ α) ❙≡ ❙¬❙𝒜(❙∀ α . ❙¬φ α) in v]"
using logic_actual_nec_1[axiom_instance] by blast
ultimately have "[❙𝒜❙¬(❙∀ α . ❙¬φ α) ❙≡ ❙¬(❙∀ α . ❙𝒜❙¬φ α) in v]"
using "❙≡E"(5) by blast
moreover {
have "[❙∀ α . ❙𝒜❙¬φ α ❙≡ ❙¬❙𝒜φ α in v]"
using logic_actual_nec_1[axiom_universal, axiom_instance] by blast
hence "[(❙∀ α . ❙𝒜❙¬φ α) ❙≡ (❙∀ α . ❙¬❙𝒜φ α) in v]"
using cqt_basic_3[deduction] by fast
hence "[(❙¬(❙∀ α . ❙𝒜❙¬φ α)) ❙≡ ❙¬(❙∀ α . ❙¬❙𝒜φ α) in v]"
using oth_class_taut_5_d[equiv_lr] by blast
}
ultimately show ?thesis
by (metis "❙∃E" MetaSolver.EquivI Semantics.T7 existential)
qed
lemma act_quant_uniq[PLM]:
"[(❙∀ z . ❙𝒜φ z ❙≡ z ❙= x) ❙≡ (❙∀ z . φ z ❙≡ z ❙= x) in dw]"
by PLM_solver
lemma fund_cont_desc[PLM]:
"[(x⇧P ❙= (❙ιx. φ x)) ❙≡ (❙∀ z . φ z ❙≡ (z ❙= x)) in dw]"
using descriptions[axiom_instance] act_quant_uniq "❙≡E"(5) by fast
lemma hintikka[PLM]:
"[(x⇧P ❙= (❙ιx. φ x)) ❙≡ (φ x ❙& (❙∀ z . φ z ❙→ z ❙= x)) in dw]"
proof -
have "[(❙∀ z . φ z ❙≡ z ❙= x) ❙≡ (φ x ❙& (❙∀ z . φ z ❙→ z ❙= x)) in dw]"
unfolding identity_ν_def apply PLM_solver using id_eq_obj_1 apply simp
using l_identity[where φ="λ x . φ x", axiom_instance,
deduction, deduction]
using id_eq_obj_2[deduction] unfolding identity_ν_def by fastforce
thus ?thesis using "❙≡E"(5) fund_cont_desc by blast
qed
lemma russell_axiom_a[PLM]:
"[(⦇F, ❙ιx. φ x⦈) ❙≡ (❙∃ x . φ x ❙& (❙∀ z . φ z ❙→ z ❙= x) ❙& ⦇F, x⇧P⦈) in dw]"
(is "[?lhs ❙≡ ?rhs in dw]")
proof -
{
assume 1: "[?lhs in dw]"
hence "[❙∃α. α⇧P ❙= (❙ιx. φ x) in dw]"
using cqt_5[axiom_instance, deduction]
SimpleExOrEnc.intros
by blast
then obtain α where 2:
"[α⇧P ❙= (❙ιx. φ x) in dw]"
using "❙∃E" by auto
hence 3: "[φ α ❙& (❙∀ z . φ z ❙→ z ❙= α) in dw]"
using hintikka[equiv_lr] by simp
from 2 have "[(❙ιx. φ x) ❙= (α⇧P) in dw]"
using l_identity[where α="α⇧P" and β="❙ιx. φ x" and φ="λ x . x ❙= α⇧P",
axiom_instance, deduction, deduction]
id_eq_obj_1[where x=α] by auto
hence "[⦇F, α⇧P⦈ in dw]"
using 1 l_identity[where β="α⇧P" and α="❙ιx. φ x" and φ="λ x . ⦇F,x⦈",
axiom_instance, deduction, deduction] by auto
with 3 have "[φ α ❙& (❙∀ z . φ z ❙→ z ❙= α) ❙& ⦇F, α⇧P⦈ in dw]" by (rule "❙&I")
hence "[?rhs in dw]" using "❙∃I"[where α=α] by simp
}
moreover {
assume "[?rhs in dw]"
then obtain α where 4:
"[φ α ❙& (❙∀ z . φ z ❙→ z ❙= α) ❙& ⦇F, α⇧P⦈ in dw]"
using "❙∃E" by auto
hence "[α⇧P ❙= (❙ιx . φ x) in dw] ∧ [⦇F, α⇧P⦈ in dw]"
using hintikka[equiv_rl] "❙&E" by blast
hence "[?lhs in dw]"
using l_identity[axiom_instance, deduction, deduction]
by blast
}
ultimately show ?thesis by PLM_solver
qed
lemma russell_axiom_g[PLM]:
"[⦃❙ιx. φ x,F⦄ ❙≡ (❙∃ x . φ x ❙& (❙∀ z . φ z ❙→ z ❙= x) ❙& ⦃x⇧P, F⦄) in dw]"
(is "[?lhs ❙≡ ?rhs in dw]")
proof -
{
assume 1: "[?lhs in dw]"
hence "[❙∃α. α⇧P ❙= (❙ιx. φ x) in dw]"
using cqt_5[axiom_instance, deduction] SimpleExOrEnc.intros by blast
then obtain α where 2: "[α⇧P ❙= (❙ιx. φ x) in dw]" by (rule "❙∃E")
hence 3: "[(φ α ❙& (❙∀ z . φ z ❙→ z ❙= α)) in dw]"
using hintikka[equiv_lr] by simp
from 2 have "[(❙ιx. φ x) ❙= α⇧P in dw]"
using l_identity[where α="α⇧P" and β="❙ιx. φ x" and φ="λ x . x ❙= α⇧P",
axiom_instance, deduction, deduction]
id_eq_obj_1[where x=α] by auto
hence "[⦃α⇧P, F⦄ in dw]"
using 1 l_identity[where β="α⇧P" and α="❙ιx. φ x" and φ="λ x . ⦃x,F⦄",
axiom_instance, deduction, deduction] by auto
with 3 have "[(φ α ❙& (❙∀ z . φ z ❙→ z ❙= α)) ❙& ⦃α⇧P, F⦄ in dw]"
using "❙&I" by auto
hence "[?rhs in dw]" using "❙∃I"[where α=α] by (simp add: identity_defs)
}
moreover {
assume "[?rhs in dw]"
then obtain α where 4:
"[φ α ❙& (❙∀ z . φ z ❙→ z ❙= α) ❙& ⦃α⇧P, F⦄ in dw]"
using "❙∃E" by auto
hence "[α⇧P ❙= (❙ιx . φ x) in dw] ∧ [⦃α⇧P, F⦄ in dw]"
using hintikka[equiv_rl] "❙&E" by blast
hence "[?lhs in dw]"
using l_identity[axiom_instance, deduction, deduction]
by fast
}
ultimately show ?thesis by PLM_solver
qed
lemma russell_axiom[PLM]:
assumes "SimpleExOrEnc ψ"
shows "[ψ (❙ιx. φ x) ❙≡ (❙∃ x . φ x ❙& (❙∀ z . φ z ❙→ z ❙= x) ❙& ψ (x⇧P)) in dw]"
(is "[?lhs ❙≡ ?rhs in dw]")
proof -
{
assume 1: "[?lhs in dw]"
hence "[❙∃α. α⇧P ❙= (❙ιx. φ x) in dw]"
using cqt_5[axiom_instance, deduction] assms by blast
then obtain α where 2: "[α⇧P ❙= (❙ιx. φ x) in dw]" by (rule "❙∃E")
hence 3: "[(φ α ❙& (❙∀ z . φ z ❙→ z ❙= α)) in dw]"
using hintikka[equiv_lr] by simp
from 2 have "[(❙ιx. φ x) ❙= (α⇧P) in dw]"
using l_identity[where α="α⇧P" and β="❙ιx. φ x" and φ="λ x . x ❙= α⇧P",
axiom_instance, deduction, deduction]
id_eq_obj_1[where x=α] by auto
hence "[ψ (α⇧P) in dw]"
using 1 l_identity[where β="α⇧P" and α="❙ιx. φ x" and φ="λ x . ψ x",
axiom_instance, deduction, deduction] by auto
with 3 have "[φ α ❙& (❙∀ z . φ z ❙→ z ❙= α) ❙& ψ (α⇧P) in dw]"
using "❙&I" by auto
hence "[?rhs in dw]" using "❙∃I"[where α=α] by (simp add: identity_defs)
}
moreover {
assume "[?rhs in dw]"
then obtain α where 4:
"[φ α ❙& (❙∀ z . φ z ❙→ z ❙= α) ❙& ψ (α⇧P) in dw]"
using "❙∃E" by auto
hence "[α⇧P ❙= (❙ιx . φ x) in dw] ∧ [ψ (α⇧P) in dw]"
using hintikka[equiv_rl] "❙&E" by blast
hence "[?lhs in dw]"
using l_identity[axiom_instance, deduction, deduction]
by fast
}
ultimately show ?thesis by PLM_solver
qed
lemma unique_exists[PLM]:
"[(❙∃ y . y⇧P ❙= (❙ιx. φ x)) ❙≡ (❙∃!x . φ x) in dw]"
proof((rule "❙≡I", rule CP, rule_tac[2] CP))
assume "[❙∃y. y⇧P ❙= (❙ιx. φ x) in dw]"
then obtain α where
"[α⇧P ❙= (❙ιx. φ x) in dw]"
by (rule "❙∃E")
hence "[φ α ❙& (❙∀β. φ β ❙→ β ❙= α) in dw]"
using hintikka[equiv_lr] by auto
thus "[❙∃!x . φ x in dw]"
unfolding exists_unique_def using "❙∃I" by fast
next
assume "[❙∃!x . φ x in dw]"
then obtain α where
"[φ α ❙& (❙∀β. φ β ❙→ β ❙= α) in dw]"
unfolding exists_unique_def by (rule "❙∃E")
hence "[α⇧P ❙= (❙ιx. φ x) in dw]"
using hintikka[equiv_rl] by auto
thus "[❙∃y. y⇧P ❙= (❙ιx. φ x) in dw]"
using "❙∃I" by fast
qed
lemma y_in_1[PLM]:
"[x⇧P ❙= (❙ιx . φ) ❙→ φ in dw]"
using hintikka[equiv_lr, conj1] by (rule CP)
lemma y_in_2[PLM]:
"[z⇧P ❙= (❙ιx . φ x) ❙→ φ z in dw]"
using hintikka[equiv_lr, conj1] by (rule CP)
lemma y_in_3[PLM]:
"[(❙∃ y . y⇧P ❙= (❙ιx . φ (x⇧P))) ❙→ φ (❙ιx . φ (x⇧P)) in dw]"
proof (rule CP)
assume "[(❙∃ y . y⇧P ❙= (❙ιx . φ (x⇧P))) in dw]"
then obtain y where 1:
"[y⇧P ❙= (❙ιx. φ (x⇧P)) in dw]"
by (rule "❙∃E")
hence "[φ (y⇧P) in dw]"
using y_in_2[deduction] unfolding identity_ν_def by blast
thus "[φ (❙ιx. φ (x⇧P)) in dw]"
using l_identity[axiom_instance, deduction,
deduction] 1 by fast
qed
lemma act_quant_nec[PLM]:
"[(❙∀z . (❙𝒜φ z ❙≡ z ❙= x)) ❙≡ (❙∀z. ❙𝒜❙𝒜φ z ❙≡ z ❙= x) in v]"
by PLM_solver
lemma equi_desc_descA_1[PLM]:
"[(x⇧P ❙= (❙ιx . φ x)) ❙≡ (x⇧P ❙= (❙ιx . ❙𝒜φ x)) in v]"
using descriptions[axiom_instance] apply (rule "❙≡E"(5))
using act_quant_nec apply (rule "❙≡E"(5))
using descriptions[axiom_instance]
by (meson "❙≡E"(6) oth_class_taut_4_a)
lemma equi_desc_descA_2[PLM]:
"[(❙∃ y . y⇧P ❙= (❙ιx. φ x)) ❙→ ((❙ιx . φ x) ❙= (❙ιx . ❙𝒜φ x)) in v]"
proof (rule CP)
assume "[❙∃y. y⇧P ❙= (❙ιx. φ x) in v]"
then obtain y where
"[y⇧P ❙= (❙ιx. φ x) in v]"
by (rule "❙∃E")
moreover hence "[y⇧P ❙= (❙ιx. ❙𝒜φ x) in v]"
using equi_desc_descA_1[equiv_lr] by auto
ultimately show "[(❙ιx. φ x) ❙= (❙ιx. ❙𝒜φ x) in v]"
using l_identity[axiom_instance, deduction, deduction]
by fast
qed
lemma equi_desc_descA_3[PLM]:
assumes "SimpleExOrEnc ψ"
shows "[ψ (❙ιx. φ x) ❙→ (❙∃ y . y⇧P ❙= (❙ιx. ❙𝒜φ x)) in v]"
proof (rule CP)
assume "[ψ (❙ιx. φ x) in v]"
hence "[❙∃α. α⇧P ❙= (❙ιx. φ x) in v]"
using cqt_5[OF assms, axiom_instance, deduction] by auto
then obtain α where "[α⇧P ❙= (❙ιx. φ x) in v]" by (rule "❙∃E")
hence "[α⇧P ❙= (❙ιx . ❙𝒜φ x) in v]"
using equi_desc_descA_1[equiv_lr] by auto
thus "[❙∃y. y⇧P ❙= (❙ιx. ❙𝒜φ x) in v]"
using "❙∃I" by fast
qed
lemma equi_desc_descA_4[PLM]:
assumes "SimpleExOrEnc ψ"
shows "[ψ (❙ιx. φ x) ❙→ ((❙ιx. φ x) ❙= (❙ιx. ❙𝒜φ x)) in v]"
proof (rule CP)
assume "[ψ (❙ιx. φ x) in v]"
hence "[❙∃α. α⇧P ❙= (❙ιx. φ x) in v]"
using cqt_5[OF assms, axiom_instance, deduction] by auto
then obtain α where "[α⇧P ❙= (❙ιx. φ x) in v]" by (rule "❙∃E")
moreover hence "[α⇧P ❙= (❙ιx . ❙𝒜φ x) in v]"
using equi_desc_descA_1[equiv_lr] by auto
ultimately show "[(❙ιx. φ x) ❙= (❙ιx . ❙𝒜φ x) in v]"
using l_identity[axiom_instance, deduction, deduction] by fast
qed
lemma nec_hintikka_scheme[PLM]:
"[(x⇧P ❙= (❙ιx. φ x)) ❙≡ (❙𝒜φ x ❙& (❙∀ z . ❙𝒜φ z ❙→ z ❙= x)) in v]"
using descriptions[axiom_instance]
apply (rule "❙≡E"(5))
apply PLM_solver
using id_eq_obj_1 apply simp
using id_eq_obj_2[deduction]
l_identity[where α="x", axiom_instance, deduction, deduction]
unfolding identity_ν_def
apply blast
using l_identity[where α="x", axiom_instance, deduction, deduction]
id_eq_2[where 'a=ν, deduction] unfolding identity_ν_def by meson
lemma equiv_desc_eq[PLM]:
assumes "⋀x.[❙𝒜(φ x ❙≡ ψ x) in v]"
shows "[(❙∀ x . ((x⇧P ❙= (❙ιx . φ x)) ❙≡ (x⇧P ❙= (❙ιx . ψ x)))) in v]"
proof(rule "❙∀I")
fix x
{
assume "[x⇧P ❙= (❙ιx . φ x) in v]"
hence 1: "[❙𝒜φ x ❙& (❙∀z. ❙𝒜φ z ❙→ z ❙= x) in v]"
using nec_hintikka_scheme[equiv_lr] by auto
hence 2: "[❙𝒜φ x in v] ∧ [(❙∀z. ❙𝒜φ z ❙→ z ❙= x) in v]"
using "❙&E" by blast
{
fix z
{
assume "[❙𝒜ψ z in v]"
hence "[❙𝒜φ z in v]"
using assms[where x=z] apply - by PLM_solver
moreover have "[❙𝒜φ z ❙→ z ❙= x in v]"
using 2 cqt_1[axiom_instance,deduction] by auto
ultimately have "[z ❙= x in v]"
using vdash_properties_10 by auto
}
hence "[❙𝒜ψ z ❙→ z ❙= x in v]" by (rule CP)
}
hence "[(❙∀ z . ❙𝒜ψ z ❙→ z ❙= x) in v]" by (rule "❙∀I")
moreover have "[❙𝒜ψ x in v]"
using 1[conj1] assms[where x=x]
apply - by PLM_solver
ultimately have "[❙𝒜ψ x ❙& (❙∀z. ❙𝒜ψ z ❙→ z ❙= x) in v]"
by PLM_solver
hence "[x⇧P ❙= (❙ιx. ψ x) in v]"
using nec_hintikka_scheme[where φ="ψ", equiv_rl] by auto
}
moreover {
assume "[x⇧P ❙= (❙ιx . ψ x) in v]"
hence 1: "[❙𝒜ψ x ❙& (❙∀z. ❙𝒜ψ z ❙→ z ❙= x) in v]"
using nec_hintikka_scheme[equiv_lr] by auto
hence 2: "[❙𝒜ψ x in v] ∧ [(❙∀z. ❙𝒜ψ z ❙→ z ❙= x) in v]"
using "❙&E" by blast
{
fix z
{
assume "[❙𝒜φ z in v]"
hence "[❙𝒜ψ z in v]"
using assms[where x=z]
apply - by PLM_solver
moreover have "[❙𝒜ψ z ❙→ z ❙= x in v]"
using 2 cqt_1[axiom_instance,deduction] by auto
ultimately have "[z ❙= x in v]"
using vdash_properties_10 by auto
}
hence "[❙𝒜φ z ❙→ z ❙= x in v]" by (rule CP)
}
hence "[(❙∀z. ❙𝒜φ z ❙→ z ❙= x) in v]" by (rule "❙∀I")
moreover have "[❙𝒜φ x in v]"
using 1[conj1] assms[where x=x]
apply - by PLM_solver
ultimately have "[❙𝒜φ x ❙& (❙∀z. ❙𝒜φ z ❙→ z ❙= x) in v]"
by PLM_solver
hence "[x⇧P ❙= (❙ιx. φ x) in v]"
using nec_hintikka_scheme[where φ="φ",equiv_rl]
by auto
}
ultimately show "[x⇧P ❙= (❙ιx. φ x) ❙≡ (x⇧P) ❙= (❙ιx. ψ x) in v]"
using "❙≡I" CP by auto
qed
lemma UniqueAux:
assumes "[(❙𝒜φ (α::ν) ❙& (❙∀ z . ❙𝒜(φ z) ❙→ z ❙= α)) in v]"
shows "[(❙∀ z . (❙𝒜(φ z) ❙≡ (z ❙= α))) in v]"
proof -
{
fix z
{
assume "[❙𝒜(φ z) in v]"
hence "[z ❙= α in v]"
using assms[conj2, THEN cqt_1[where α=z,
axiom_instance, deduction],
deduction] by auto
}
moreover {
assume "[z ❙= α in v]"
hence "[α ❙= z in v]"
unfolding identity_ν_def
using id_eq_obj_2[deduction] by fast
hence "[❙𝒜(φ z) in v]" using assms[conj1]
using l_identity[axiom_instance, deduction,
deduction] by fast
}
ultimately have "[(❙𝒜(φ z) ❙≡ (z ❙= α)) in v]"
using "❙≡I" CP by auto
}
thus "[(❙∀ z . (❙𝒜(φ z) ❙≡ (z ❙= α))) in v]"
by (rule "❙∀I")
qed
lemma nec_russell_axiom[PLM]:
assumes "SimpleExOrEnc ψ"
shows "[(ψ (❙ιx. φ x)) ❙≡ (❙∃ x . (❙𝒜φ x ❙& (❙∀ z . ❙𝒜(φ z) ❙→ z ❙= x))
❙& ψ (x⇧P)) in v]"
(is "[?lhs ❙≡ ?rhs in v]")
proof -
{
assume 1: "[?lhs in v]"
hence "[❙∃α. (α⇧P) ❙= (❙ιx. φ x) in v]"
using cqt_5[axiom_instance, deduction] assms by blast
then obtain α where 2: "[(α⇧P) ❙= (❙ιx. φ x) in v]" by (rule "❙∃E")
hence "[(❙∀ z . (❙𝒜(φ z) ❙≡ (z ❙= α))) in v]"
using descriptions[axiom_instance, equiv_lr] by auto
hence 3: "[(❙𝒜φ α) ❙& (❙∀ z . (❙𝒜(φ z) ❙→ (z ❙= α))) in v]"
using cqt_1[where α=α and φ="λ z . (❙𝒜(φ z) ❙≡ (z ❙= α))",
axiom_instance, deduction, equiv_rl]
using id_eq_obj_1[where x=α] unfolding identity_ν_def
using hintikka[equiv_lr] cqt_basic_2[equiv_lr,conj1]
"❙&I" by fast
from 2 have "[(❙ιx. φ x) ❙= (α⇧P) in v]"
using l_identity[where β="(❙ιx. φ x)" and φ="λ x . x ❙= (α⇧P)",
axiom_instance, deduction, deduction]
id_eq_obj_1[where x=α] by auto
hence "[ψ (α⇧P) in v]"
using 1 l_identity[where α="(❙ιx. φ x)" and φ="λ x . ψ x",
axiom_instance, deduction,
deduction] by auto
with 3 have "[(❙𝒜φ α ❙& (❙∀ z . ❙𝒜(φ z) ❙→ (z ❙= α))) ❙& ψ (α⇧P) in v]"
using "❙&I" by simp
hence "[?rhs in v]"
using "❙∃I"[where α=α]
by (simp add: identity_defs)
}
moreover {
assume "[?rhs in v]"
then obtain α where 4:
"[(❙𝒜φ α ❙& (❙∀ z . ❙𝒜(φ z) ❙→ z ❙= α)) ❙& ψ (α⇧P) in v]"
using "❙∃E" by auto
hence "[(❙∀ z . (❙𝒜(φ z) ❙≡ (z ❙= α))) in v]"
using UniqueAux "❙&E"(1) by auto
hence "[(α⇧P) ❙= (❙ιx . φ x) in v] ∧ [ψ (α⇧P) in v]"
using descriptions[axiom_instance, equiv_rl]
4[conj2] by blast
hence "[?lhs in v]"
using l_identity[axiom_instance, deduction,
deduction]
by fast
}
ultimately show ?thesis by PLM_solver
qed
lemma actual_desc_1[PLM]:
"[(❙∃ y . (y⇧P) ❙= (❙ιx. φ x)) ❙≡ (❙∃! x . ❙𝒜(φ x)) in v]" (is "[?lhs ❙≡ ?rhs in v]")
proof -
{
assume "[?lhs in v]"
then obtain α where
"[((α⇧P) ❙= (❙ιx. φ x)) in v]"
by (rule "❙∃E")
hence "[⦇A!,(❙ιx. φ x)⦈ in v] ∨ [(α⇧P) ❙=⇩E (❙ιx. φ x) in v]"
apply - unfolding identity_defs by PLM_solver
then obtain x where
"[((❙𝒜φ x ❙& (❙∀ z . ❙𝒜(φ z) ❙→ z ❙= x))) in v]"
using nec_russell_axiom[where ψ="λx . ⦇A!,x⦈", equiv_lr, THEN "❙∃E"]
using nec_russell_axiom[where ψ="λx . (α⇧P) ❙=⇩E x", equiv_lr, THEN "❙∃E"]
using SimpleExOrEnc.intros unfolding identity⇩E_infix_def
by (meson "❙&E")
hence "[?rhs in v]" unfolding exists_unique_def by (rule "❙∃I")
}
moreover {
assume "[?rhs in v]"
then obtain x where
"[((❙𝒜φ x ❙& (❙∀ z . ❙𝒜(φ z) ❙→ z ❙= x))) in v]"
unfolding exists_unique_def by (rule "❙∃E")
hence "[❙∀z. ❙𝒜φ z ❙≡ z ❙= x in v]"
using UniqueAux by auto
hence "[(x⇧P) ❙= (❙ιx. φ x) in v]"
using descriptions[axiom_instance, equiv_rl] by auto
hence "[?lhs in v]" by (rule "❙∃I")
}
ultimately show ?thesis
using "❙≡I" CP by auto
qed
lemma actual_desc_2[PLM]:
"[(x⇧P) ❙= (❙ιx. φ) ❙→ ❙𝒜φ in v]"
using nec_hintikka_scheme[equiv_lr, conj1]
by (rule CP)
lemma actual_desc_3[PLM]:
"[(z⇧P) ❙= (❙ιx. φ x) ❙→ ❙𝒜(φ z) in v]"
using nec_hintikka_scheme[equiv_lr, conj1]
by (rule CP)
lemma actual_desc_4[PLM]:
"[(❙∃ y . ((y⇧P) ❙= (❙ιx. φ (x⇧P)))) ❙→ ❙𝒜(φ (❙ιx. φ (x⇧P))) in v]"
proof (rule CP)
assume "[(❙∃ y . (y⇧P) ❙= (❙ιx . φ (x⇧P))) in v]"
then obtain y where 1:
"[y⇧P ❙= (❙ιx. φ (x⇧P)) in v]"
by (rule "❙∃E")
hence "[❙𝒜(φ (y⇧P)) in v]" using actual_desc_3[deduction] by fast
thus "[❙𝒜(φ (❙ιx. φ (x⇧P))) in v]"
using l_identity[axiom_instance, deduction,
deduction] 1 by fast
qed
lemma unique_box_desc_1[PLM]:
"[(❙∃!x . ❙□(φ x)) ❙→ (❙∀ y . (y⇧P) ❙= (❙ιx. φ x) ❙→ φ y) in v]"
proof (rule CP)
assume "[(❙∃!x . ❙□(φ x)) in v]"
then obtain α where 1:
"[❙□φ α ❙& (❙∀β. ❙□(φ β) ❙→ β ❙= α) in v]"
unfolding exists_unique_def by (rule "❙∃E")
{
fix y
{
assume "[(y⇧P) ❙= (❙ιx. φ x) in v]"
hence "[❙𝒜φ α ❙→ α ❙= y in v]"
using nec_hintikka_scheme[where x="y" and φ="φ", equiv_lr, conj2,
THEN cqt_1[where α=α,axiom_instance, deduction]] by simp
hence "[α ❙= y in v]"
using 1[conj1] nec_imp_act vdash_properties_10 by blast
hence "[φ y in v]"
using 1[conj1] qml_2[axiom_instance, deduction]
l_identity[axiom_instance, deduction, deduction]
by fast
}
hence "[(y⇧P) ❙= (❙ιx. φ x) ❙→ φ y in v]"
by (rule CP)
}
thus "[❙∀ y . (y⇧P) ❙= (❙ιx. φ x) ❙→ φ y in v]"
by (rule "❙∀I")
qed
lemma unique_box_desc[PLM]:
"[(❙∀ x . (φ x ❙→ ❙□(φ x))) ❙→ ((❙∃!x . φ x)
❙→ (❙∀ y . (y⇧P ❙= (❙ιx . φ x)) ❙→ φ y)) in v]"
apply (rule CP, rule CP)
using nec_exist_unique[deduction, deduction]
unique_box_desc_1[deduction] by blast
subsection‹Necessity›
text‹\label{TAO_PLM_Necessity}›
lemma RM_1[PLM]:
"(⋀v.[φ ❙→ ψ in v]) ⟹ [❙□φ ❙→ ❙□ψ in v]"
using RN qml_1[axiom_instance] vdash_properties_10 by blast
lemma RM_1_b[PLM]:
"(⋀v.[χ in v] ⟹ [φ ❙→ ψ in v]) ⟹ ([❙□χ in v] ⟹ [❙□φ ❙→ ❙□ψ in v])"
using RN_2 qml_1[axiom_instance] vdash_properties_10 by blast
lemma RM_2[PLM]:
"(⋀v.[φ ❙→ ψ in v]) ⟹ [❙◇φ ❙→ ❙◇ψ in v]"
unfolding diamond_def
using RM_1 contraposition_1 by auto
lemma RM_2_b[PLM]:
"(⋀v.[χ in v] ⟹ [φ ❙→ ψ in v]) ⟹ ([❙□χ in v] ⟹ [❙◇φ ❙→ ❙◇ψ in v])"
unfolding diamond_def
using RM_1_b contraposition_1 by blast
lemma KBasic_1[PLM]:
"[❙□φ ❙→ ❙□(ψ ❙→ φ) in v]"
by (simp only: pl_1[axiom_instance] RM_1)
lemma KBasic_2[PLM]:
"[❙□(❙¬φ) ❙→ ❙□(φ ❙→ ψ) in v]"
by (simp only: RM_1 useful_tautologies_3)
lemma KBasic_3[PLM]:
"[❙□(φ ❙& ψ) ❙≡ ❙□φ ❙& ❙□ψ in v]"
apply (rule "❙≡I")
apply (rule CP)
apply (rule "❙&I")
using RM_1 oth_class_taut_9_a vdash_properties_6 apply blast
using RM_1 oth_class_taut_9_b vdash_properties_6 apply blast
using qml_1[axiom_instance] RM_1 ded_thm_cor_3 oth_class_taut_10_a
oth_class_taut_8_b vdash_properties_10
by blast
lemma KBasic_4[PLM]:
"[❙□(φ ❙≡ ψ) ❙≡ (❙□(φ ❙→ ψ) ❙& ❙□(ψ ❙→ φ)) in v]"
apply (rule "❙≡I")
unfolding equiv_def using KBasic_3 PLM.CP "❙≡E"(1)
apply blast
using KBasic_3 PLM.CP "❙≡E"(2)
by blast
lemma KBasic_5[PLM]:
"[(❙□(φ ❙→ ψ) ❙& ❙□(ψ ❙→ φ)) ❙→ (❙□φ ❙≡ ❙□ψ) in v]"
by (metis qml_1[axiom_instance] CP "❙&E" "❙≡I" vdash_properties_10)
lemma KBasic_6[PLM]:
"[❙□(φ ❙≡ ψ) ❙→ (❙□φ ❙≡ ❙□ψ) in v]"
using KBasic_4 KBasic_5 by (metis equiv_def ded_thm_cor_3 "❙&E"(1))
lemma "[(❙□φ ❙≡ ❙□ψ) ❙→ ❙□(φ ❙≡ ψ) in v]"
nitpick[expect=genuine, user_axioms, card = 1, card i = 2]
oops
lemma KBasic_7[PLM]:
"[(❙□φ ❙& ❙□ψ) ❙→ ❙□(φ ❙≡ ψ) in v]"
proof (rule CP)
assume "[❙□φ ❙& ❙□ψ in v]"
hence "[❙□(ψ ❙→ φ) in v] ∧ [❙□(φ ❙→ ψ) in v]"
using "❙&E" KBasic_1 vdash_properties_10 by blast
thus "[❙□(φ ❙≡ ψ) in v]"
using KBasic_4 "❙≡E"(2) intro_elim_1 by blast
qed
lemma KBasic_8[PLM]:
"[❙□(φ ❙& ψ) ❙→ ❙□(φ ❙≡ ψ) in v]"
using KBasic_7 KBasic_3
by (metis equiv_def PLM.ded_thm_cor_3 "❙&E"(1))
lemma KBasic_9[PLM]:
"[❙□((❙¬φ) ❙& (❙¬ψ)) ❙→ ❙□(φ ❙≡ ψ) in v]"
proof (rule CP)
assume "[❙□((❙¬φ) ❙& (❙¬ψ)) in v]"
hence "[❙□((❙¬φ) ❙≡ (❙¬ψ)) in v]"
using KBasic_8 vdash_properties_10 by blast
moreover have "⋀v.[((❙¬φ) ❙≡ (❙¬ψ)) ❙→ (φ ❙≡ ψ) in v]"
using CP "❙≡E"(2) oth_class_taut_5_d by blast
ultimately show "[❙□(φ ❙≡ ψ) in v]"
using RM_1 PLM.vdash_properties_10 by blast
qed
lemma rule_sub_lem_1_a[PLM]:
"[❙□(ψ ❙≡ χ) in v] ⟹ [(❙¬ψ) ❙≡ (❙¬χ) in v]"
using qml_2[axiom_instance] "❙≡E"(1) oth_class_taut_5_d
vdash_properties_10
by blast
lemma rule_sub_lem_1_b[PLM]:
"[❙□(ψ ❙≡ χ) in v] ⟹ [(ψ ❙→ Θ) ❙≡ (χ ❙→ Θ) in v]"
by (metis equiv_def contraposition_1 CP "❙&E"(2) "❙≡I"
"❙≡E"(1) rule_sub_lem_1_a)
lemma rule_sub_lem_1_c[PLM]:
"[❙□(ψ ❙≡ χ) in v] ⟹ [(Θ ❙→ ψ) ❙≡ (Θ ❙→ χ) in v]"
by (metis CP "❙≡I" "❙≡E"(3) "❙≡E"(4) "❙¬❙¬I"
"❙¬❙¬E" rule_sub_lem_1_a)
lemma rule_sub_lem_1_d[PLM]:
"(⋀x.[❙□(ψ x ❙≡ χ x) in v]) ⟹ [(❙∀α. ψ α) ❙≡ (❙∀α. χ α) in v]"
by (metis equiv_def "❙∀I" CP "❙&E" "❙≡I" raa_cor_1
vdash_properties_10 rule_sub_lem_1_a "❙∀E")
lemma rule_sub_lem_1_e[PLM]:
"[❙□(ψ ❙≡ χ) in v] ⟹ [❙𝒜ψ ❙≡ ❙𝒜χ in v]"
using Act_Basic_5 "❙≡E"(1) nec_imp_act
vdash_properties_10
by blast
lemma rule_sub_lem_1_f[PLM]:
"[❙□(ψ ❙≡ χ) in v] ⟹ [❙□ψ ❙≡ ❙□χ in v]"
using KBasic_6 "❙≡I" "❙≡E"(1) vdash_properties_9
by blast
named_theorems Substable_intros
definition Substable :: "('a⇒'a⇒bool)⇒('a⇒𝗈) ⇒ bool"
where "Substable ≡ (λ cond φ . ∀ ψ χ v . (cond ψ χ) ⟶ [φ ψ ❙≡ φ χ in v])"
lemma Substable_intro_const[Substable_intros]:
"Substable cond (λ φ . Θ)"
unfolding Substable_def using oth_class_taut_4_a by blast
lemma Substable_intro_not[Substable_intros]:
assumes "Substable cond ψ"
shows "Substable cond (λ φ . ❙¬(ψ φ))"
using assms unfolding Substable_def
using rule_sub_lem_1_a RN_2 "❙≡E" oth_class_taut_5_d by metis
lemma Substable_intro_impl[Substable_intros]:
assumes "Substable cond ψ"
and "Substable cond χ"
shows "Substable cond (λ φ . ψ φ ❙→ χ φ)"
using assms unfolding Substable_def
by (metis "❙≡I" CP intro_elim_6_a intro_elim_6_b)
lemma Substable_intro_box[Substable_intros]:
assumes "Substable cond ψ"
shows "Substable cond (λ φ . ❙□(ψ φ))"
using assms unfolding Substable_def
using rule_sub_lem_1_f RN by meson
lemma Substable_intro_actual[Substable_intros]:
assumes "Substable cond ψ"
shows "Substable cond (λ φ . ❙𝒜(ψ φ))"
using assms unfolding Substable_def
using rule_sub_lem_1_e RN by meson
lemma Substable_intro_all[Substable_intros]:
assumes "∀ x . Substable cond (ψ x)"
shows "Substable cond (λ φ . ❙∀ x . ψ x φ)"
using assms unfolding Substable_def
by (simp add: RN rule_sub_lem_1_d)
named_theorems Substable_Cond_defs
end
class Substable =
fixes Substable_Cond :: "'a⇒'a⇒bool"
assumes rule_sub_nec:
"⋀ φ ψ χ Θ v . ⟦PLM.Substable Substable_Cond φ; Substable_Cond ψ χ⟧
⟹ Θ [φ ψ in v] ⟹ Θ [φ χ in v]"
instantiation 𝗈 :: Substable
begin
definition Substable_Cond_𝗈 where [PLM.Substable_Cond_defs]:
"Substable_Cond_𝗈 ≡ λ φ ψ . ∀ v . [φ ❙≡ ψ in v]"
instance proof
interpret PLM .
fix φ :: "𝗈 ⇒ 𝗈" and ψ χ :: 𝗈 and Θ :: "bool ⇒ bool" and v::i
assume "Substable Substable_Cond φ"
moreover assume "Substable_Cond ψ χ"
ultimately have "[φ ψ ❙≡ φ χ in v]"
unfolding Substable_def by blast
hence "[φ ψ in v] = [φ χ in v]" using "❙≡E" by blast
moreover assume "Θ [φ ψ in v]"
ultimately show "Θ [φ χ in v]" by simp
qed
end
instantiation "fun" :: (type, Substable) Substable
begin
definition Substable_Cond_fun where [PLM.Substable_Cond_defs]:
"Substable_Cond_fun ≡ λ φ ψ . ∀ x . Substable_Cond (φ x) (ψ x)"
instance proof
interpret PLM .
fix φ:: "('a ⇒ 'b) ⇒ 𝗈" and ψ χ :: "'a ⇒ 'b" and Θ v
assume "Substable Substable_Cond φ"
moreover assume "Substable_Cond ψ χ"
ultimately have "[φ ψ ❙≡ φ χ in v]"
unfolding Substable_def by blast
hence "[φ ψ in v] = [φ χ in v]" using "❙≡E" by blast
moreover assume "Θ [φ ψ in v]"
ultimately show "Θ [φ χ in v]" by simp
qed
end
context PLM
begin
lemma Substable_intro_equiv[Substable_intros]:
assumes "Substable cond ψ"
and "Substable cond χ"
shows "Substable cond (λ φ . ψ φ ❙≡ χ φ)"
unfolding conn_defs by (simp add: assms Substable_intros)
lemma Substable_intro_conj[Substable_intros]:
assumes "Substable cond ψ"
and "Substable cond χ"
shows "Substable cond (λ φ . ψ φ ❙& χ φ)"
unfolding conn_defs by (simp add: assms Substable_intros)
lemma Substable_intro_disj[Substable_intros]:
assumes "Substable cond ψ"
and "Substable cond χ"
shows "Substable cond (λ φ . ψ φ ❙∨ χ φ)"
unfolding conn_defs by (simp add: assms Substable_intros)
lemma Substable_intro_diamond[Substable_intros]:
assumes "Substable cond ψ"
shows "Substable cond (λ φ . ❙◇(ψ φ))"
unfolding conn_defs by (simp add: assms Substable_intros)
lemma Substable_intro_exist[Substable_intros]:
assumes "∀ x . Substable cond (ψ x)"
shows "Substable cond (λ φ . ❙∃ x . ψ x φ)"
unfolding conn_defs by (simp add: assms Substable_intros)
lemma Substable_intro_id_𝗈[Substable_intros]:
"Substable Substable_Cond (λ φ . φ)"
unfolding Substable_def Substable_Cond_𝗈_def by blast
lemma Substable_intro_id_fun[Substable_intros]:
assumes "Substable Substable_Cond ψ"
shows "Substable Substable_Cond (λ φ . ψ (φ x))"
using assms unfolding Substable_def Substable_Cond_fun_def
by blast
method PLM_subst_method for ψ::"'a::Substable" and χ::"'a::Substable" =
(match conclusion in "Θ [φ χ in v]" for Θ and φ and v ⇒
‹(rule rule_sub_nec[where Θ=Θ and χ=χ and ψ=ψ and φ=φ and v=v],
((fast intro: Substable_intros, ((assumption)+)?)+; fail),
unfold Substable_Cond_defs)›)
method PLM_autosubst =
(match premises in "⋀v . [ψ ❙≡ χ in v]" for ψ and χ ⇒
‹ match conclusion in "Θ [φ χ in v]" for Θ φ and v ⇒
‹(rule rule_sub_nec[where Θ=Θ and χ=χ and ψ=ψ and φ=φ and v=v],
((fast intro: Substable_intros, ((assumption)+)?)+; fail),
unfold Substable_Cond_defs)› ›)
method PLM_autosubst1 =
(match premises in "⋀v x . [ψ x ❙≡ χ x in v]"
for ψ::"'a::type⇒𝗈" and χ::"'a⇒𝗈" ⇒
‹ match conclusion in "Θ [φ χ in v]" for Θ φ and v ⇒
‹(rule rule_sub_nec[where Θ=Θ and χ=χ and ψ=ψ and φ=φ and v=v],
((fast intro: Substable_intros, ((assumption)+)?)+; fail),
unfold Substable_Cond_defs)› ›)
method PLM_autosubst2 =
(match premises in "⋀v x y . [ψ x y ❙≡ χ x y in v]"
for ψ::"'a::type⇒'a⇒𝗈" and χ::"'a::type⇒'a⇒𝗈" ⇒
‹ match conclusion in "Θ [φ χ in v]" for Θ φ and v ⇒
‹(rule rule_sub_nec[where Θ=Θ and χ=χ and ψ=ψ and φ=φ and v=v],
((fast intro: Substable_intros, ((assumption)+)?)+; fail),
unfold Substable_Cond_defs)› ›)
method PLM_subst_goal_method for φ::"'a::Substable⇒𝗈" and ψ::"'a" =
(match conclusion in "Θ [φ χ in v]" for Θ and χ and v ⇒
‹(rule rule_sub_nec[where Θ=Θ and χ=χ and ψ=ψ and φ=φ and v=v],
((fast intro: Substable_intros, ((assumption)+)?)+; fail),
unfold Substable_Cond_defs)›)
lemma rule_sub_nec[PLM]:
assumes "Substable Substable_Cond φ"
shows "(⋀v.[(ψ ❙≡ χ) in v]) ⟹ Θ [φ ψ in v] ⟹ Θ [φ χ in v]"
proof -
assume "(⋀v.[(ψ ❙≡ χ) in v])"
hence "[φ ψ in v] = [φ χ in v]"
using assms RN unfolding Substable_def Substable_Cond_defs
using "❙≡I" CP "❙≡E"(1) "❙≡E"(2) by meson
thus "Θ [φ ψ in v] ⟹ Θ [φ χ in v]" by auto
qed
lemma rule_sub_nec1[PLM]:
assumes "Substable Substable_Cond φ"
shows "(⋀v x .[(ψ x ❙≡ χ x) in v]) ⟹ Θ [φ ψ in v] ⟹ Θ [φ χ in v]"
proof -
assume "(⋀v x.[(ψ x ❙≡ χ x) in v])"
hence "[φ ψ in v] = [φ χ in v]"
using assms RN unfolding Substable_def Substable_Cond_defs
using "❙≡I" CP "❙≡E"(1) "❙≡E"(2) by metis
thus "Θ [φ ψ in v] ⟹ Θ [φ χ in v]" by auto
qed
lemma rule_sub_nec2[PLM]:
assumes "Substable Substable_Cond φ"
shows "(⋀v x y .[ψ x y ❙≡ χ x y in v]) ⟹ Θ [φ ψ in v] ⟹ Θ [φ χ in v]"
proof -
assume "(⋀v x y .[ψ x y ❙≡ χ x y in v])"
hence "[φ ψ in v] = [φ χ in v]"
using assms RN unfolding Substable_def Substable_Cond_defs
using "❙≡I" CP "❙≡E"(1) "❙≡E"(2) by metis
thus "Θ [φ ψ in v] ⟹ Θ [φ χ in v]" by auto
qed
lemma :
assumes "(⋀v.[⦇A!,x⦈ ❙≡ (❙¬(❙◇⦇E!,x⦈)) in v])"
and "[❙¬⦇A!,x⦈ in v]"
shows"[❙¬❙¬❙◇⦇E!,x⦈ in v]"
apply (insert assms) apply PLM_autosubst by auto
lemma :
assumes "(⋀v.[⦇A!,x⦈ ❙≡ (❙¬(❙◇⦇E!,x⦈)) in v])"
and "[❙¬⦇A!,x⦈ in v]"
shows"[❙¬❙¬❙◇⦇E!,x⦈ in v]"
apply (PLM_subst_method "⦇A!,x⦈" "(❙¬(❙◇⦇E!,x⦈))")
apply (simp add: assms(1))
by (simp add: assms(2))
lemma :
assumes "(⋀v.[⦇R,x,y⦈ ❙≡ (⦇R,x,y⦈ ❙& (⦇Q,a⦈ ❙∨ (❙¬⦇Q,a⦈))) in v])"
and "[p ❙→ ⦇R,x,y⦈ in v]"
shows"[p ❙→ (⦇R,x,y⦈ ❙& (⦇Q,a⦈ ❙∨ (❙¬⦇Q,a⦈))) in v]"
apply (insert assms) apply PLM_autosubst by auto
lemma :
assumes "(⋀v x.[⦇A!,x⇧P⦈ ❙≡ (❙¬(❙◇⦇E!,x⇧P⦈)) in v])"
and "[❙∃ x . ⦇A!,x⇧P⦈ in v]"
shows"[❙∃ x . (❙¬(❙◇⦇E!,x⇧P⦈)) in v]"
apply (insert assms) apply PLM_autosubst1 by auto
lemma :
assumes "(⋀v x.[⦇A!,x⇧P⦈ ❙≡ (❙¬(❙◇⦇E!,x⇧P⦈)) in v])"
and "[❙∃ x . ⦇A!,x⇧P⦈ in v]"
shows "[❙∃ x . (❙¬(❙◇⦇E!,x⇧P⦈)) in v]"
apply (PLM_subst_method "λx . ⦇A!,x⇧P⦈" "λx . (❙¬(❙◇⦇E!,x⇧P⦈))")
apply (simp add: assms(1))
by (simp add: assms(2))
lemma :
assumes "⋀v x.[(❙¬(❙¬⦇P,x⇧P⦈)) ❙≡ ⦇P,x⇧P⦈ in v]"
and "[❙𝒜(❙¬(❙¬⦇P,x⇧P⦈)) in v]"
shows "[❙𝒜⦇P,x⇧P⦈ in v]"
apply (insert assms) apply PLM_autosubst1 by auto
lemma :
assumes "⋀v.[(φ ❙→ ψ) ❙≡ ((❙¬ψ) ❙→ (❙¬φ)) in v]"
and "[❙□(φ ❙→ ψ) in v]"
shows "[❙□((❙¬ψ) ❙→ (❙¬φ)) in v]"
apply (insert assms) apply PLM_autosubst by auto
lemma :
assumes "⋀v.[ψ ❙≡ χ in v]"
and "[❙□(φ ❙→ ψ) in v]"
shows "[❙□(φ ❙→ χ) in v]"
apply (insert assms) apply PLM_autosubst by auto
lemma :
assumes "⋀v.[φ ❙≡ (❙¬(❙¬φ)) in v]"
and "[❙□(φ ❙→ φ) in v]"
shows "[❙□((❙¬(❙¬φ)) ❙→ φ) in v]"
apply (insert assms) apply PLM_autosubst by auto
lemma :
assumes "⋀v.[❙𝒜φ ❙≡ φ in v]"
and "[❙□(❙𝒜φ) in v]"
shows "[❙□(φ) in v]"
apply (insert assms) apply PLM_autosubst by auto
lemma rule_sub_remark_9:
assumes "⋀v.[⦇P,a⦈ ❙≡ (⦇P,a⦈ ❙& (⦇Q,b⦈ ❙∨ (❙¬⦇Q,b⦈))) in v]"
and "[⦇P,a⦈ ❙= ⦇P,a⦈ in v]"
shows "[⦇P,a⦈ ❙= (⦇P,a⦈ ❙& (⦇Q,b⦈ ❙∨ (❙¬⦇Q,b⦈))) in v]"
unfolding identity_defs apply (insert assms)
apply PLM_autosubst oops
lemma KBasic2_1[PLM]:
"[❙□φ ❙≡ ❙□(❙¬(❙¬φ)) in v]"
apply (PLM_subst_method "φ" "(❙¬(❙¬φ))")
by PLM_solver+
lemma KBasic2_2[PLM]:
"[(❙¬(❙□φ)) ❙≡ ❙◇(❙¬φ) in v]"
unfolding diamond_def
apply (PLM_subst_method "φ" "❙¬(❙¬φ)")
by PLM_solver+
lemma KBasic2_3[PLM]:
"[❙□φ ❙≡ (❙¬(❙◇(❙¬φ))) in v]"
unfolding diamond_def
apply (PLM_subst_method "φ" "❙¬(❙¬φ)")
apply PLM_solver
by (simp add: oth_class_taut_4_b)
lemmas "Df❙□" = KBasic2_3
lemma KBasic2_4[PLM]:
"[❙□(❙¬(φ)) ❙≡ (❙¬(❙◇φ)) in v]"
unfolding diamond_def
by (simp add: oth_class_taut_4_b)
lemma KBasic2_5[PLM]:
"[❙□(φ ❙→ ψ) ❙→ (❙◇φ ❙→ ❙◇ψ) in v]"
by (simp only: CP RM_2_b)
lemmas "K❙◇" = KBasic2_5
lemma KBasic2_6[PLM]:
"[❙◇(φ ❙∨ ψ) ❙≡ (❙◇φ ❙∨ ❙◇ψ) in v]"
proof -
have "[❙□((❙¬φ) ❙& (❙¬ψ)) ❙≡ (❙□(❙¬φ) ❙& ❙□(❙¬ψ)) in v]"
using KBasic_3 by blast
hence "[(❙¬(❙◇(❙¬((❙¬φ) ❙& (❙¬ψ))))) ❙≡ (❙□(❙¬φ) ❙& ❙□(❙¬ψ)) in v]"
using "Df❙□" by (rule "❙≡E"(6))
hence "[(❙¬(❙◇(❙¬((❙¬φ) ❙& (❙¬ψ))))) ❙≡ ((❙¬(❙◇φ)) ❙& (❙¬(❙◇ψ))) in v]"
apply - apply (PLM_subst_method "❙□(❙¬φ)" "❙¬(❙◇φ)")
apply (simp add: KBasic2_4)
apply (PLM_subst_method "❙□(❙¬ψ)" "❙¬(❙◇ψ)")
apply (simp add: KBasic2_4)
unfolding diamond_def by assumption
hence "[(❙¬(❙◇(φ ❙∨ ψ))) ❙≡ ((❙¬(❙◇φ)) ❙& (❙¬(❙◇ψ))) in v]"
apply - apply (PLM_subst_method "❙¬((❙¬φ) ❙& (❙¬ψ))" "φ ❙∨ ψ")
using oth_class_taut_6_b[equiv_sym] by auto
hence "[(❙¬(❙¬(❙◇(φ ❙∨ ψ)))) ❙≡ (❙¬((❙¬(❙◇φ))❙&(❙¬(❙◇ψ)))) in v]"
by (rule oth_class_taut_5_d[equiv_lr])
hence "[❙◇(φ ❙∨ ψ) ❙≡ (❙¬((❙¬(❙◇φ)) ❙& (❙¬(❙◇ψ)))) in v]"
apply - apply (PLM_subst_method "❙¬(❙¬(❙◇(φ ❙∨ ψ)))" "❙◇(φ ❙∨ ψ)")
using oth_class_taut_4_b[equiv_sym] by auto
thus ?thesis
apply - apply (PLM_subst_method "❙¬((❙¬(❙◇φ)) ❙& (❙¬(❙◇ψ)))" "(❙◇φ) ❙∨ (❙◇ψ)")
using oth_class_taut_6_b[equiv_sym] by auto
qed
lemma KBasic2_7[PLM]:
"[(❙□φ ❙∨ ❙□ψ) ❙→ ❙□(φ ❙∨ ψ) in v]"
proof -
have "⋀ v . [φ ❙→ (φ ❙∨ ψ) in v]"
by (metis contraposition_1 contraposition_2 useful_tautologies_3 disj_def)
hence "[❙□φ ❙→ ❙□(φ ❙∨ ψ) in v]" using RM_1 by auto
moreover {
have "⋀ v . [ψ ❙→ (φ ❙∨ ψ) in v]"
by (simp only: pl_1[axiom_instance] disj_def)
hence "[❙□ψ ❙→ ❙□(φ ❙∨ ψ) in v]"
using RM_1 by auto
}
ultimately show ?thesis
using oth_class_taut_10_d vdash_properties_10 by blast
qed
lemma KBasic2_8[PLM]:
"[❙◇(φ ❙& ψ) ❙→ (❙◇φ ❙& ❙◇ψ) in v]"
by (metis CP RM_2 "❙&I" oth_class_taut_9_a
oth_class_taut_9_b vdash_properties_10)
lemma KBasic2_9[PLM]:
"[❙◇(φ ❙→ ψ) ❙≡ (❙□φ ❙→ ❙◇ψ) in v]"
apply (PLM_subst_method "(❙¬(❙□φ)) ❙∨ (❙◇ψ)" "❙□φ ❙→ ❙◇ψ")
using oth_class_taut_5_k[equiv_sym] apply simp
apply (PLM_subst_method "(❙¬φ) ❙∨ ψ" "φ ❙→ ψ")
using oth_class_taut_5_k[equiv_sym] apply simp
apply (PLM_subst_method "❙◇(❙¬φ)" "❙¬(❙□φ)")
using KBasic2_2[equiv_sym] apply simp
using KBasic2_6 .
lemma KBasic2_10[PLM]:
"[❙◇(❙□φ) ❙≡ (❙¬(❙□❙◇(❙¬φ))) in v]"
unfolding diamond_def apply (PLM_subst_method "φ" "❙¬❙¬φ")
using oth_class_taut_4_b oth_class_taut_4_a by auto
lemma KBasic2_11[PLM]:
"[❙◇❙◇φ ❙≡ (❙¬(❙□❙□(❙¬φ))) in v]"
unfolding diamond_def
apply (PLM_subst_method "❙□(❙¬φ)" "❙¬(❙¬(❙□(❙¬φ)))")
using oth_class_taut_4_b oth_class_taut_4_a by auto
lemma KBasic2_12[PLM]: "[❙□(φ ❙∨ ψ) ❙→ (❙□φ ❙∨ ❙◇ψ) in v]"
proof -
have "[❙□(ψ ❙∨ φ) ❙→ (❙□(❙¬ψ) ❙→ ❙□φ) in v]"
using CP RM_1_b "❙∨E"(2) by blast
hence "[❙□(ψ ❙∨ φ) ❙→ (❙◇ψ ❙∨ ❙□φ) in v]"
unfolding diamond_def disj_def
by (meson CP "❙¬❙¬E" vdash_properties_6)
thus ?thesis apply -
apply (PLM_subst_method "(❙◇ψ ❙∨ ❙□φ)" "(❙□φ ❙∨ ❙◇ψ)")
apply (simp add: PLM.oth_class_taut_3_e)
apply (PLM_subst_method "(ψ ❙∨ φ)" "(φ ❙∨ ψ)")
apply (simp add: PLM.oth_class_taut_3_e)
by assumption
qed
lemma TBasic[PLM]:
"[φ ❙→ ❙◇φ in v]"
unfolding diamond_def
apply (subst contraposition_1)
apply (PLM_subst_method "❙□❙¬φ" "❙¬❙¬❙□❙¬φ")
apply (simp add: PLM.oth_class_taut_4_b)
using qml_2[where φ="❙¬φ", axiom_instance]
by simp
lemmas "T❙◇" = TBasic
lemma S5Basic_1[PLM]:
"[❙◇❙□φ ❙→ ❙□φ in v]"
proof (rule CP)
assume "[❙◇❙□φ in v]"
hence "[❙¬❙□❙◇❙¬φ in v]"
using KBasic2_10[equiv_lr] by simp
moreover have "[❙◇(❙¬φ) ❙→ ❙□❙◇(❙¬φ) in v]"
by (simp add: qml_3[axiom_instance])
ultimately have "[❙¬❙◇❙¬φ in v]"
by (simp add: PLM.modus_tollens_1)
thus "[❙□φ in v]"
unfolding diamond_def apply -
apply (PLM_subst_method "❙¬❙¬φ" "φ")
using oth_class_taut_4_b[equiv_sym] apply simp
unfolding diamond_def using oth_class_taut_4_b[equiv_rl]
by simp
qed
lemmas "5❙◇" = S5Basic_1
lemma S5Basic_2[PLM]:
"[❙□φ ❙≡ ❙◇❙□φ in v]"
using "5❙◇" "T❙◇" "❙≡I" by blast
lemma S5Basic_3[PLM]:
"[❙◇φ ❙≡ ❙□❙◇φ in v]"
using qml_3[axiom_instance] qml_2[axiom_instance] "❙≡I" by blast
lemma S5Basic_4[PLM]:
"[φ ❙→ ❙□❙◇φ in v]"
using "T❙◇"[deduction, THEN S5Basic_3[equiv_lr]]
by (rule CP)
lemma S5Basic_5[PLM]:
"[❙◇❙□φ ❙→ φ in v]"
using S5Basic_2[equiv_rl, THEN qml_2[axiom_instance, deduction]]
by (rule CP)
lemmas "B❙◇" = S5Basic_5
lemma S5Basic_6[PLM]:
"[❙□φ ❙→ ❙□❙□φ in v]"
using S5Basic_4[deduction] RM_1[OF S5Basic_1, deduction] CP by auto
lemmas "4❙□" = S5Basic_6
lemma S5Basic_7[PLM]:
"[❙□φ ❙≡ ❙□❙□φ in v]"
using "4❙□" qml_2[axiom_instance] by (rule "❙≡I")
lemma S5Basic_8[PLM]:
"[❙◇❙◇φ ❙→ ❙◇φ in v]"
using S5Basic_6[where φ="❙¬φ", THEN contraposition_1[THEN iffD1], deduction]
KBasic2_11[equiv_lr] CP unfolding diamond_def by auto
lemmas "4❙◇" = S5Basic_8
lemma S5Basic_9[PLM]:
"[❙◇❙◇φ ❙≡ ❙◇φ in v]"
using "4❙◇" "T❙◇" by (rule "❙≡I")
lemma S5Basic_10[PLM]:
"[❙□(φ ❙∨ ❙□ψ) ❙≡ (❙□φ ❙∨ ❙□ψ) in v]"
apply (rule "❙≡I")
apply (PLM_subst_goal_method "λ χ . ❙□(φ ❙∨ ❙□ψ) ❙→ (❙□φ ❙∨ χ)" "❙◇❙□ψ")
using S5Basic_2[equiv_sym] apply simp
using KBasic2_12 apply assumption
apply (PLM_subst_goal_method "λ χ .(❙□φ ❙∨ χ) ❙→ ❙□(φ ❙∨ ❙□ψ)" "❙□❙□ψ")
using S5Basic_7[equiv_sym] apply simp
using KBasic2_7 by auto
lemma S5Basic_11[PLM]:
"[❙□(φ ❙∨ ❙◇ψ) ❙≡ (❙□φ ❙∨ ❙◇ψ) in v]"
apply (rule "❙≡I")
apply (PLM_subst_goal_method "λ χ . ❙□(φ ❙∨ ❙◇ψ) ❙→ (❙□φ ❙∨ χ)" "❙◇❙◇ψ")
using S5Basic_9 apply simp
using KBasic2_12 apply assumption
apply (PLM_subst_goal_method "λ χ .(❙□φ ❙∨ χ) ❙→ ❙□(φ ❙∨ ❙◇ψ)" "❙□❙◇ψ")
using S5Basic_3[equiv_sym] apply simp
using KBasic2_7 by assumption
lemma S5Basic_12[PLM]:
"[❙◇(φ ❙& ❙◇ψ) ❙≡ (❙◇φ ❙& ❙◇ψ) in v]"
proof -
have "[❙□((❙¬φ) ❙∨ ❙□(❙¬ψ)) ❙≡ (❙□(❙¬φ) ❙∨ ❙□(❙¬ψ)) in v]"
using S5Basic_10 by auto
hence 1: "[(❙¬❙□((❙¬φ) ❙∨ ❙□(❙¬ψ))) ❙≡ ❙¬(❙□(❙¬φ) ❙∨ ❙□(❙¬ψ)) in v]"
using oth_class_taut_5_d[equiv_lr] by auto
have 2: "[(❙◇(❙¬((❙¬φ) ❙∨ (❙¬(❙◇ψ))))) ❙≡ (❙¬((❙¬(❙◇φ)) ❙∨ (❙¬(❙◇ψ)))) in v]"
apply (PLM_subst_method "❙□❙¬ψ" "❙¬❙◇ψ")
using KBasic2_4 apply simp
apply (PLM_subst_method "❙□❙¬φ" "❙¬❙◇φ")
using KBasic2_4 apply simp
apply (PLM_subst_method "(❙¬❙□((❙¬φ) ❙∨ ❙□(❙¬ψ)))" "(❙◇(❙¬((❙¬φ) ❙∨ (❙□(❙¬ψ)))))")
unfolding diamond_def
apply (simp add: RN oth_class_taut_4_b rule_sub_lem_1_a rule_sub_lem_1_f)
using 1 by assumption
show ?thesis
apply (PLM_subst_method "❙¬((❙¬φ) ❙∨ (❙¬❙◇ψ))" "φ ❙& ❙◇ψ")
using oth_class_taut_6_a[equiv_sym] apply simp
apply (PLM_subst_method "❙¬((❙¬(❙◇φ)) ❙∨ (❙¬❙◇ψ))" "❙◇φ ❙& ❙◇ψ")
using oth_class_taut_6_a[equiv_sym] apply simp
using 2 by assumption
qed
lemma S5Basic_13[PLM]:
"[❙◇(φ ❙& (❙□ψ)) ❙≡ (❙◇φ ❙& (❙□ψ)) in v]"
apply (PLM_subst_method "❙◇❙□ψ" "❙□ψ")
using S5Basic_2[equiv_sym] apply simp
using S5Basic_12 by simp
lemma S5Basic_14[PLM]:
"[❙□(φ ❙→ (❙□ψ)) ❙≡ ❙□(❙◇φ ❙→ ψ) in v]"
proof (rule "❙≡I"; rule CP)
assume "[❙□(φ ❙→ ❙□ψ) in v]"
moreover {
have "⋀v.[❙□(φ ❙→ ❙□ψ) ❙→ (❙◇φ ❙→ ψ) in v]"
proof (rule CP)
fix v
assume "[❙□(φ ❙→ ❙□ψ) in v]"
hence "[❙◇φ ❙→ ❙◇❙□ψ in v]"
using "K❙◇"[deduction] by auto
thus "[❙◇φ ❙→ ψ in v]"
using "B❙◇" ded_thm_cor_3 by blast
qed
hence "[❙□(❙□(φ ❙→ ❙□ψ) ❙→ (❙◇φ ❙→ ψ)) in v]"
by (rule RN)
hence "[❙□(❙□(φ ❙→ ❙□ψ)) ❙→ ❙□((❙◇φ ❙→ ψ)) in v]"
using qml_1[axiom_instance, deduction] by auto
}
ultimately show "[❙□(❙◇φ ❙→ ψ) in v]"
using S5Basic_6 CP vdash_properties_10 by meson
next
assume "[❙□(❙◇φ ❙→ ψ) in v]"
moreover {
fix v
{
assume "[❙□(❙◇φ ❙→ ψ) in v]"
hence 1: "[❙□❙◇φ ❙→ ❙□ψ in v]"
using qml_1[axiom_instance, deduction] by auto
assume "[φ in v]"
hence "[❙□❙◇φ in v]"
using S5Basic_4[deduction] by auto
hence "[❙□ψ in v]"
using 1[deduction] by auto
}
hence "[❙□(❙◇φ ❙→ ψ) in v] ⟹ [φ ❙→ ❙□ψ in v]"
using CP by auto
}
ultimately show "[❙□(φ ❙→ ❙□ψ) in v]"
using S5Basic_6 RN_2 vdash_properties_10 by blast
qed
lemma sc_eq_box_box_1[PLM]:
"[❙□(φ ❙→ ❙□φ) ❙→ (❙◇φ ❙≡ ❙□φ) in v]"
proof(rule CP)
assume 1: "[❙□(φ ❙→ ❙□φ) in v]"
hence "[❙□(❙◇φ ❙→ φ) in v]"
using S5Basic_14[equiv_lr] by auto
hence "[❙◇φ ❙→ φ in v]"
using qml_2[axiom_instance, deduction] by auto
moreover from 1 have "[φ ❙→ ❙□φ in v]"
using qml_2[axiom_instance, deduction] by auto
ultimately have "[❙◇φ ❙→ ❙□φ in v]"
using ded_thm_cor_3 by blast
moreover have "[❙□φ ❙→ ❙◇φ in v]"
using qml_2[axiom_instance] "T❙◇"
by (rule ded_thm_cor_3)
ultimately show "[❙◇φ ❙≡ ❙□φ in v]"
by (rule "❙≡I")
qed
lemma sc_eq_box_box_2[PLM]:
"[❙□(φ ❙→ ❙□φ) ❙→ ((❙¬❙□φ) ❙≡ (❙□(❙¬φ))) in v]"
proof (rule CP)
assume "[❙□(φ ❙→ ❙□φ) in v]"
hence "[(❙¬❙□(❙¬φ)) ❙≡ ❙□φ in v]"
using sc_eq_box_box_1[deduction] unfolding diamond_def by auto
thus "[((❙¬❙□φ) ❙≡ (❙□(❙¬φ))) in v]"
by (meson CP "❙≡I" "❙≡E"(3)
"❙≡E"(4) "❙¬❙¬I" "❙¬❙¬E")
qed
lemma sc_eq_box_box_3[PLM]:
"[(❙□(φ ❙→ ❙□φ) ❙& ❙□(ψ ❙→ ❙□ψ)) ❙→ ((❙□φ ❙≡ ❙□ψ) ❙→ ❙□(φ ❙≡ ψ)) in v]"
proof (rule CP)
assume 1: "[(❙□(φ ❙→ ❙□φ) ❙& ❙□(ψ ❙→ ❙□ψ)) in v]"
{
assume "[❙□φ ❙≡ ❙□ψ in v]"
hence "[(❙□φ ❙& ❙□ψ) ❙∨ ((❙¬(❙□φ)) ❙& (❙¬(❙□ψ))) in v]"
using oth_class_taut_5_i[equiv_lr] by auto
moreover {
assume "[❙□φ ❙& ❙□ψ in v]"
hence "[❙□(φ ❙≡ ψ) in v]"
using KBasic_7[deduction] by auto
}
moreover {
assume "[(❙¬(❙□φ)) ❙& (❙¬(❙□ψ)) in v]"
hence "[❙□(❙¬φ) ❙& ❙□(❙¬ψ) in v]"
using 1 "❙&E" "❙&I" sc_eq_box_box_2[deduction, equiv_lr]
by metis
hence "[❙□((❙¬φ) ❙& (❙¬ψ)) in v]"
using KBasic_3[equiv_rl] by auto
hence "[❙□(φ ❙≡ ψ) in v]"
using KBasic_9[deduction] by auto
}
ultimately have "[❙□(φ ❙≡ ψ) in v]"
using CP "❙∨E"(1) by blast
}
thus "[❙□φ ❙≡ ❙□ψ ❙→ ❙□(φ ❙≡ ψ) in v]"
using CP by auto
qed
lemma derived_S5_rules_1_a[PLM]:
assumes "⋀v. [χ in v] ⟹ [❙◇φ ❙→ ψ in v]"
shows "[❙□χ in v] ⟹ [φ ❙→ ❙□ψ in v]"
proof -
have "[❙□χ in v] ⟹ [❙□❙◇φ ❙→ ❙□ψ in v]"
using assms RM_1_b by metis
thus "[❙□χ in v] ⟹ [φ ❙→ ❙□ψ in v]"
using S5Basic_4 vdash_properties_10 CP by metis
qed
lemma derived_S5_rules_1_b[PLM]:
assumes "⋀v. [❙◇φ ❙→ ψ in v]"
shows "[φ ❙→ ❙□ψ in v]"
using derived_S5_rules_1_a all_self_eq_1 assms by blast
lemma derived_S5_rules_2_a[PLM]:
assumes "⋀v. [χ in v] ⟹ [φ ❙→ ❙□ψ in v]"
shows "[❙□χ in v] ⟹ [❙◇φ ❙→ ψ in v]"
proof -
have "[❙□χ in v] ⟹ [❙◇φ ❙→ ❙◇❙□ψ in v]"
using RM_2_b assms by metis
thus "[❙□χ in v] ⟹ [❙◇φ ❙→ ψ in v]"
using "B❙◇" vdash_properties_10 CP by metis
qed
lemma derived_S5_rules_2_b[PLM]:
assumes "⋀v. [φ ❙→ ❙□ψ in v]"
shows "[❙◇φ ❙→ ψ in v]"
using assms derived_S5_rules_2_a all_self_eq_1 by blast
lemma BFs_1[PLM]: "[(❙∀α. ❙□(φ α)) ❙→ ❙□(❙∀α. φ α) in v]"
proof (rule derived_S5_rules_1_b)
fix v
{
fix α
have "⋀v.[(❙∀α . ❙□(φ α)) ❙→ ❙□(φ α) in v]"
using cqt_orig_1 by metis
hence "[❙◇(❙∀α. ❙□(φ α)) ❙→ ❙◇❙□(φ α) in v]"
using RM_2 by metis
moreover have "[❙◇❙□(φ α) ❙→ (φ α) in v]"
using "B❙◇" by auto
ultimately have "[❙◇(❙∀α. ❙□(φ α)) ❙→ (φ α) in v]"
using ded_thm_cor_3 by blast
}
hence "[❙∀ α . ❙◇(❙∀α. ❙□(φ α)) ❙→ (φ α) in v]"
using "❙∀I" by metis
thus "[❙◇(❙∀α. ❙□(φ α)) ❙→ (❙∀α. φ α) in v]"
using cqt_orig_2[deduction] by auto
qed
lemmas BF = BFs_1
lemma BFs_2[PLM]:
"[❙□(❙∀α. φ α) ❙→ (❙∀α. ❙□(φ α)) in v]"
proof -
{
fix α
{
fix v
have "[(❙∀α. φ α) ❙→ φ α in v]" using cqt_orig_1 by metis
}
hence "[❙□(❙∀α . φ α) ❙→ ❙□(φ α) in v]" using RM_1 by auto
}
hence "[❙∀α . ❙□(❙∀α . φ α) ❙→ ❙□(φ α) in v]" using "❙∀I" by metis
thus ?thesis using cqt_orig_2[deduction] by metis
qed
lemmas CBF = BFs_2
lemma BFs_3[PLM]:
"[❙◇(❙∃ α. φ α) ❙→ (❙∃ α . ❙◇(φ α)) in v]"
proof -
have "[(❙∀α. ❙□(❙¬(φ α))) ❙→ ❙□(❙∀α. ❙¬(φ α)) in v]"
using BF by metis
hence 1: "[(❙¬(❙□(❙∀α. ❙¬(φ α)))) ❙→ (❙¬(❙∀α. ❙□(❙¬(φ α)))) in v]"
using contraposition_1 by simp
have 2: "[❙◇(❙¬(❙∀α. ❙¬(φ α))) ❙→ (❙¬(❙∀α. ❙□(❙¬(φ α)))) in v]"
apply (PLM_subst_method "❙¬❙□(❙∀α . ❙¬(φ α))" "❙◇(❙¬(❙∀α. ❙¬(φ α)))")
using KBasic2_2 1 by simp+
have "[❙◇(❙¬(❙∀α. ❙¬(φ α))) ❙→ (❙∃ α . ❙¬(❙□(❙¬(φ α)))) in v]"
apply (PLM_subst_method "❙¬(❙∀α. ❙□(❙¬(φ α)))" "❙∃ α. ❙¬(❙□(❙¬(φ α)))")
using cqt_further_2 apply metis
using 2 by metis
thus ?thesis
unfolding exists_def diamond_def by auto
qed
lemmas "BF❙◇" = BFs_3
lemma BFs_4[PLM]:
"[(❙∃ α . ❙◇(φ α)) ❙→ ❙◇(❙∃ α. φ α) in v]"
proof -
have 1: "[❙□(❙∀α . ❙¬(φ α)) ❙→ (❙∀α. ❙□(❙¬(φ α))) in v]"
using CBF by auto
have 2: "[(❙∃ α . (❙¬(❙□(❙¬(φ α))))) ❙→ (❙¬(❙□(❙∀α. ❙¬(φ α)))) in v]"
apply (PLM_subst_method "❙¬(❙∀α. ❙□(❙¬(φ α)))" "(❙∃ α . (❙¬(❙□(❙¬(φ α)))))")
using cqt_further_2 apply blast
using 1 using contraposition_1 by metis
have "[(❙∃ α . (❙¬(❙□(❙¬(φ α))))) ❙→ ❙◇(❙¬(❙∀ α . ❙¬(φ α))) in v]"
apply (PLM_subst_method "❙¬(❙□(❙∀α. ❙¬(φ α)))" "❙◇(❙¬(❙∀α. ❙¬(φ α)))")
using KBasic2_2 apply blast
using 2 by assumption
thus ?thesis
unfolding diamond_def exists_def by auto
qed
lemmas "CBF❙◇" = BFs_4
lemma sign_S5_thm_1[PLM]:
"[(❙∃ α. ❙□(φ α)) ❙→ ❙□(❙∃ α. φ α) in v]"
proof (rule CP)
assume "[❙∃ α . ❙□(φ α) in v]"
then obtain τ where "[❙□(φ τ) in v]"
by (rule "❙∃E")
moreover {
fix v
assume "[φ τ in v]"
hence "[❙∃ α . φ α in v]"
by (rule "❙∃I")
}
ultimately show "[❙□(❙∃ α . φ α) in v]"
using RN_2 by blast
qed
lemmas Buridan = sign_S5_thm_1
lemma sign_S5_thm_2[PLM]:
"[❙◇(❙∀ α . φ α) ❙→ (❙∀ α . ❙◇(φ α)) in v]"
proof -
{
fix α
{
fix v
have "[(❙∀ α . φ α) ❙→ φ α in v]"
using cqt_orig_1 by metis
}
hence "[❙◇(❙∀ α . φ α) ❙→ ❙◇(φ α) in v]"
using RM_2 by metis
}
hence "[❙∀ α . ❙◇(❙∀ α . φ α) ❙→ ❙◇(φ α) in v]"
using "❙∀I" by metis
thus ?thesis
using cqt_orig_2[deduction] by metis
qed
lemmas "Buridan❙◇" = sign_S5_thm_2
lemma sign_S5_thm_3[PLM]:
"[❙◇(❙∃ α . φ α ❙& ψ α) ❙→ ❙◇((❙∃ α . φ α) ❙& (❙∃ α . ψ α)) in v]"
by (simp only: RM_2 cqt_further_5)
lemma sign_S5_thm_4[PLM]:
"[((❙□(❙∀ α. φ α ❙→ ψ α)) ❙& (❙□(❙∀ α . ψ α ❙→ χ α))) ❙→ ❙□(❙∀α. φ α ❙→ χ α) in v]"
proof (rule CP)
assume "[❙□(❙∀α. φ α ❙→ ψ α) ❙& ❙□(❙∀α. ψ α ❙→ χ α) in v]"
hence "[❙□((❙∀α. φ α ❙→ ψ α) ❙& (❙∀α. ψ α ❙→ χ α)) in v]"
using KBasic_3[equiv_rl] by blast
moreover {
fix v
assume "[((❙∀α. φ α ❙→ ψ α) ❙& (❙∀α. ψ α ❙→ χ α)) in v]"
hence "[(❙∀ α . φ α ❙→ χ α) in v]"
using cqt_basic_9[deduction] by blast
}
ultimately show "[❙□(❙∀α. φ α ❙→ χ α) in v]"
using RN_2 by blast
qed
lemma sign_S5_thm_5[PLM]:
"[((❙□(❙∀α. φ α ❙≡ ψ α)) ❙& (❙□(❙∀α. ψ α ❙≡ χ α))) ❙→ (❙□(❙∀α. φ α ❙≡ χ α)) in v]"
proof (rule CP)
assume "[❙□(❙∀α. φ α ❙≡ ψ α) ❙& ❙□(❙∀α. ψ α ❙≡ χ α) in v]"
hence "[❙□((❙∀α. φ α ❙≡ ψ α) ❙& (❙∀α. ψ α ❙≡ χ α)) in v]"
using KBasic_3[equiv_rl] by blast
moreover {
fix v
assume "[((❙∀α. φ α ❙≡ ψ α) ❙& (❙∀α. ψ α ❙≡ χ α)) in v]"
hence "[(❙∀ α . φ α ❙≡ χ α) in v]"
using cqt_basic_10[deduction] by blast
}
ultimately show "[❙□(❙∀α. φ α ❙≡ χ α) in v]"
using RN_2 by blast
qed
lemma id_nec2_1[PLM]:
"[❙◇((α::'a::id_eq) ❙= β) ❙≡ (α ❙= β) in v]"
apply (rule "❙≡I"; rule CP)
using id_nec[equiv_lr] derived_S5_rules_2_b CP modus_ponens apply blast
using "T❙◇"[deduction] by auto
lemma id_nec2_2_Aux:
"[(❙◇φ) ❙≡ ψ in v] ⟹ [(❙¬ψ) ❙≡ ❙□(❙¬φ) in v]"
proof -
assume "[(❙◇φ) ❙≡ ψ in v]"
moreover have "⋀φ ψ. [(❙¬φ) ❙≡ ψ in v] ⟹ [(❙¬ψ) ❙≡ φ in v]"
by PLM_solver
ultimately show ?thesis
unfolding diamond_def by blast
qed
lemma id_nec2_2[PLM]:
"[((α::'a::id_eq) ❙≠ β) ❙≡ ❙□(α ❙≠ β) in v]"
using id_nec2_1[THEN id_nec2_2_Aux] by auto
lemma id_nec2_3[PLM]:
"[(❙◇((α::'a::id_eq) ❙≠ β)) ❙≡ (α ❙≠ β) in v]"
using "T❙◇" "❙≡I" id_nec2_2[equiv_lr]
CP derived_S5_rules_2_b by metis
lemma exists_desc_box_1[PLM]:
"[(❙∃ y . (y⇧P) ❙= (❙ιx. φ x)) ❙→ (❙∃ y . ❙□((y⇧P) ❙= (❙ιx. φ x))) in v]"
proof (rule CP)
assume "[❙∃y. (y⇧P) ❙= (❙ιx. φ x) in v]"
then obtain y where "[(y⇧P) ❙= (❙ιx. φ x) in v]"
by (rule "❙∃E")
hence "[❙□(y⇧P ❙= (❙ιx. φ x)) in v]"
using l_identity[axiom_instance, deduction, deduction]
cqt_1[axiom_instance] all_self_eq_2[where 'a=ν]
modus_ponens unfolding identity_ν_def by fast
thus "[❙∃y. ❙□((y⇧P) ❙= (❙ιx. φ x)) in v]"
by (rule "❙∃I")
qed
lemma exists_desc_box_2[PLM]:
"[(❙∃ y . (y⇧P) ❙= (❙ιx. φ x)) ❙→ ❙□(❙∃ y .((y⇧P) ❙= (❙ιx. φ x))) in v]"
using exists_desc_box_1 Buridan ded_thm_cor_3 by fast
lemma en_eq_1[PLM]:
"[❙◇⦃x,F⦄ ❙≡ ❙□⦃x,F⦄ in v]"
using encoding[axiom_instance] RN
sc_eq_box_box_1 modus_ponens by blast
lemma en_eq_2[PLM]:
"[⦃x,F⦄ ❙≡ ❙□⦃x,F⦄ in v]"
using encoding[axiom_instance] qml_2[axiom_instance] by (rule "❙≡I")
lemma en_eq_3[PLM]:
"[❙◇⦃x,F⦄ ❙≡ ⦃x,F⦄ in v]"
using encoding[axiom_instance] derived_S5_rules_2_b "❙≡I" "T❙◇" by auto
lemma en_eq_4[PLM]:
"[(⦃x,F⦄ ❙≡ ⦃y,G⦄) ❙≡ (❙□⦃x,F⦄ ❙≡ ❙□⦃y,G⦄) in v]"
by (metis CP en_eq_2 "❙≡I" "❙≡E"(1) "❙≡E"(2))
lemma en_eq_5[PLM]:
"[❙□(⦃x,F⦄ ❙≡ ⦃y,G⦄) ❙≡ (❙□⦃x,F⦄ ❙≡ ❙□⦃y,G⦄) in v]"
using "❙≡I" KBasic_6 encoding[axiom_necessitation, axiom_instance]
sc_eq_box_box_3[deduction] "❙&I" by simp
lemma en_eq_6[PLM]:
"[(⦃x,F⦄ ❙≡ ⦃y,G⦄) ❙≡ ❙□(⦃x,F⦄ ❙≡ ⦃y,G⦄) in v]"
using en_eq_4 en_eq_5 oth_class_taut_4_a "❙≡E"(6) by meson
lemma en_eq_7[PLM]:
"[(❙¬⦃x,F⦄) ❙≡ ❙□(❙¬⦃x,F⦄) in v]"
using en_eq_3[THEN id_nec2_2_Aux] by blast
lemma en_eq_8[PLM]:
"[❙◇(❙¬⦃x,F⦄) ❙≡ (❙¬⦃x,F⦄) in v]"
unfolding diamond_def apply (PLM_subst_method "⦃x,F⦄" "❙¬❙¬⦃x,F⦄")
using oth_class_taut_4_b apply simp
apply (PLM_subst_method "⦃x,F⦄" "❙□⦃x,F⦄")
using en_eq_2 apply simp
using oth_class_taut_4_a by assumption
lemma en_eq_9[PLM]:
"[❙◇(❙¬⦃x,F⦄) ❙≡ ❙□(❙¬⦃x,F⦄) in v]"
using en_eq_8 en_eq_7 "❙≡E"(5) by blast
lemma en_eq_10[PLM]:
"[❙𝒜⦃x,F⦄ ❙≡ ⦃x,F⦄ in v]"
apply (rule "❙≡I")
using encoding[axiom_actualization, axiom_instance,
THEN logic_actual_nec_2[axiom_instance, equiv_lr],
deduction, THEN qml_act_2[axiom_instance, equiv_rl],
THEN en_eq_2[equiv_rl]] CP
apply simp
using encoding[axiom_instance] nec_imp_act ded_thm_cor_3 by blast
subsection‹The Theory of Relations›
text‹\label{TAO_PLM_Relations}›
lemma beta_equiv_eq_1_1[PLM]:
assumes "IsProperInX φ"
and "IsProperInX ψ"
and "⋀x.[φ (x⇧P) ❙≡ ψ (x⇧P) in v]"
shows "[⦇❙λ y. φ (y⇧P), x⇧P⦈ ❙≡ ⦇❙λ y. ψ (y⇧P), x⇧P⦈ in v]"
using lambda_predicates_2_1[OF assms(1), axiom_instance]
using lambda_predicates_2_1[OF assms(2), axiom_instance]
using assms(3) by (meson "❙≡E"(6) oth_class_taut_4_a)
lemma beta_equiv_eq_1_2[PLM]:
assumes "IsProperInXY φ"
and "IsProperInXY ψ"
and "⋀x y.[φ (x⇧P) (y⇧P) ❙≡ ψ (x⇧P) (y⇧P) in v]"
shows "[⦇❙λ⇧2 (λ x y. φ (x⇧P) (y⇧P)), x⇧P, y⇧P⦈
❙≡ ⦇❙λ⇧2 (λ x y. ψ (x⇧P) (y⇧P)), x⇧P, y⇧P⦈ in v]"
using lambda_predicates_2_2[OF assms(1), axiom_instance]
using lambda_predicates_2_2[OF assms(2), axiom_instance]
using assms(3) by (meson "❙≡E"(6) oth_class_taut_4_a)
lemma beta_equiv_eq_1_3[PLM]:
assumes "IsProperInXYZ φ"
and "IsProperInXYZ ψ"
and "⋀x y z.[φ (x⇧P) (y⇧P) (z⇧P) ❙≡ ψ (x⇧P) (y⇧P) (z⇧P) in v]"
shows "[⦇❙λ⇧3 (λ x y z. φ (x⇧P) (y⇧P) (z⇧P)), x⇧P, y⇧P, z⇧P⦈
❙≡ ⦇❙λ⇧3 (λ x y z. ψ (x⇧P) (y⇧P) (z⇧P)), x⇧P, y⇧P, z⇧P⦈ in v]"
using lambda_predicates_2_3[OF assms(1), axiom_instance]
using lambda_predicates_2_3[OF assms(2), axiom_instance]
using assms(3) by (meson "❙≡E"(6) oth_class_taut_4_a)
lemma beta_equiv_eq_2_1[PLM]:
assumes "IsProperInX φ"
and "IsProperInX ψ"
shows "[(❙□(❙∀ x . φ (x⇧P) ❙≡ ψ (x⇧P))) ❙→
(❙□(❙∀ x . ⦇❙λ y. φ (y⇧P), x⇧P⦈ ❙≡ ⦇❙λ y. ψ (y⇧P), x⇧P⦈)) in v]"
apply (rule qml_1[axiom_instance, deduction])
apply (rule RN)
proof (rule CP, rule "❙∀I")
fix v x
assume "[❙∀x. φ (x⇧P) ❙≡ ψ (x⇧P) in v]"
hence "⋀x.[φ (x⇧P) ❙≡ ψ (x⇧P) in v]"
by PLM_solver
thus "[⦇❙λ y. φ (y⇧P), x⇧P⦈ ❙≡ ⦇❙λ y. ψ (y⇧P), x⇧P⦈ in v]"
using assms beta_equiv_eq_1_1 by auto
qed
lemma beta_equiv_eq_2_2[PLM]:
assumes "IsProperInXY φ"
and "IsProperInXY ψ"
shows "[(❙□(❙∀ x y . φ (x⇧P) (y⇧P) ❙≡ ψ (x⇧P) (y⇧P))) ❙→
(❙□(❙∀ x y . ⦇❙λ⇧2 (λ x y. φ (x⇧P) (y⇧P)), x⇧P, y⇧P⦈
❙≡ ⦇❙λ⇧2 (λ x y. ψ (x⇧P) (y⇧P)), x⇧P, y⇧P⦈)) in v]"
apply (rule qml_1[axiom_instance, deduction])
apply (rule RN)
proof (rule CP, rule "❙∀I", rule "❙∀I")
fix v x y
assume "[❙∀x y. φ (x⇧P) (y⇧P) ❙≡ ψ (x⇧P) (y⇧P) in v]"
hence "(⋀x y.[φ (x⇧P) (y⇧P) ❙≡ ψ (x⇧P) (y⇧P) in v])"
by (meson "❙∀E")
thus "[⦇❙λ⇧2 (λ x y. φ (x⇧P) (y⇧P)), x⇧P, y⇧P⦈
❙≡ ⦇❙λ⇧2 (λ x y. ψ (x⇧P) (y⇧P)), x⇧P, y⇧P⦈ in v]"
using assms beta_equiv_eq_1_2 by auto
qed
lemma beta_equiv_eq_2_3[PLM]:
assumes "IsProperInXYZ φ"
and "IsProperInXYZ ψ"
shows "[(❙□(❙∀ x y z . φ (x⇧P) (y⇧P) (z⇧P) ❙≡ ψ (x⇧P) (y⇧P) (z⇧P))) ❙→
(❙□(❙∀ x y z . ⦇❙λ⇧3 (λ x y z. φ (x⇧P) (y⇧P) (z⇧P)), x⇧P, y⇧P, z⇧P⦈
❙≡ ⦇❙λ⇧3 (λ x y z. ψ (x⇧P) (y⇧P) (z⇧P)), x⇧P, y⇧P, z⇧P⦈)) in v]"
apply (rule qml_1[axiom_instance, deduction])
apply (rule RN)
proof (rule CP, rule "❙∀I", rule "❙∀I", rule "❙∀I")
fix v x y z
assume "[❙∀x y z. φ (x⇧P) (y⇧P) (z⇧P) ❙≡ ψ (x⇧P) (y⇧P) (z⇧P) in v]"
hence "(⋀x y z.[φ (x⇧P) (y⇧P) (z⇧P) ❙≡ ψ (x⇧P) (y⇧P) (z⇧P) in v])"
by (meson "❙∀E")
thus "[⦇❙λ⇧3 (λ x y z. φ (x⇧P) (y⇧P) (z⇧P)), x⇧P, y⇧P, z⇧P⦈
❙≡ ⦇❙λ⇧3 (λ x y z. ψ (x⇧P) (y⇧P) (z⇧P)), x⇧P, y⇧P, z⇧P⦈ in v]"
using assms beta_equiv_eq_1_3 by auto
qed
lemma beta_C_meta_1[PLM]:
assumes "IsProperInX φ"
shows "[⦇❙λ y. φ (y⇧P), x⇧P⦈ ❙≡ φ (x⇧P) in v]"
using lambda_predicates_2_1[OF assms, axiom_instance] by auto
lemma beta_C_meta_2[PLM]:
assumes "IsProperInXY φ"
shows "[⦇❙λ⇧2 (λ x y. φ (x⇧P) (y⇧P)), x⇧P, y⇧P⦈ ❙≡ φ (x⇧P) (y⇧P) in v]"
using lambda_predicates_2_2[OF assms, axiom_instance] by auto
lemma beta_C_meta_3[PLM]:
assumes "IsProperInXYZ φ"
shows "[⦇❙λ⇧3 (λ x y z. φ (x⇧P) (y⇧P) (z⇧P)), x⇧P, y⇧P, z⇧P⦈ ❙≡ φ (x⇧P) (y⇧P) (z⇧P) in v]"
using lambda_predicates_2_3[OF assms, axiom_instance] by auto
lemma relations_1[PLM]:
assumes "IsProperInX φ"
shows "[❙∃ F. ❙□(❙∀ x. ⦇F,x⇧P⦈ ❙≡ φ (x⇧P)) in v]"
using assms apply - by PLM_solver
lemma relations_2[PLM]:
assumes "IsProperInXY φ"
shows "[❙∃ F. ❙□(❙∀ x y. ⦇F,x⇧P,y⇧P⦈ ❙≡ φ (x⇧P) (y⇧P)) in v]"
using assms apply - by PLM_solver
lemma relations_3[PLM]:
assumes "IsProperInXYZ φ"
shows "[❙∃ F. ❙□(❙∀ x y z. ⦇F,x⇧P,y⇧P,z⇧P⦈ ❙≡ φ (x⇧P) (y⇧P) (z⇧P)) in v]"
using assms apply - by PLM_solver
lemma prop_equiv[PLM]:
shows "[(❙∀ x . (⦃x⇧P,F⦄ ❙≡ ⦃x⇧P,G⦄)) ❙→ F ❙= G in v]"
proof (rule CP)
assume 1: "[❙∀x. ⦃x⇧P,F⦄ ❙≡ ⦃x⇧P,G⦄ in v]"
{
fix x
have "[⦃x⇧P,F⦄ ❙≡ ⦃x⇧P,G⦄ in v]"
using 1 by (rule "❙∀E")
hence "[❙□(⦃x⇧P,F⦄ ❙≡ ⦃x⇧P,G⦄) in v]"
using PLM.en_eq_6 "❙≡E"(1) by blast
}
hence "[❙∀x. ❙□(⦃x⇧P,F⦄ ❙≡ ⦃x⇧P,G⦄) in v]"
by (rule "❙∀I")
thus "[F ❙= G in v]"
unfolding identity_defs
by (rule BF[deduction])
qed
lemma propositions_lemma_1[PLM]:
"[❙λ⇧0 φ ❙= φ in v]"
using lambda_predicates_3_0[axiom_instance] .
lemma propositions_lemma_2[PLM]:
"[❙λ⇧0 φ ❙≡ φ in v]"
using lambda_predicates_3_0[axiom_instance, THEN id_eq_prop_prop_8_b[deduction]]
apply (rule l_identity[axiom_instance, deduction, deduction])
by PLM_solver
lemma propositions_lemma_4[PLM]:
assumes "⋀x.[❙𝒜(φ x ❙≡ ψ x) in v]"
shows "[(χ::κ⇒𝗈) (❙ιx. φ x) ❙= χ (❙ιx. ψ x) in v]"
proof -
have "[❙λ⇧0 (χ (❙ιx. φ x)) ❙= ❙λ⇧0 (χ (❙ιx. ψ x)) in v]"
using assms lambda_predicates_4_0[axiom_instance]
by blast
hence "[(χ (❙ιx. φ x)) ❙= ❙λ⇧0 (χ (❙ιx. ψ x)) in v]"
using propositions_lemma_1[THEN id_eq_prop_prop_8_b[deduction]]
id_eq_prop_prop_9_b[deduction] "❙&I"
by blast
thus ?thesis
using propositions_lemma_1 id_eq_prop_prop_9_b[deduction] "❙&I"
by blast
qed
lemma propositions[PLM]:
"[❙∃ p . ❙□(p ❙≡ p') in v]"
by PLM_solver
lemma pos_not_equiv_then_not_eq[PLM]:
"[❙◇(❙¬(❙∀x. ⦇F,x⇧P⦈ ❙≡ ⦇G,x⇧P⦈)) ❙→ F ❙≠ G in v]"
unfolding diamond_def
proof (subst contraposition_1[symmetric], rule CP)
assume "[F ❙= G in v]"
thus "[❙□(❙¬(❙¬(❙∀x. ⦇F,x⇧P⦈ ❙≡ ⦇G,x⇧P⦈))) in v]"
apply (rule l_identity[axiom_instance, deduction, deduction])
by PLM_solver
qed
lemma thm_relation_negation_1_1[PLM]:
"[⦇F⇧-, x⇧P⦈ ❙≡ ❙¬⦇F, x⇧P⦈ in v]"
unfolding propnot_defs
apply (rule lambda_predicates_2_1[axiom_instance])
by show_proper
lemma thm_relation_negation_1_2[PLM]:
"[⦇F⇧-, x⇧P, y⇧P⦈ ❙≡ ❙¬⦇F, x⇧P, y⇧P⦈ in v]"
unfolding propnot_defs
apply (rule lambda_predicates_2_2[axiom_instance])
by show_proper
lemma thm_relation_negation_1_3[PLM]:
"[⦇F⇧-, x⇧P, y⇧P, z⇧P⦈ ❙≡ ❙¬⦇F, x⇧P, y⇧P, z⇧P⦈ in v]"
unfolding propnot_defs
apply (rule lambda_predicates_2_3[axiom_instance])
by show_proper
lemma thm_relation_negation_2_1[PLM]:
"[(❙¬⦇F⇧-, x⇧P⦈) ❙≡ ⦇F, x⇧P⦈ in v]"
using thm_relation_negation_1_1[THEN oth_class_taut_5_d[equiv_lr]]
apply - by PLM_solver
lemma thm_relation_negation_2_2[PLM]:
"[(❙¬⦇F⇧-, x⇧P, y⇧P⦈) ❙≡ ⦇F, x⇧P, y⇧P⦈ in v]"
using thm_relation_negation_1_2[THEN oth_class_taut_5_d[equiv_lr]]
apply - by PLM_solver
lemma thm_relation_negation_2_3[PLM]:
"[(❙¬⦇F⇧-, x⇧P, y⇧P, z⇧P⦈) ❙≡ ⦇F, x⇧P, y⇧P, z⇧P⦈ in v]"
using thm_relation_negation_1_3[THEN oth_class_taut_5_d[equiv_lr]]
apply - by PLM_solver
lemma thm_relation_negation_3[PLM]:
"[(p)⇧- ❙≡ ❙¬p in v]"
unfolding propnot_defs
using propositions_lemma_2 by simp
lemma thm_relation_negation_4[PLM]:
"[(❙¬((p::𝗈)⇧-)) ❙≡ p in v]"
using thm_relation_negation_3[THEN oth_class_taut_5_d[equiv_lr]]
apply - by PLM_solver
lemma thm_relation_negation_5_1[PLM]:
"[(F::Π⇩1) ❙≠ (F⇧-) in v]"
using id_eq_prop_prop_2[deduction]
l_identity[where φ="λ G . ⦇G,x⇧P⦈ ❙≡ ⦇F⇧-,x⇧P⦈", axiom_instance,
deduction, deduction]
oth_class_taut_4_a thm_relation_negation_1_1 "❙≡E"(5)
oth_class_taut_1_b modus_tollens_1 CP
by meson
lemma thm_relation_negation_5_2[PLM]:
"[(F::Π⇩2) ❙≠ (F⇧-) in v]"
using id_eq_prop_prop_5_a[deduction]
l_identity[where φ="λ G . ⦇G,x⇧P,y⇧P⦈ ❙≡ ⦇F⇧-,x⇧P,y⇧P⦈", axiom_instance,
deduction, deduction]
oth_class_taut_4_a thm_relation_negation_1_2 "❙≡E"(5)
oth_class_taut_1_b modus_tollens_1 CP
by meson
lemma thm_relation_negation_5_3[PLM]:
"[(F::Π⇩3) ❙≠ (F⇧-) in v]"
using id_eq_prop_prop_5_b[deduction]
l_identity[where φ="λ G . ⦇G,x⇧P,y⇧P,z⇧P⦈ ❙≡ ⦇F⇧-,x⇧P,y⇧P,z⇧P⦈",
axiom_instance, deduction, deduction]
oth_class_taut_4_a thm_relation_negation_1_3 "❙≡E"(5)
oth_class_taut_1_b modus_tollens_1 CP
by meson
lemma thm_relation_negation_6[PLM]:
"[(p::𝗈) ❙≠ (p⇧-) in v]"
using id_eq_prop_prop_8_b[deduction]
l_identity[where φ="λ G . G ❙≡ (p⇧-)", axiom_instance,
deduction, deduction]
oth_class_taut_4_a thm_relation_negation_3 "❙≡E"(5)
oth_class_taut_1_b modus_tollens_1 CP
by meson
lemma thm_relation_negation_7[PLM]:
"[((p::𝗈)⇧-) ❙= ❙¬p in v]"
unfolding propnot_defs using propositions_lemma_1 by simp
lemma thm_relation_negation_8[PLM]:
"[(p::𝗈) ❙≠ ❙¬p in v]"
unfolding propnot_defs
using id_eq_prop_prop_8_b[deduction]
l_identity[where φ="λ G . G ❙≡ ❙¬(p)", axiom_instance,
deduction, deduction]
oth_class_taut_4_a oth_class_taut_1_b
modus_tollens_1 CP
by meson
lemma thm_relation_negation_9[PLM]:
"[((p::𝗈) ❙= q) ❙→ ((❙¬p) ❙= (❙¬q)) in v]"
using l_identity[where α="p" and β="q" and φ="λ x . (❙¬p) ❙= (❙¬x)",
axiom_instance, deduction]
id_eq_prop_prop_7_b using CP modus_ponens by blast
lemma thm_relation_negation_10[PLM]:
"[((p::𝗈) ❙= q) ❙→ ((p⇧-) ❙= (q⇧-)) in v]"
using l_identity[where α="p" and β="q" and φ="λ x . (p⇧-) ❙= (x⇧-)",
axiom_instance, deduction]
id_eq_prop_prop_7_b using CP modus_ponens by blast
lemma thm_cont_prop_1[PLM]:
"[NonContingent (F::Π⇩1) ❙≡ NonContingent (F⇧-) in v]"
proof (rule "❙≡I"; rule CP)
assume "[NonContingent F in v]"
hence "[❙□(❙∀x.⦇F,x⇧P⦈) ❙∨ ❙□(❙∀x.❙¬⦇F,x⇧P⦈) in v]"
unfolding NonContingent_def Necessary_defs Impossible_defs .
hence "[❙□(❙∀x. ❙¬⦇F⇧-,x⇧P⦈) ❙∨ ❙□(❙∀x. ❙¬⦇F,x⇧P⦈) in v]"
apply -
apply (PLM_subst_method "λ x . ⦇F,x⇧P⦈" "λ x . ❙¬⦇F⇧-,x⇧P⦈")
using thm_relation_negation_2_1[equiv_sym] by auto
hence "[❙□(❙∀x. ❙¬⦇F⇧-,x⇧P⦈) ❙∨ ❙□(❙∀x. ⦇F⇧-,x⇧P⦈) in v]"
apply -
apply (PLM_subst_goal_method
"λ φ . ❙□(❙∀x. ❙¬⦇F⇧-,x⇧P⦈) ❙∨ ❙□(❙∀x. φ x)" "λ x . ❙¬⦇F,x⇧P⦈")
using thm_relation_negation_1_1[equiv_sym] by auto
hence "[❙□(❙∀x. ⦇F⇧-,x⇧P⦈) ❙∨ ❙□(❙∀x. ❙¬⦇F⇧-,x⇧P⦈) in v]"
by (rule oth_class_taut_3_e[equiv_lr])
thus "[NonContingent (F⇧-) in v]"
unfolding NonContingent_def Necessary_defs Impossible_defs .
next
assume "[NonContingent (F⇧-) in v]"
hence "[❙□(❙∀x. ❙¬⦇F⇧-,x⇧P⦈) ❙∨ ❙□(❙∀x. ⦇F⇧-,x⇧P⦈) in v]"
unfolding NonContingent_def Necessary_defs Impossible_defs
by (rule oth_class_taut_3_e[equiv_lr])
hence "[❙□(❙∀x.⦇F,x⇧P⦈) ❙∨ ❙□(❙∀x.⦇F⇧-,x⇧P⦈) in v]"
apply -
apply (PLM_subst_method "λ x . ❙¬⦇F⇧-,x⇧P⦈" "λ x . ⦇F,x⇧P⦈")
using thm_relation_negation_2_1 by auto
hence "[❙□(❙∀x. ⦇F,x⇧P⦈) ❙∨ ❙□(❙∀x. ❙¬⦇F,x⇧P⦈) in v]"
apply -
apply (PLM_subst_method "λ x . ⦇F⇧-,x⇧P⦈" "λ x . ❙¬⦇F,x⇧P⦈")
using thm_relation_negation_1_1 by auto
thus "[NonContingent F in v]"
unfolding NonContingent_def Necessary_defs Impossible_defs .
qed
lemma thm_cont_prop_2[PLM]:
"[Contingent F ❙≡ ❙◇(❙∃ x . ⦇F,x⇧P⦈) ❙& ❙◇(❙∃ x . ❙¬⦇F,x⇧P⦈) in v]"
proof (rule "❙≡I"; rule CP)
assume "[Contingent F in v]"
hence "[❙¬(❙□(❙∀x.⦇F,x⇧P⦈) ❙∨ ❙□(❙∀x.❙¬⦇F,x⇧P⦈)) in v]"
unfolding Contingent_def Necessary_defs Impossible_defs .
hence "[(❙¬❙□(❙∀x.⦇F,x⇧P⦈)) ❙& (❙¬❙□(❙∀x.❙¬⦇F,x⇧P⦈)) in v]"
by (rule oth_class_taut_6_d[equiv_lr])
hence "[(❙◇❙¬(❙∀x.❙¬⦇F,x⇧P⦈)) ❙& (❙◇❙¬(❙∀x.⦇F,x⇧P⦈)) in v]"
using KBasic2_2[equiv_lr] "❙&I" "❙&E" by meson
thus "[(❙◇(❙∃ x.⦇F,x⇧P⦈)) ❙& (❙◇(❙∃x. ❙¬⦇F,x⇧P⦈)) in v]"
unfolding exists_def apply -
apply (PLM_subst_method "λ x . ⦇F,x⇧P⦈" "λ x . ❙¬❙¬⦇F,x⇧P⦈")
using oth_class_taut_4_b by auto
next
assume "[(❙◇(❙∃ x.⦇F,x⇧P⦈)) ❙& (❙◇(❙∃x. ❙¬⦇F,x⇧P⦈)) in v]"
hence "[(❙◇❙¬(❙∀x.❙¬⦇F,x⇧P⦈)) ❙& (❙◇❙¬(❙∀x.⦇F,x⇧P⦈)) in v]"
unfolding exists_def apply -
apply (PLM_subst_goal_method
"λ φ . (❙◇❙¬(❙∀x.❙¬⦇F,x⇧P⦈)) ❙& (❙◇❙¬(❙∀x. φ x))" "λ x . ❙¬❙¬⦇F,x⇧P⦈")
using oth_class_taut_4_b[equiv_sym] by auto
hence "[(❙¬❙□(❙∀x.⦇F,x⇧P⦈)) ❙& (❙¬❙□(❙∀x.❙¬⦇F,x⇧P⦈)) in v]"
using KBasic2_2[equiv_rl] "❙&I" "❙&E" by meson
hence "[❙¬(❙□(❙∀x.⦇F,x⇧P⦈) ❙∨ ❙□(❙∀x.❙¬⦇F,x⇧P⦈)) in v]"
by (rule oth_class_taut_6_d[equiv_rl])
thus "[Contingent F in v]"
unfolding Contingent_def Necessary_defs Impossible_defs .
qed
lemma thm_cont_prop_3[PLM]:
"[Contingent (F::Π⇩1) ❙≡ Contingent (F⇧-) in v]"
using thm_cont_prop_1
unfolding NonContingent_def Contingent_def
by (rule oth_class_taut_5_d[equiv_lr])
lemma lem_cont_e[PLM]:
"[❙◇(❙∃ x . ⦇F,x⇧P⦈ ❙& (❙◇(❙¬⦇F,x⇧P⦈))) ❙≡ ❙◇(❙∃ x . ((❙¬⦇F,x⇧P⦈) ❙& ❙◇⦇F,x⇧P⦈))in v]"
proof -
have "[❙◇(❙∃ x . ⦇F,x⇧P⦈ ❙& (❙◇(❙¬⦇F,x⇧P⦈))) in v]
= [(❙∃ x . ❙◇(⦇F,x⇧P⦈ ❙& ❙◇(❙¬⦇F,x⇧P⦈))) in v]"
using "BF❙◇"[deduction] "CBF❙◇"[deduction] by fast
also have "... = [❙∃ x . (❙◇⦇F,x⇧P⦈ ❙& ❙◇(❙¬⦇F,x⇧P⦈)) in v]"
apply (PLM_subst_method
"λ x . ❙◇(⦇F,x⇧P⦈ ❙& ❙◇(❙¬⦇F,x⇧P⦈))"
"λ x . ❙◇⦇F,x⇧P⦈ ❙& ❙◇(❙¬⦇F,x⇧P⦈)")
using S5Basic_12 by auto
also have "... = [❙∃ x . ❙◇(❙¬⦇F,x⇧P⦈) ❙& ❙◇⦇F,x⇧P⦈ in v]"
apply (PLM_subst_method
"λ x . ❙◇⦇F,x⇧P⦈ ❙& ❙◇(❙¬⦇F,x⇧P⦈)"
"λ x . ❙◇(❙¬⦇F,x⇧P⦈) ❙& ❙◇⦇F,x⇧P⦈")
using oth_class_taut_3_b by auto
also have "... = [❙∃ x . ❙◇((❙¬⦇F,x⇧P⦈) ❙& ❙◇⦇F,x⇧P⦈) in v]"
apply (PLM_subst_method
"λ x . ❙◇(❙¬⦇F,x⇧P⦈) ❙& ❙◇⦇F,x⇧P⦈"
"λ x . ❙◇((❙¬⦇F,x⇧P⦈) ❙& ❙◇⦇F,x⇧P⦈)")
using S5Basic_12[equiv_sym] by auto
also have "... = [❙◇ (❙∃ x . ((❙¬⦇F,x⇧P⦈) ❙& ❙◇⦇F,x⇧P⦈)) in v]"
using "CBF❙◇"[deduction] "BF❙◇"[deduction] by fast
finally show ?thesis using "❙≡I" CP by blast
qed
lemma lem_cont_e_2[PLM]:
"[❙◇(❙∃ x . ⦇F,x⇧P⦈ ❙& ❙◇(❙¬⦇F,x⇧P⦈)) ❙≡ ❙◇(❙∃ x . ⦇F⇧-,x⇧P⦈ ❙& ❙◇(❙¬⦇F⇧-,x⇧P⦈)) in v]"
apply (PLM_subst_method "λ x . ⦇F,x⇧P⦈" "λ x . ❙¬⦇F⇧-,x⇧P⦈")
using thm_relation_negation_2_1[equiv_sym] apply simp
apply (PLM_subst_method "λ x . ❙¬⦇F,x⇧P⦈" "λ x . ⦇F⇧-,x⇧P⦈")
using thm_relation_negation_1_1[equiv_sym] apply simp
using lem_cont_e by simp
lemma thm_cont_e_1[PLM]:
"[❙◇(❙∃ x . ((❙¬⦇E!,x⇧P⦈) ❙& (❙◇⦇E!,x⇧P⦈))) in v]"
using lem_cont_e[where F="E!", equiv_lr] qml_4[axiom_instance,conj1]
by blast
lemma thm_cont_e_2[PLM]:
"[Contingent (E!) in v]"
using thm_cont_prop_2[equiv_rl] "❙&I" qml_4[axiom_instance, conj1]
KBasic2_8[deduction, OF sign_S5_thm_3[deduction], conj1]
KBasic2_8[deduction, OF sign_S5_thm_3[deduction, OF thm_cont_e_1], conj1]
by fast
lemma thm_cont_e_3[PLM]:
"[Contingent (E!⇧-) in v]"
using thm_cont_e_2 thm_cont_prop_3[equiv_lr] by blast
lemma thm_cont_e_4[PLM]:
"[❙∃ (F::Π⇩1) G . (F ❙≠ G ❙& Contingent F ❙& Contingent G) in v]"
apply (rule_tac α="E!" in "❙∃I", rule_tac α="E!⇧-" in "❙∃I")
using thm_cont_e_2 thm_cont_e_3 thm_relation_negation_5_1 "❙&I" by auto
context
begin
qualified definition L where "L ≡ (❙λ x . ⦇E!, x⇧P⦈ ❙→ ⦇E!, x⇧P⦈)"
lemma thm_noncont_e_e_1[PLM]:
"[Necessary L in v]"
unfolding Necessary_defs L_def apply (rule RN, rule "❙∀I")
apply (rule lambda_predicates_2_1[axiom_instance, equiv_rl])
apply show_proper
using if_p_then_p .
lemma thm_noncont_e_e_2[PLM]:
"[Impossible (L⇧-) in v]"
unfolding Impossible_defs L_def apply (rule RN, rule "❙∀I")
apply (rule thm_relation_negation_2_1[equiv_rl])
apply (rule lambda_predicates_2_1[axiom_instance, equiv_rl])
apply show_proper
using if_p_then_p .
lemma thm_noncont_e_e_3[PLM]:
"[NonContingent (L) in v]"
unfolding NonContingent_def using thm_noncont_e_e_1
by (rule "❙∨I"(1))
lemma thm_noncont_e_e_4[PLM]:
"[NonContingent (L⇧-) in v]"
unfolding NonContingent_def using thm_noncont_e_e_2
by (rule "❙∨I"(2))
lemma thm_noncont_e_e_5[PLM]:
"[❙∃ (F::Π⇩1) G . F ❙≠ G ❙& NonContingent F ❙& NonContingent G in v]"
apply (rule_tac α="L" in "❙∃I", rule_tac α="L⇧-" in "❙∃I")
using "❙∃I" thm_relation_negation_5_1 thm_noncont_e_e_3
thm_noncont_e_e_4 "❙&I"
by simp
lemma four_distinct_1[PLM]:
"[NonContingent (F::Π⇩1) ❙→ ❙¬(❙∃ G . (Contingent G ❙& G ❙= F)) in v]"
proof (rule CP)
assume "[NonContingent F in v]"
hence "[❙¬(Contingent F) in v]"
unfolding NonContingent_def Contingent_def
apply - by PLM_solver
moreover {
assume "[❙∃ G . Contingent G ❙& G ❙= F in v]"
then obtain P where "[Contingent P ❙& P ❙= F in v]"
by (rule "❙∃E")
hence "[Contingent F in v]"
using "❙&E" l_identity[axiom_instance, deduction, deduction]
by blast
}
ultimately show "[❙¬(❙∃G. Contingent G ❙& G ❙= F) in v]"
using modus_tollens_1 CP by blast
qed
lemma four_distinct_2[PLM]:
"[Contingent (F::Π⇩1) ❙→ ❙¬(❙∃ G . (NonContingent G ❙& G ❙= F)) in v]"
proof (rule CP)
assume "[Contingent F in v]"
hence "[❙¬(NonContingent F) in v]"
unfolding NonContingent_def Contingent_def
apply - by PLM_solver
moreover {
assume "[❙∃ G . NonContingent G ❙& G ❙= F in v]"
then obtain P where "[NonContingent P ❙& P ❙= F in v]"
by (rule "❙∃E")
hence "[NonContingent F in v]"
using "❙&E" l_identity[axiom_instance, deduction, deduction]
by blast
}
ultimately show "[❙¬(❙∃G. NonContingent G ❙& G ❙= F) in v]"
using modus_tollens_1 CP by blast
qed
lemma four_distinct_3[PLM]:
"[L ❙≠ (L⇧-) ❙& L ❙≠ E! ❙& L ❙≠ (E!⇧-) ❙& (L⇧-) ❙≠ E!
❙& (L⇧-) ❙≠ (E!⇧-) ❙& E! ❙≠ (E!⇧-) in v]"
proof (rule "❙&I")+
show "[L ❙≠ (L⇧-) in v]"
by (rule thm_relation_negation_5_1)
next
{
assume "[L ❙= E! in v]"
hence "[NonContingent L ❙& L ❙= E! in v]"
using thm_noncont_e_e_3 "❙&I" by auto
hence "[❙∃ G . NonContingent G ❙& G ❙= E! in v]"
using thm_noncont_e_e_3 "❙&I" "❙∃I" by fast
}
thus "[L ❙≠ E! in v]"
using four_distinct_2[deduction, OF thm_cont_e_2]
modus_tollens_1 CP
by blast
next
{
assume "[L ❙= (E!⇧-) in v]"
hence "[NonContingent L ❙& L ❙= (E!⇧-) in v]"
using thm_noncont_e_e_3 "❙&I" by auto
hence "[❙∃ G . NonContingent G ❙& G ❙= (E!⇧-) in v]"
using thm_noncont_e_e_3 "❙&I" "❙∃I" by fast
}
thus "[L ❙≠ (E!⇧-) in v]"
using four_distinct_2[deduction, OF thm_cont_e_3]
modus_tollens_1 CP
by blast
next
{
assume "[(L⇧-) ❙= E! in v]"
hence "[NonContingent (L⇧-) ❙& (L⇧-) ❙= E! in v]"
using thm_noncont_e_e_4 "❙&I" by auto
hence "[❙∃ G . NonContingent G ❙& G ❙= E! in v]"
using thm_noncont_e_e_3 "❙&I" "❙∃I" by fast
}
thus "[(L⇧-) ❙≠ E! in v]"
using four_distinct_2[deduction, OF thm_cont_e_2]
modus_tollens_1 CP
by blast
next
{
assume "[(L⇧-) ❙= (E!⇧-) in v]"
hence "[NonContingent (L⇧-) ❙& (L⇧-) ❙= (E!⇧-) in v]"
using thm_noncont_e_e_4 "❙&I" by auto
hence "[❙∃ G . NonContingent G ❙& G ❙= (E!⇧-) in v]"
using thm_noncont_e_e_3 "❙&I" "❙∃I" by fast
}
thus "[(L⇧-) ❙≠ (E!⇧-) in v]"
using four_distinct_2[deduction, OF thm_cont_e_3]
modus_tollens_1 CP
by blast
next
show "[E! ❙≠ (E!⇧-) in v]"
by (rule thm_relation_negation_5_1)
qed
end
lemma thm_cont_propos_1[PLM]:
"[NonContingent (p::𝗈) ❙≡ NonContingent (p⇧-) in v]"
proof (rule "❙≡I"; rule CP)
assume "[NonContingent p in v]"
hence "[❙□p ❙∨ ❙□❙¬p in v]"
unfolding NonContingent_def Necessary_defs Impossible_defs .
hence "[❙□(❙¬(p⇧-)) ❙∨ ❙□(❙¬p) in v]"
apply -
apply (PLM_subst_method "p" "❙¬(p⇧-)")
using thm_relation_negation_4[equiv_sym] by auto
hence "[❙□(❙¬(p⇧-)) ❙∨ ❙□(p⇧-) in v]"
apply -
apply (PLM_subst_goal_method "λφ . ❙□(❙¬(p⇧-)) ❙∨ ❙□(φ)" "❙¬p")
using thm_relation_negation_3[equiv_sym] by auto
hence "[❙□(p⇧-) ❙∨ ❙□(❙¬(p⇧-)) in v]"
by (rule oth_class_taut_3_e[equiv_lr])
thus "[NonContingent (p⇧-) in v]"
unfolding NonContingent_def Necessary_defs Impossible_defs .
next
assume "[NonContingent (p⇧-) in v]"
hence "[❙□(❙¬(p⇧-)) ❙∨ ❙□(p⇧-) in v]"
unfolding NonContingent_def Necessary_defs Impossible_defs
by (rule oth_class_taut_3_e[equiv_lr])
hence "[❙□(p) ❙∨ ❙□(p⇧-) in v]"
apply -
apply (PLM_subst_goal_method "λφ . ❙□φ ❙∨ ❙□(p⇧-)" "❙¬(p⇧-)")
using thm_relation_negation_4 by auto
hence "[❙□(p) ❙∨ ❙□(❙¬p) in v]"
apply -
apply (PLM_subst_method "p⇧-" "❙¬p")
using thm_relation_negation_3 by auto
thus "[NonContingent p in v]"
unfolding NonContingent_def Necessary_defs Impossible_defs .
qed
lemma thm_cont_propos_2[PLM]:
"[Contingent p ❙≡ ❙◇p ❙& ❙◇(❙¬p) in v]"
proof (rule "❙≡I"; rule CP)
assume "[Contingent p in v]"
hence "[❙¬(❙□p ❙∨ ❙□(❙¬p)) in v]"
unfolding Contingent_def Necessary_defs Impossible_defs .
hence "[(❙¬❙□p) ❙& (❙¬❙□(❙¬p)) in v]"
by (rule oth_class_taut_6_d[equiv_lr])
hence "[(❙◇❙¬(❙¬p)) ❙& (❙◇❙¬p) in v]"
using KBasic2_2[equiv_lr] "❙&I" "❙&E" by meson
thus "[(❙◇p) ❙& (❙◇(❙¬p)) in v]"
apply - apply PLM_solver
apply (PLM_subst_method "❙¬❙¬p" "p")
using oth_class_taut_4_b[equiv_sym] by auto
next
assume "[(❙◇p) ❙& (❙◇❙¬(p)) in v]"
hence "[(❙◇❙¬(❙¬p)) ❙& (❙◇❙¬(p)) in v]"
apply - apply PLM_solver
apply (PLM_subst_method "p" "❙¬❙¬p")
using oth_class_taut_4_b by auto
hence "[(❙¬❙□p) ❙& (❙¬❙□(❙¬p)) in v]"
using KBasic2_2[equiv_rl] "❙&I" "❙&E" by meson
hence "[❙¬(❙□(p) ❙∨ ❙□(❙¬p)) in v]"
by (rule oth_class_taut_6_d[equiv_rl])
thus "[Contingent p in v]"
unfolding Contingent_def Necessary_defs Impossible_defs .
qed
lemma thm_cont_propos_3[PLM]:
"[Contingent (p::𝗈) ❙≡ Contingent (p⇧-) in v]"
using thm_cont_propos_1
unfolding NonContingent_def Contingent_def
by (rule oth_class_taut_5_d[equiv_lr])
context
begin
private definition p⇩0 where
"p⇩0 ≡ ❙∀x. ⦇E!,x⇧P⦈ ❙→ ⦇E!,x⇧P⦈"
lemma thm_noncont_propos_1[PLM]:
"[Necessary p⇩0 in v]"
unfolding Necessary_defs p⇩0_def
apply (rule RN, rule "❙∀I")
using if_p_then_p .
lemma thm_noncont_propos_2[PLM]:
"[Impossible (p⇩0⇧-) in v]"
unfolding Impossible_defs
apply (PLM_subst_method "❙¬p⇩0" "p⇩0⇧-")
using thm_relation_negation_3[equiv_sym] apply simp
apply (PLM_subst_method "p⇩0" "❙¬❙¬p⇩0")
using oth_class_taut_4_b apply simp
using thm_noncont_propos_1 unfolding Necessary_defs
by simp
lemma thm_noncont_propos_3[PLM]:
"[NonContingent (p⇩0) in v]"
unfolding NonContingent_def using thm_noncont_propos_1
by (rule "❙∨I"(1))
lemma thm_noncont_propos_4[PLM]:
"[NonContingent (p⇩0⇧-) in v]"
unfolding NonContingent_def using thm_noncont_propos_2
by (rule "❙∨I"(2))
lemma thm_noncont_propos_5[PLM]:
"[❙∃ (p::𝗈) q . p ❙≠ q ❙& NonContingent p ❙& NonContingent q in v]"
apply (rule_tac α="p⇩0" in "❙∃I", rule_tac α="p⇩0⇧-" in "❙∃I")
using "❙∃I" thm_relation_negation_6 thm_noncont_propos_3
thm_noncont_propos_4 "❙&I" by simp
private definition q⇩0 where
"q⇩0 ≡ ❙∃ x . ⦇E!,x⇧P⦈ ❙& ❙◇(❙¬⦇E!,x⇧P⦈)"
lemma basic_prop_1[PLM]:
"[❙∃ p . ❙◇p ❙& ❙◇(❙¬p) in v]"
apply (rule_tac α="q⇩0" in "❙∃I") unfolding q⇩0_def
using qml_4[axiom_instance] by simp
lemma basic_prop_2[PLM]:
"[Contingent q⇩0 in v]"
unfolding Contingent_def Necessary_defs Impossible_defs
apply (rule oth_class_taut_6_d[equiv_rl])
apply (PLM_subst_goal_method "λ φ . (❙¬❙□(φ)) ❙& ❙¬❙□❙¬q⇩0" "❙¬❙¬q⇩0")
using oth_class_taut_4_b[equiv_sym] apply simp
using qml_4[axiom_instance,conj_sym]
unfolding q⇩0_def diamond_def by simp
lemma basic_prop_3[PLM]:
"[Contingent (q⇩0⇧-) in v]"
apply (rule thm_cont_propos_3[equiv_lr])
using basic_prop_2 .
lemma basic_prop_4[PLM]:
"[❙∃ (p::𝗈) q . p ❙≠ q ❙& Contingent p ❙& Contingent q in v]"
apply (rule_tac α="q⇩0" in "❙∃I", rule_tac α="q⇩0⇧-" in "❙∃I")
using thm_relation_negation_6 basic_prop_2 basic_prop_3 "❙&I" by simp
lemma four_distinct_props_1[PLM]:
"[NonContingent (p::Π⇩0) ❙→ (❙¬(❙∃ q . Contingent q ❙& q ❙= p)) in v]"
proof (rule CP)
assume "[NonContingent p in v]"
hence "[❙¬(Contingent p) in v]"
unfolding NonContingent_def Contingent_def
apply - by PLM_solver
moreover {
assume "[❙∃ q . Contingent q ❙& q ❙= p in v]"
then obtain r where "[Contingent r ❙& r ❙= p in v]"
by (rule "❙∃E")
hence "[Contingent p in v]"
using "❙&E" l_identity[axiom_instance, deduction, deduction]
by blast
}
ultimately show "[❙¬(❙∃q. Contingent q ❙& q ❙= p) in v]"
using modus_tollens_1 CP by blast
qed
lemma four_distinct_props_2[PLM]:
"[Contingent (p::𝗈) ❙→ ❙¬(❙∃ q . (NonContingent q ❙& q ❙= p)) in v]"
proof (rule CP)
assume "[Contingent p in v]"
hence "[❙¬(NonContingent p) in v]"
unfolding NonContingent_def Contingent_def
apply - by PLM_solver
moreover {
assume "[❙∃ q . NonContingent q ❙& q ❙= p in v]"
then obtain r where "[NonContingent r ❙& r ❙= p in v]"
by (rule "❙∃E")
hence "[NonContingent p in v]"
using "❙&E" l_identity[axiom_instance, deduction, deduction]
by blast
}
ultimately show "[❙¬(❙∃q. NonContingent q ❙& q ❙= p) in v]"
using modus_tollens_1 CP by blast
qed
lemma four_distinct_props_4[PLM]:
"[p⇩0 ❙≠ (p⇩0⇧-) ❙& p⇩0 ❙≠ q⇩0 ❙& p⇩0 ❙≠ (q⇩0⇧-) ❙& (p⇩0⇧-) ❙≠ q⇩0
❙& (p⇩0⇧-) ❙≠ (q⇩0⇧-) ❙& q⇩0 ❙≠ (q⇩0⇧-) in v]"
proof (rule "❙&I")+
show "[p⇩0 ❙≠ (p⇩0⇧-) in v]"
by (rule thm_relation_negation_6)
next
{
assume "[p⇩0 ❙= q⇩0 in v]"
hence "[❙∃ q . NonContingent q ❙& q ❙= q⇩0 in v]"
using "❙&I" thm_noncont_propos_3 "❙∃I"[where α=p⇩0]
by simp
}
thus "[p⇩0 ❙≠ q⇩0 in v]"
using four_distinct_props_2[deduction, OF basic_prop_2]
modus_tollens_1 CP
by blast
next
{
assume "[p⇩0 ❙= (q⇩0⇧-) in v]"
hence "[❙∃ q . NonContingent q ❙& q ❙= (q⇩0⇧-) in v]"
using thm_noncont_propos_3 "❙&I" "❙∃I"[where α=p⇩0] by simp
}
thus "[p⇩0 ❙≠ (q⇩0⇧-) in v]"
using four_distinct_props_2[deduction, OF basic_prop_3]
modus_tollens_1 CP
by blast
next
{
assume "[(p⇩0⇧-) ❙= q⇩0 in v]"
hence "[❙∃ q . NonContingent q ❙& q ❙= q⇩0 in v]"
using thm_noncont_propos_4 "❙&I" "❙∃I"[where α="p⇩0⇧-"] by auto
}
thus "[(p⇩0⇧-) ❙≠ q⇩0 in v]"
using four_distinct_props_2[deduction, OF basic_prop_2]
modus_tollens_1 CP
by blast
next
{
assume "[(p⇩0⇧-) ❙= (q⇩0⇧-) in v]"
hence "[❙∃ q . NonContingent q ❙& q ❙= (q⇩0⇧-) in v]"
using thm_noncont_propos_4 "❙&I" "❙∃I"[where α="p⇩0⇧-"] by auto
}
thus "[(p⇩0⇧-) ❙≠ (q⇩0⇧-) in v]"
using four_distinct_props_2[deduction, OF basic_prop_3]
modus_tollens_1 CP
by blast
next
show "[q⇩0 ❙≠ (q⇩0⇧-) in v]"
by (rule thm_relation_negation_6)
qed
lemma cont_true_cont_1[PLM]:
"[ContingentlyTrue p ❙→ Contingent p in v]"
apply (rule CP, rule thm_cont_propos_2[equiv_rl])
unfolding ContingentlyTrue_def
apply (rule "❙&I", drule "❙&E"(1))
using "T❙◇"[deduction] apply simp
by (rule "❙&E"(2))
lemma cont_true_cont_2[PLM]:
"[ContingentlyFalse p ❙→ Contingent p in v]"
apply (rule CP, rule thm_cont_propos_2[equiv_rl])
unfolding ContingentlyFalse_def
apply (rule "❙&I", drule "❙&E"(2))
apply simp
apply (drule "❙&E"(1))
using "T❙◇"[deduction] by simp
lemma cont_true_cont_3[PLM]:
"[ContingentlyTrue p ❙≡ ContingentlyFalse (p⇧-) in v]"
unfolding ContingentlyTrue_def ContingentlyFalse_def
apply (PLM_subst_method "❙¬p" "p⇧-")
using thm_relation_negation_3[equiv_sym] apply simp
apply (PLM_subst_method "p" "❙¬❙¬p")
by PLM_solver+
lemma cont_true_cont_4[PLM]:
"[ContingentlyFalse p ❙≡ ContingentlyTrue (p⇧-) in v]"
unfolding ContingentlyTrue_def ContingentlyFalse_def
apply (PLM_subst_method "❙¬p" "p⇧-")
using thm_relation_negation_3[equiv_sym] apply simp
apply (PLM_subst_method "p" "❙¬❙¬p")
by PLM_solver+
lemma cont_tf_thm_1[PLM]:
"[ContingentlyTrue q⇩0 ❙∨ ContingentlyFalse q⇩0 in v]"
proof -
have "[q⇩0 ❙∨ ❙¬q⇩0 in v]"
by PLM_solver
moreover {
assume "[q⇩0 in v]"
hence "[q⇩0 ❙& ❙◇❙¬q⇩0 in v]"
unfolding q⇩0_def
using qml_4[axiom_instance,conj2] "❙&I"
by auto
}
moreover {
assume "[❙¬q⇩0 in v]"
hence "[(❙¬q⇩0) ❙& ❙◇q⇩0 in v]"
unfolding q⇩0_def
using qml_4[axiom_instance,conj1] "❙&I"
by auto
}
ultimately show ?thesis
unfolding ContingentlyTrue_def ContingentlyFalse_def
using "❙∨E"(4) CP by auto
qed
lemma cont_tf_thm_2[PLM]:
"[ContingentlyFalse q⇩0 ❙∨ ContingentlyFalse (q⇩0⇧-) in v]"
using cont_tf_thm_1 cont_true_cont_3[where p="q⇩0"]
cont_true_cont_4[where p="q⇩0"]
apply - by PLM_solver
lemma cont_tf_thm_3[PLM]:
"[❙∃ p . ContingentlyTrue p in v]"
proof (rule "❙∨E"(1); (rule CP)?)
show "[ContingentlyTrue q⇩0 ❙∨ ContingentlyFalse q⇩0 in v]"
using cont_tf_thm_1 .
next
assume "[ContingentlyTrue q⇩0 in v]"
thus ?thesis
using "❙∃I" by metis
next
assume "[ContingentlyFalse q⇩0 in v]"
hence "[ContingentlyTrue (q⇩0⇧-) in v]"
using cont_true_cont_4[equiv_lr] by simp
thus ?thesis
using "❙∃I" by metis
qed
lemma cont_tf_thm_4[PLM]:
"[❙∃ p . ContingentlyFalse p in v]"
proof (rule "❙∨E"(1); (rule CP)?)
show "[ContingentlyTrue q⇩0 ❙∨ ContingentlyFalse q⇩0 in v]"
using cont_tf_thm_1 .
next
assume "[ContingentlyTrue q⇩0 in v]"
hence "[ContingentlyFalse (q⇩0⇧-) in v]"
using cont_true_cont_3[equiv_lr] by simp
thus ?thesis
using "❙∃I" by metis
next
assume "[ContingentlyFalse q⇩0 in v]"
thus ?thesis
using "❙∃I" by metis
qed
lemma cont_tf_thm_5[PLM]:
"[ContingentlyTrue p ❙& Necessary q ❙→ p ❙≠ q in v]"
proof (rule CP)
assume "[ContingentlyTrue p ❙& Necessary q in v]"
hence 1: "[❙◇(❙¬p) ❙& ❙□ q in v]"
unfolding ContingentlyTrue_def Necessary_defs
using "❙&E" "❙&I" by blast
hence "[❙¬❙□p in v]"
apply - apply (drule "❙&E"(1))
unfolding diamond_def
apply (PLM_subst_method "❙¬❙¬p" "p")
using oth_class_taut_4_b[equiv_sym] by auto
moreover {
assume "[p ❙= q in v]"
hence "[❙□p in v]"
using l_identity[where α="q" and β="p" and φ="λ x . ❙□ x",
axiom_instance, deduction, deduction]
1[conj2] id_eq_prop_prop_8_b[deduction]
by blast
}
ultimately show "[p ❙≠ q in v]"
using modus_tollens_1 CP by blast
qed
lemma cont_tf_thm_6[PLM]:
"[(ContingentlyFalse p ❙& Impossible q) ❙→ p ❙≠ q in v]"
proof (rule CP)
assume "[ContingentlyFalse p ❙& Impossible q in v]"
hence 1: "[❙◇p ❙& ❙□(❙¬q) in v]"
unfolding ContingentlyFalse_def Impossible_defs
using "❙&E" "❙&I" by blast
hence "[❙¬❙◇q in v]"
unfolding diamond_def apply - by PLM_solver
moreover {
assume "[p ❙= q in v]"
hence "[❙◇q in v]"
using l_identity[axiom_instance, deduction, deduction] 1[conj1]
id_eq_prop_prop_8_b[deduction]
by blast
}
ultimately show "[p ❙≠ q in v]"
using modus_tollens_1 CP by blast
qed
end
lemma oa_contingent_1[PLM]:
"[O! ❙≠ A! in v]"
proof -
{
assume "[O! ❙= A! in v]"
hence "[(❙λx. ❙◇⦇E!,x⇧P⦈) ❙= (❙λx. ❙¬❙◇⦇E!,x⇧P⦈) in v]"
unfolding Ordinary_def Abstract_def .
moreover have "[⦇(❙λx. ❙◇⦇E!,x⇧P⦈), x⇧P⦈ ❙≡ ❙◇⦇E!,x⇧P⦈ in v]"
apply (rule beta_C_meta_1)
by show_proper
ultimately have "[⦇(❙λx. ❙¬❙◇⦇E!,x⇧P⦈), x⇧P⦈ ❙≡ ❙◇⦇E!,x⇧P⦈ in v]"
using l_identity[axiom_instance, deduction, deduction] by fast
moreover have "[⦇(❙λx. ❙¬❙◇⦇E!,x⇧P⦈), x⇧P⦈ ❙≡ ❙¬❙◇⦇E!,x⇧P⦈ in v]"
apply (rule beta_C_meta_1)
by show_proper
ultimately have "[❙◇⦇E!,x⇧P⦈ ❙≡ ❙¬❙◇⦇E!,x⇧P⦈ in v]"
apply - by PLM_solver
}
thus ?thesis
using oth_class_taut_1_b modus_tollens_1 CP
by blast
qed
lemma oa_contingent_2[PLM]:
"[⦇O!,x⇧P⦈ ❙≡ ❙¬⦇A!,x⇧P⦈ in v]"
proof -
have "[⦇(❙λx. ❙¬❙◇⦇E!,x⇧P⦈), x⇧P⦈ ❙≡ ❙¬❙◇⦇E!,x⇧P⦈ in v]"
apply (rule beta_C_meta_1)
by show_proper
hence "[(❙¬⦇(❙λx. ❙¬❙◇⦇E!,x⇧P⦈), x⇧P⦈) ❙≡ ❙◇⦇E!,x⇧P⦈ in v]"
using oth_class_taut_5_d[equiv_lr] oth_class_taut_4_b[equiv_sym]
"❙≡E"(5) by blast
moreover have "[⦇(❙λx. ❙◇⦇E!,x⇧P⦈), x⇧P⦈ ❙≡ ❙◇⦇E!,x⇧P⦈ in v]"
apply (rule beta_C_meta_1)
by show_proper
ultimately show ?thesis
unfolding Ordinary_def Abstract_def
apply - by PLM_solver
qed
lemma oa_contingent_3[PLM]:
"[⦇A!,x⇧P⦈ ❙≡ ❙¬⦇O!,x⇧P⦈ in v]"
using oa_contingent_2
apply - by PLM_solver
lemma oa_contingent_4[PLM]:
"[Contingent O! in v]"
apply (rule thm_cont_prop_2[equiv_rl], rule "❙&I")
subgoal
unfolding Ordinary_def
apply (PLM_subst_method "λ x . ❙◇⦇E!,x⇧P⦈" "λ x . ⦇❙λx. ❙◇⦇E!,x⇧P⦈,x⇧P⦈")
apply (safe intro!: beta_C_meta_1[equiv_sym])
apply show_proper
using "BF❙◇"[deduction, OF thm_cont_prop_2[equiv_lr, OF thm_cont_e_2, conj1]]
by (rule "T❙◇"[deduction])
subgoal
apply (PLM_subst_method "λ x . ⦇A!,x⇧P⦈" "λ x . ❙¬⦇O!,x⇧P⦈")
using oa_contingent_3 apply simp
using cqt_further_5[deduction,conj1, OF A_objects[axiom_instance]]
by (rule "T❙◇"[deduction])
done
lemma oa_contingent_5[PLM]:
"[Contingent A! in v]"
apply (rule thm_cont_prop_2[equiv_rl], rule "❙&I")
subgoal
using cqt_further_5[deduction,conj1, OF A_objects[axiom_instance]]
by (rule "T❙◇"[deduction])
subgoal
unfolding Abstract_def
apply (PLM_subst_method "λ x . ❙¬❙◇⦇E!,x⇧P⦈" "λ x . ⦇❙λx. ❙¬❙◇⦇E!,x⇧P⦈,x⇧P⦈")
apply (safe intro!: beta_C_meta_1[equiv_sym])
apply show_proper
apply (PLM_subst_method "λ x . ❙◇⦇E!,x⇧P⦈" "λ x . ❙¬❙¬❙◇⦇E!,x⇧P⦈")
using oth_class_taut_4_b apply simp
using "BF❙◇"[deduction, OF thm_cont_prop_2[equiv_lr, OF thm_cont_e_2, conj1]]
by (rule "T❙◇"[deduction])
done
lemma oa_contingent_6[PLM]:
"[(O!⇧-) ❙≠ (A!⇧-) in v]"
proof -
{
assume "[(O!⇧-) ❙= (A!⇧-) in v]"
hence "[(❙λx. ❙¬⦇O!,x⇧P⦈) ❙= (❙λx. ❙¬⦇A!,x⇧P⦈) in v]"
unfolding propnot_defs .
moreover have "[⦇(❙λx. ❙¬⦇O!,x⇧P⦈), x⇧P⦈ ❙≡ ❙¬⦇O!,x⇧P⦈ in v]"
apply (rule beta_C_meta_1)
by show_proper
ultimately have "[⦇❙λx. ❙¬⦇A!,x⇧P⦈,x⇧P⦈ ❙≡ ❙¬⦇O!,x⇧P⦈ in v]"
using l_identity[axiom_instance, deduction, deduction]
by fast
hence "[(❙¬⦇A!,x⇧P⦈) ❙≡ ❙¬⦇O!,x⇧P⦈ in v]"
apply -
apply (PLM_subst_method "⦇❙λx. ❙¬⦇A!,x⇧P⦈,x⇧P⦈" "(❙¬⦇A!,x⇧P⦈)")
apply (safe intro!: beta_C_meta_1)
by show_proper
hence "[⦇O!,x⇧P⦈ ❙≡ ❙¬⦇O!,x⇧P⦈ in v]"
using oa_contingent_2 apply - by PLM_solver
}
thus ?thesis
using oth_class_taut_1_b modus_tollens_1 CP
by blast
qed
lemma oa_contingent_7[PLM]:
"[⦇O!⇧-,x⇧P⦈ ❙≡ ❙¬⦇A!⇧-,x⇧P⦈ in v]"
proof -
have "[(❙¬⦇❙λx. ❙¬⦇A!,x⇧P⦈,x⇧P⦈) ❙≡ ⦇A!,x⇧P⦈ in v]"
apply (PLM_subst_method "(❙¬⦇A!,x⇧P⦈)" "⦇❙λx. ❙¬⦇A!,x⇧P⦈,x⇧P⦈")
apply (safe intro!: beta_C_meta_1[equiv_sym])
apply show_proper
using oth_class_taut_4_b[equiv_sym] by auto
moreover have "[⦇❙λx. ❙¬⦇O!,x⇧P⦈,x⇧P⦈ ❙≡ ❙¬⦇O!,x⇧P⦈ in v]"
apply (rule beta_C_meta_1)
by show_proper
ultimately show ?thesis
unfolding propnot_defs
using oa_contingent_3
apply - by PLM_solver
qed
lemma oa_contingent_8[PLM]:
"[Contingent (O!⇧-) in v]"
using oa_contingent_4 thm_cont_prop_3[equiv_lr] by auto
lemma oa_contingent_9[PLM]:
"[Contingent (A!⇧-) in v]"
using oa_contingent_5 thm_cont_prop_3[equiv_lr] by auto
lemma oa_facts_1[PLM]:
"[⦇O!,x⇧P⦈ ❙→ ❙□⦇O!,x⇧P⦈ in v]"
proof (rule CP)
assume "[⦇O!,x⇧P⦈ in v]"
hence "[❙◇⦇E!,x⇧P⦈ in v]"
unfolding Ordinary_def apply -
apply (rule beta_C_meta_1[equiv_lr])
by show_proper
hence "[❙□❙◇⦇E!,x⇧P⦈ in v]"
using qml_3[axiom_instance, deduction] by auto
thus "[❙□⦇O!,x⇧P⦈ in v]"
unfolding Ordinary_def
apply -
apply (PLM_subst_method "❙◇⦇E!,x⇧P⦈" "⦇❙λx. ❙◇⦇E!,x⇧P⦈,x⇧P⦈")
apply (safe intro!: beta_C_meta_1[equiv_sym])
by show_proper
qed
lemma oa_facts_2[PLM]:
"[⦇A!,x⇧P⦈ ❙→ ❙□⦇A!,x⇧P⦈ in v]"
proof (rule CP)
assume "[⦇A!,x⇧P⦈ in v]"
hence "[❙¬❙◇⦇E!,x⇧P⦈ in v]"
unfolding Abstract_def apply -
apply (rule beta_C_meta_1[equiv_lr])
by show_proper
hence "[❙□❙□❙¬⦇E!,x⇧P⦈ in v]"
using KBasic2_4[equiv_rl] "4❙□"[deduction] by auto
hence "[❙□❙¬❙◇⦇E!,x⇧P⦈ in v]"
apply -
apply (PLM_subst_method "❙□❙¬⦇E!,x⇧P⦈" "❙¬❙◇⦇E!,x⇧P⦈")
using KBasic2_4 by auto
thus "[❙□⦇A!,x⇧P⦈ in v]"
unfolding Abstract_def
apply -
apply (PLM_subst_method "❙¬❙◇⦇E!,x⇧P⦈" "⦇❙λx. ❙¬❙◇⦇E!,x⇧P⦈,x⇧P⦈")
apply (safe intro!: beta_C_meta_1[equiv_sym])
by show_proper
qed
lemma oa_facts_3[PLM]:
"[❙◇⦇O!,x⇧P⦈ ❙→ ⦇O!,x⇧P⦈ in v]"
using oa_facts_1 by (rule derived_S5_rules_2_b)
lemma oa_facts_4[PLM]:
"[❙◇⦇A!,x⇧P⦈ ❙→ ⦇A!,x⇧P⦈ in v]"
using oa_facts_2 by (rule derived_S5_rules_2_b)
lemma oa_facts_5[PLM]:
"[❙◇⦇O!,x⇧P⦈ ❙≡ ❙□⦇O!,x⇧P⦈ in v]"
using oa_facts_1[deduction, OF oa_facts_3[deduction]]
"T❙◇"[deduction, OF qml_2[axiom_instance, deduction]]
"❙≡I" CP by blast
lemma oa_facts_6[PLM]:
"[❙◇⦇A!,x⇧P⦈ ❙≡ ❙□⦇A!,x⇧P⦈ in v]"
using oa_facts_2[deduction, OF oa_facts_4[deduction]]
"T❙◇"[deduction, OF qml_2[axiom_instance, deduction]]
"❙≡I" CP by blast
lemma oa_facts_7[PLM]:
"[⦇O!,x⇧P⦈ ❙≡ ❙𝒜⦇O!,x⇧P⦈ in v]"
apply (rule "❙≡I"; rule CP)
apply (rule nec_imp_act[deduction, OF oa_facts_1[deduction]]; assumption)
proof -
assume "[❙𝒜⦇O!,x⇧P⦈ in v]"
hence "[❙𝒜(❙◇⦇E!,x⇧P⦈) in v]"
unfolding Ordinary_def apply -
apply (PLM_subst_method "⦇❙λx. ❙◇⦇E!,x⇧P⦈,x⇧P⦈" "❙◇⦇E!,x⇧P⦈")
apply (safe intro!: beta_C_meta_1)
by show_proper
hence "[❙◇⦇E!,x⇧P⦈ in v]"
using Act_Basic_6[equiv_rl] by auto
thus "[⦇O!,x⇧P⦈ in v]"
unfolding Ordinary_def apply -
apply (PLM_subst_method "❙◇⦇E!,x⇧P⦈" "⦇❙λx. ❙◇⦇E!,x⇧P⦈,x⇧P⦈")
apply (safe intro!: beta_C_meta_1[equiv_sym])
by show_proper
qed
lemma oa_facts_8[PLM]:
"[⦇A!,x⇧P⦈ ❙≡ ❙𝒜⦇A!,x⇧P⦈ in v]"
apply (rule "❙≡I"; rule CP)
apply (rule nec_imp_act[deduction, OF oa_facts_2[deduction]]; assumption)
proof -
assume "[❙𝒜⦇A!,x⇧P⦈ in v]"
hence "[❙𝒜(❙¬❙◇⦇E!,x⇧P⦈) in v]"
unfolding Abstract_def apply -
apply (PLM_subst_method "⦇❙λx. ❙¬❙◇⦇E!,x⇧P⦈,x⇧P⦈" "❙¬❙◇⦇E!,x⇧P⦈")
apply (safe intro!: beta_C_meta_1)
by show_proper
hence "[❙𝒜(❙□❙¬⦇E!,x⇧P⦈) in v]"
apply -
apply (PLM_subst_method "(❙¬❙◇⦇E!,x⇧P⦈)" "(❙□❙¬⦇E!,x⇧P⦈)")
using KBasic2_4[equiv_sym] by auto
hence "[❙¬❙◇⦇E!,x⇧P⦈ in v]"
using qml_act_2[axiom_instance, equiv_rl] KBasic2_4[equiv_lr] by auto
thus "[⦇A!,x⇧P⦈ in v]"
unfolding Abstract_def apply -
apply (PLM_subst_method "❙¬❙◇⦇E!,x⇧P⦈" "⦇❙λx. ❙¬❙◇⦇E!,x⇧P⦈,x⇧P⦈")
apply (safe intro!: beta_C_meta_1[equiv_sym])
by show_proper
qed
lemma cont_nec_fact1_1[PLM]:
"[WeaklyContingent F ❙≡ WeaklyContingent (F⇧-) in v]"
proof (rule "❙≡I"; rule CP)
assume "[WeaklyContingent F in v]"
hence wc_def: "[Contingent F ❙& (❙∀ x . (❙◇⦇F,x⇧P⦈ ❙→ ❙□⦇F,x⇧P⦈)) in v]"
unfolding WeaklyContingent_def .
have "[Contingent (F⇧-) in v]"
using wc_def[conj1] by (rule thm_cont_prop_3[equiv_lr])
moreover {
{
fix x
assume "[❙◇⦇F⇧-,x⇧P⦈ in v]"
hence "[❙¬❙□⦇F,x⇧P⦈ in v]"
unfolding diamond_def apply -
apply (PLM_subst_method "❙¬⦇F⇧-,x⇧P⦈" "⦇F,x⇧P⦈")
using thm_relation_negation_2_1 by auto
moreover {
assume "[❙¬❙□⦇F⇧-,x⇧P⦈ in v]"
hence "[❙¬❙□⦇❙λx. ❙¬⦇F,x⇧P⦈,x⇧P⦈ in v]"
unfolding propnot_defs .
hence "[❙◇⦇F,x⇧P⦈ in v]"
unfolding diamond_def
apply - apply (PLM_subst_method "⦇❙λx. ❙¬⦇F,x⇧P⦈,x⇧P⦈" "❙¬⦇F,x⇧P⦈")
apply (safe intro!: beta_C_meta_1)
by show_proper
hence "[❙□⦇F,x⇧P⦈ in v]"
using wc_def[conj2] cqt_1[axiom_instance, deduction]
modus_ponens by fast
}
ultimately have "[❙□⦇F⇧-, x⇧P⦈ in v]"
using "❙¬❙¬E" modus_tollens_1 CP by blast
}
hence "[❙∀ x . ❙◇⦇F⇧-,x⇧P⦈ ❙→ ❙□⦇F⇧-, x⇧P⦈ in v]"
using "❙∀I" CP by fast
}
ultimately show "[WeaklyContingent (F⇧-) in v]"
unfolding WeaklyContingent_def by (rule "❙&I")
next
assume "[WeaklyContingent (F⇧-) in v]"
hence wc_def: "[Contingent (F⇧-) ❙& (❙∀ x . (❙◇⦇F⇧-,x⇧P⦈ ❙→ ❙□⦇F⇧-,x⇧P⦈)) in v]"
unfolding WeaklyContingent_def .
have "[Contingent F in v]"
using wc_def[conj1] by (rule thm_cont_prop_3[equiv_rl])
moreover {
{
fix x
assume "[❙◇⦇F,x⇧P⦈ in v]"
hence "[❙¬❙□⦇F⇧-,x⇧P⦈ in v]"
unfolding diamond_def apply -
apply (PLM_subst_method "❙¬⦇F,x⇧P⦈" "⦇F⇧-,x⇧P⦈")
using thm_relation_negation_1_1[equiv_sym] by auto
moreover {
assume "[❙¬❙□⦇F,x⇧P⦈ in v]"
hence "[❙◇⦇F⇧-,x⇧P⦈ in v]"
unfolding diamond_def
apply - apply (PLM_subst_method "⦇F,x⇧P⦈" "❙¬⦇F⇧-,x⇧P⦈")
using thm_relation_negation_2_1[equiv_sym] by auto
hence "[❙□⦇F⇧-,x⇧P⦈ in v]"
using wc_def[conj2] cqt_1[axiom_instance, deduction]
modus_ponens by fast
}
ultimately have "[❙□⦇F, x⇧P⦈ in v]"
using "❙¬❙¬E" modus_tollens_1 CP by blast
}
hence "[❙∀ x . ❙◇⦇F,x⇧P⦈ ❙→ ❙□⦇F, x⇧P⦈ in v]"
using "❙∀I" CP by fast
}
ultimately show "[WeaklyContingent (F) in v]"
unfolding WeaklyContingent_def by (rule "❙&I")
qed
lemma cont_nec_fact1_2[PLM]:
"[(WeaklyContingent F ❙& ❙¬(WeaklyContingent G)) ❙→ (F ❙≠ G) in v]"
using l_identity[axiom_instance,deduction,deduction] "❙&E" "❙&I"
modus_tollens_1 CP by metis
lemma cont_nec_fact2_1[PLM]:
"[WeaklyContingent (O!) in v]"
unfolding WeaklyContingent_def
apply (rule "❙&I")
using oa_contingent_4 apply simp
using oa_facts_5 unfolding equiv_def
using "❙&E"(1) "❙∀I" by fast
lemma cont_nec_fact2_2[PLM]:
"[WeaklyContingent (A!) in v]"
unfolding WeaklyContingent_def
apply (rule "❙&I")
using oa_contingent_5 apply simp
using oa_facts_6 unfolding equiv_def
using "❙&E"(1) "❙∀I" by fast
lemma cont_nec_fact2_3[PLM]:
"[❙¬(WeaklyContingent (E!)) in v]"
proof (rule modus_tollens_1, rule CP)
assume "[WeaklyContingent E! in v]"
thus "[❙∀ x . ❙◇⦇E!,x⇧P⦈ ❙→ ❙□⦇E!,x⇧P⦈ in v]"
unfolding WeaklyContingent_def using "❙&E"(2) by fast
next
{
assume 1: "[❙∀ x . ❙◇⦇E!,x⇧P⦈ ❙→ ❙□⦇E!,x⇧P⦈ in v]"
have "[❙∃ x . ❙◇(⦇E!,x⇧P⦈ ❙& ❙◇(❙¬⦇E!,x⇧P⦈)) in v]"
using qml_4[axiom_instance,conj1, THEN BFs_3[deduction]] .
then obtain x where "[❙◇(⦇E!,x⇧P⦈ ❙& ❙◇(❙¬⦇E!,x⇧P⦈)) in v]"
by (rule "❙∃E")
hence "[❙◇⦇E!,x⇧P⦈ ❙& ❙◇(❙¬⦇E!,x⇧P⦈) in v]"
using KBasic2_8[deduction] S5Basic_8[deduction]
"❙&I" "❙&E" by blast
hence "[❙□⦇E!,x⇧P⦈ ❙& (❙¬❙□⦇E!,x⇧P⦈) in v]"
using 1[THEN "❙∀E", deduction] "❙&E" "❙&I"
KBasic2_2[equiv_rl] by blast
hence "[❙¬(❙∀ x . ❙◇⦇E!,x⇧P⦈ ❙→ ❙□⦇E!,x⇧P⦈) in v]"
using oth_class_taut_1_a modus_tollens_1 CP by blast
}
thus "[❙¬(❙∀ x . ❙◇⦇E!,x⇧P⦈ ❙→ ❙□⦇E!,x⇧P⦈) in v]"
using reductio_aa_2 if_p_then_p CP by meson
qed
lemma cont_nec_fact2_4[PLM]:
"[❙¬(WeaklyContingent (PLM.L)) in v]"
proof -
{
assume "[WeaklyContingent PLM.L in v]"
hence "[Contingent PLM.L in v]"
unfolding WeaklyContingent_def using "❙&E"(1) by blast
}
thus ?thesis
using thm_noncont_e_e_3
unfolding Contingent_def NonContingent_def
using modus_tollens_2 CP by blast
qed
lemma cont_nec_fact2_5[PLM]:
"[O! ❙≠ E! ❙& O! ❙≠ (E!⇧-) ❙& O! ❙≠ PLM.L ❙& O! ❙≠ (PLM.L⇧-) in v]"
proof ((rule "❙&I")+)
show "[O! ❙≠ E! in v]"
using cont_nec_fact2_1 cont_nec_fact2_3
cont_nec_fact1_2[deduction] "❙&I" by simp
next
have "[❙¬(WeaklyContingent (E!⇧-)) in v]"
using cont_nec_fact1_1[THEN oth_class_taut_5_d[equiv_lr], equiv_lr]
cont_nec_fact2_3 by auto
thus "[O! ❙≠ (E!⇧-) in v]"
using cont_nec_fact2_1 cont_nec_fact1_2[deduction] "❙&I" by simp
next
show "[O! ❙≠ PLM.L in v]"
using cont_nec_fact2_1 cont_nec_fact2_4
cont_nec_fact1_2[deduction] "❙&I" by simp
next
have "[❙¬(WeaklyContingent (PLM.L⇧-)) in v]"
using cont_nec_fact1_1[THEN oth_class_taut_5_d[equiv_lr], equiv_lr]
cont_nec_fact2_4 by auto
thus "[O! ❙≠ (PLM.L⇧-) in v]"
using cont_nec_fact2_1 cont_nec_fact1_2[deduction] "❙&I" by simp
qed
lemma cont_nec_fact2_6[PLM]:
"[A! ❙≠ E! ❙& A! ❙≠ (E!⇧-) ❙& A! ❙≠ PLM.L ❙& A! ❙≠ (PLM.L⇧-) in v]"
proof ((rule "❙&I")+)
show "[A! ❙≠ E! in v]"
using cont_nec_fact2_2 cont_nec_fact2_3
cont_nec_fact1_2[deduction] "❙&I" by simp
next
have "[❙¬(WeaklyContingent (E!⇧-)) in v]"
using cont_nec_fact1_1[THEN oth_class_taut_5_d[equiv_lr], equiv_lr]
cont_nec_fact2_3 by auto
thus "[A! ❙≠ (E!⇧-) in v]"
using cont_nec_fact2_2 cont_nec_fact1_2[deduction] "❙&I" by simp
next
show "[A! ❙≠ PLM.L in v]"
using cont_nec_fact2_2 cont_nec_fact2_4
cont_nec_fact1_2[deduction] "❙&I" by simp
next
have "[❙¬(WeaklyContingent (PLM.L⇧-)) in v]"
using cont_nec_fact1_1[THEN oth_class_taut_5_d[equiv_lr],
equiv_lr] cont_nec_fact2_4 by auto
thus "[A! ❙≠ (PLM.L⇧-) in v]"
using cont_nec_fact2_2 cont_nec_fact1_2[deduction] "❙&I" by simp
qed
lemma id_nec3_1[PLM]:
"[((x⇧P) ❙=⇩E (y⇧P)) ❙≡ (❙□((x⇧P) ❙=⇩E (y⇧P))) in v]"
proof (rule "❙≡I"; rule CP)
assume "[(x⇧P) ❙=⇩E (y⇧P) in v]"
hence "[⦇O!,x⇧P⦈ in v] ∧ [⦇O!,y⇧P⦈ in v] ∧ [❙□(❙∀ F . ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈) in v]"
using eq_E_simple_1[equiv_lr] using "❙&E" by blast
hence "[❙□⦇O!,x⇧P⦈ in v] ∧ [❙□⦇O!,y⇧P⦈ in v]
∧ [❙□❙□(❙∀ F . ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈) in v]"
using oa_facts_1[deduction] S5Basic_6[deduction] by blast
hence "[❙□(⦇O!,x⇧P⦈ ❙& ⦇O!,y⇧P⦈ ❙& ❙□(❙∀ F. ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈)) in v]"
using "❙&I" KBasic_3[equiv_rl] by presburger
thus "[❙□((x⇧P) ❙=⇩E (y⇧P)) in v]"
apply -
apply (PLM_subst_method
"(⦇O!,x⇧P⦈ ❙& ⦇O!,y⇧P⦈ ❙& ❙□(❙∀ F. ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈))"
"(x⇧P) ❙=⇩E (y⇧P)")
using eq_E_simple_1[equiv_sym] by auto
next
assume "[❙□((x⇧P) ❙=⇩E (y⇧P)) in v]"
thus "[((x⇧P) ❙=⇩E (y⇧P)) in v]"
using qml_2[axiom_instance,deduction] by simp
qed
lemma id_nec3_2[PLM]:
"[❙◇((x⇧P) ❙=⇩E (y⇧P)) ❙≡ ((x⇧P) ❙=⇩E (y⇧P)) in v]"
proof (rule "❙≡I"; rule CP)
assume "[❙◇((x⇧P) ❙=⇩E (y⇧P)) in v]"
thus "[(x⇧P) ❙=⇩E (y⇧P) in v]"
using derived_S5_rules_2_b[deduction] id_nec3_1[equiv_lr]
CP modus_ponens by blast
next
assume "[(x⇧P) ❙=⇩E (y⇧P) in v]"
thus "[❙◇((x⇧P) ❙=⇩E (y⇧P)) in v]"
by (rule TBasic[deduction])
qed
lemma thm_neg_eqE[PLM]:
"[((x⇧P) ❙≠⇩E (y⇧P)) ❙≡ (❙¬((x⇧P) ❙=⇩E (y⇧P))) in v]"
proof -
have "[(x⇧P) ❙≠⇩E (y⇧P) in v] = [⦇(❙λ⇧2 (λ x y . (x⇧P) ❙=⇩E (y⇧P)))⇧-, x⇧P, y⇧P⦈ in v]"
unfolding not_identical⇩E_def by simp
also have "... = [❙¬⦇(❙λ⇧2 (λ x y . (x⇧P) ❙=⇩E (y⇧P))), x⇧P, y⇧P⦈ in v]"
unfolding propnot_defs
apply (safe intro!: beta_C_meta_2[equiv_lr] beta_C_meta_2[equiv_rl])
by show_proper+
also have "... = [❙¬((x⇧P) ❙=⇩E (y⇧P)) in v]"
apply (PLM_subst_method
"⦇(❙λ⇧2 (λ x y . (x⇧P) ❙=⇩E (y⇧P))), x⇧P, y⇧P⦈"
"(x⇧P) ❙=⇩E (y⇧P)")
apply (safe intro!: beta_C_meta_2)
unfolding identity_defs by show_proper
finally show ?thesis
using "❙≡I" CP by presburger
qed
lemma id_nec4_1[PLM]:
"[((x⇧P) ❙≠⇩E (y⇧P)) ❙≡ ❙□((x⇧P) ❙≠⇩E (y⇧P)) in v]"
proof -
have "[(❙¬((x⇧P) ❙=⇩E (y⇧P))) ❙≡ ❙□(❙¬((x⇧P) ❙=⇩E (y⇧P))) in v]"
using id_nec3_2[equiv_sym] oth_class_taut_5_d[equiv_lr]
KBasic2_4[equiv_sym] intro_elim_6_e by fast
thus ?thesis
apply -
apply (PLM_subst_method "(❙¬((x⇧P) ❙=⇩E (y⇧P)))" "(x⇧P) ❙≠⇩E (y⇧P)")
using thm_neg_eqE[equiv_sym] by auto
qed
lemma id_nec4_2[PLM]:
"[❙◇((x⇧P) ❙≠⇩E (y⇧P)) ❙≡ ((x⇧P) ❙≠⇩E (y⇧P)) in v]"
using "❙≡I" id_nec4_1[equiv_lr] derived_S5_rules_2_b CP "T❙◇" by simp
lemma id_act_1[PLM]:
"[((x⇧P) ❙=⇩E (y⇧P)) ❙≡ (❙𝒜((x⇧P) ❙=⇩E (y⇧P))) in v]"
proof (rule "❙≡I"; rule CP)
assume "[(x⇧P) ❙=⇩E (y⇧P) in v]"
hence "[❙□((x⇧P) ❙=⇩E (y⇧P)) in v]"
using id_nec3_1[equiv_lr] by auto
thus "[❙𝒜((x⇧P) ❙=⇩E (y⇧P)) in v]"
using nec_imp_act[deduction] by fast
next
assume "[❙𝒜((x⇧P) ❙=⇩E (y⇧P)) in v]"
hence "[❙𝒜(⦇O!,x⇧P⦈ ❙& ⦇O!,y⇧P⦈ ❙& ❙□(❙∀ F . ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈)) in v]"
apply -
apply (PLM_subst_method
"(x⇧P) ❙=⇩E (y⇧P)"
"(⦇O!,x⇧P⦈ ❙& ⦇O!,y⇧P⦈ ❙& ❙□(❙∀ F . ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈))")
using eq_E_simple_1 by auto
hence "[❙𝒜⦇O!,x⇧P⦈ ❙& ❙𝒜⦇O!,y⇧P⦈ ❙& ❙𝒜(❙□(❙∀ F . ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈)) in v]"
using Act_Basic_2[equiv_lr] "❙&I" "❙&E" by meson
thus "[(x⇧P) ❙=⇩E (y⇧P) in v]"
apply - apply (rule eq_E_simple_1[equiv_rl])
using oa_facts_7[equiv_rl] qml_act_2[axiom_instance, equiv_rl]
"❙&I" "❙&E" by meson
qed
lemma id_act_2[PLM]:
"[((x⇧P) ❙≠⇩E (y⇧P)) ❙≡ (❙𝒜((x⇧P) ❙≠⇩E (y⇧P))) in v]"
apply (PLM_subst_method "(❙¬((x⇧P) ❙=⇩E (y⇧P)))" "((x⇧P) ❙≠⇩E (y⇧P))")
using thm_neg_eqE[equiv_sym] apply simp
using id_act_1 oth_class_taut_5_d[equiv_lr] thm_neg_eqE intro_elim_6_e
logic_actual_nec_1[axiom_instance,equiv_sym] by meson
end
class id_act = id_eq +
assumes id_act_prop: "[❙𝒜(α ❙= β) in v] ⟹ [(α ❙= β) in v]"
instantiation ν :: id_act
begin
instance proof
interpret PLM .
fix x::ν and y::ν and v::i
assume "[❙𝒜(x ❙= y) in v]"
hence "[❙𝒜(((x⇧P) ❙=⇩E (y⇧P)) ❙∨ (⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈
❙& ❙□(❙∀ F . ⦃x⇧P,F⦄ ❙≡ ⦃y⇧P,F⦄))) in v]"
unfolding identity_defs by auto
hence "[❙𝒜(((x⇧P) ❙=⇩E (y⇧P))) ❙∨ ❙𝒜((⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈
❙& ❙□(❙∀ F . ⦃x⇧P,F⦄ ❙≡ ⦃y⇧P,F⦄))) in v]"
using Act_Basic_10[equiv_lr] by auto
moreover {
assume "[❙𝒜(((x⇧P) ❙=⇩E (y⇧P))) in v]"
hence "[(x⇧P) ❙= (y⇧P) in v]"
using id_act_1[equiv_rl] eq_E_simple_2[deduction] by auto
}
moreover {
assume "[❙𝒜(⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& ❙□(❙∀ F . ⦃x⇧P,F⦄ ❙≡ ⦃y⇧P,F⦄)) in v]"
hence "[❙𝒜⦇A!,x⇧P⦈ ❙& ❙𝒜⦇A!,y⇧P⦈ ❙& ❙𝒜(❙□(❙∀ F . ⦃x⇧P,F⦄ ❙≡ ⦃y⇧P,F⦄)) in v]"
using Act_Basic_2[equiv_lr] "❙&I" "❙&E" by meson
hence "[⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& (❙□(❙∀ F . ⦃x⇧P,F⦄ ❙≡ ⦃y⇧P,F⦄)) in v]"
using oa_facts_8[equiv_rl] qml_act_2[axiom_instance,equiv_rl]
"❙&I" "❙&E" by meson
hence "[(x⇧P) ❙= (y⇧P) in v]"
unfolding identity_defs using "❙∨I" by auto
}
ultimately have "[(x⇧P) ❙= (y⇧P) in v]"
using intro_elim_4_a CP by meson
thus "[x ❙= y in v]"
unfolding identity_defs by auto
qed
end
instantiation Π⇩1 :: id_act
begin
instance proof
interpret PLM .
fix F::Π⇩1 and G::Π⇩1 and v::i
show "[❙𝒜(F ❙= G) in v] ⟹ [(F ❙= G) in v]"
unfolding identity_defs
using qml_act_2[axiom_instance,equiv_rl] by auto
qed
end
instantiation 𝗈 :: id_act
begin
instance proof
interpret PLM .
fix p :: 𝗈 and q :: 𝗈 and v::i
show "[❙𝒜(p ❙= q) in v] ⟹ [p ❙= q in v]"
unfolding identity⇩𝗈_def using id_act_prop by blast
qed
end
instantiation Π⇩2 :: id_act
begin
instance proof
interpret PLM .
fix F::Π⇩2 and G::Π⇩2 and v::i
assume a: "[❙𝒜(F ❙= G) in v]"
{
fix x
have "[❙𝒜((❙λy. ⦇F,x⇧P,y⇧P⦈) ❙= (❙λy. ⦇G,x⇧P,y⇧P⦈)
❙& (❙λy. ⦇F,y⇧P,x⇧P⦈) ❙= (❙λy. ⦇G,y⇧P,x⇧P⦈)) in v]"
using a logic_actual_nec_3[axiom_instance, equiv_lr] cqt_basic_4[equiv_lr] "❙∀E"
unfolding identity⇩2_def by fast
hence "[((❙λy. ⦇F,x⇧P,y⇧P⦈) ❙= (❙λy. ⦇G,x⇧P,y⇧P⦈))
❙& ((❙λy. ⦇F,y⇧P,x⇧P⦈) ❙= (❙λy. ⦇G,y⇧P,x⇧P⦈)) in v]"
using "❙&I" "❙&E" id_act_prop Act_Basic_2[equiv_lr] by metis
}
thus "[F ❙= G in v]" unfolding identity_defs by (rule "❙∀I")
qed
end
instantiation Π⇩3 :: id_act
begin
instance proof
interpret PLM .
fix F::Π⇩3 and G::Π⇩3 and v::i
assume a: "[❙𝒜(F ❙= G) in v]"
let ?p = "λ x y . (❙λz. ⦇F,z⇧P,x⇧P,y⇧P⦈) ❙= (❙λz. ⦇G,z⇧P,x⇧P,y⇧P⦈)
❙& (❙λz. ⦇F,x⇧P,z⇧P,y⇧P⦈) ❙= (❙λz. ⦇G,x⇧P,z⇧P,y⇧P⦈)
❙& (❙λz. ⦇F,x⇧P,y⇧P,z⇧P⦈) ❙= (❙λz. ⦇G,x⇧P,y⇧P,z⇧P⦈)"
{
fix x
{
fix y
have "[❙𝒜(?p x y) in v]"
using a logic_actual_nec_3[axiom_instance, equiv_lr]
cqt_basic_4[equiv_lr] "❙∀E"[where 'a=ν]
unfolding identity⇩3_def by blast
hence "[?p x y in v]"
using "❙&I" "❙&E" id_act_prop Act_Basic_2[equiv_lr] by metis
}
hence "[❙∀ y . ?p x y in v]"
by (rule "❙∀I")
}
thus "[F ❙= G in v]"
unfolding identity⇩3_def by (rule "❙∀I")
qed
end
context PLM
begin
lemma id_act_3[PLM]:
"[((α::('a::id_act)) ❙= β) ❙≡ ❙𝒜(α ❙= β) in v]"
using "❙≡I" CP id_nec[equiv_lr, THEN nec_imp_act[deduction]]
id_act_prop by metis
lemma id_act_4[PLM]:
"[((α::('a::id_act)) ❙≠ β) ❙≡ ❙𝒜(α ❙≠ β) in v]"
using id_act_3[THEN oth_class_taut_5_d[equiv_lr]]
logic_actual_nec_1[axiom_instance, equiv_sym]
intro_elim_6_e by blast
lemma id_act_desc[PLM]:
"[(y⇧P) ❙= (❙ιx . x ❙= y) in v]"
using descriptions[axiom_instance,equiv_rl]
id_act_3[equiv_sym] "❙∀I" by fast
lemma eta_conversion_lemma_1[PLM]:
"[(❙λ x . ⦇F,x⇧P⦈) ❙= F in v]"
using lambda_predicates_3_1[axiom_instance] .
lemma eta_conversion_lemma_0[PLM]:
"[(❙λ⇧0 p) ❙= p in v]"
using lambda_predicates_3_0[axiom_instance] .
lemma eta_conversion_lemma_2[PLM]:
"[(❙λ⇧2 (λ x y . ⦇F,x⇧P,y⇧P⦈)) ❙= F in v]"
using lambda_predicates_3_2[axiom_instance] .
lemma eta_conversion_lemma_3[PLM]:
"[(❙λ⇧3 (λ x y z . ⦇F,x⇧P,y⇧P,z⇧P⦈)) ❙= F in v]"
using lambda_predicates_3_3[axiom_instance] .
lemma lambda_p_q_p_eq_q[PLM]:
"[((❙λ⇧0 p) ❙= (❙λ⇧0 q)) ❙≡ (p ❙= q) in v]"
using eta_conversion_lemma_0
l_identity[axiom_instance, deduction, deduction]
eta_conversion_lemma_0[eq_sym] "❙≡I" CP
by metis
subsection‹The Theory of Objects›
text‹\label{TAO_PLM_Objects}›
lemma partition_1[PLM]:
"[❙∀ x . ⦇O!,x⇧P⦈ ❙∨ ⦇A!,x⇧P⦈ in v]"
proof (rule "❙∀I")
fix x
have "[❙◇⦇E!,x⇧P⦈ ❙∨ ❙¬❙◇⦇E!,x⇧P⦈ in v]"
by PLM_solver
moreover have "[❙◇⦇E!,x⇧P⦈ ❙≡ ⦇❙λ y . ❙◇⦇E!,y⇧P⦈, x⇧P⦈ in v]"
apply (rule beta_C_meta_1[equiv_sym])
by show_proper
moreover have "[(❙¬❙◇⦇E!,x⇧P⦈) ❙≡ ⦇❙λ y . ❙¬❙◇⦇E!,y⇧P⦈, x⇧P⦈ in v]"
apply (rule beta_C_meta_1[equiv_sym])
by show_proper
ultimately show "[⦇O!, x⇧P⦈ ❙∨ ⦇A!, x⇧P⦈ in v]"
unfolding Ordinary_def Abstract_def by PLM_solver
qed
lemma partition_2[PLM]:
"[❙¬(❙∃ x . ⦇O!,x⇧P⦈ ❙& ⦇A!,x⇧P⦈) in v]"
proof -
{
assume "[❙∃ x . ⦇O!,x⇧P⦈ ❙& ⦇A!,x⇧P⦈ in v]"
then obtain b where "[⦇O!,b⇧P⦈ ❙& ⦇A!,b⇧P⦈ in v]"
by (rule "❙∃E")
hence ?thesis
using "❙&E" oa_contingent_2[equiv_lr]
reductio_aa_2 by fast
}
thus ?thesis
using reductio_aa_2 by blast
qed
lemma ord_eq_Eequiv_1[PLM]:
"[⦇O!,x⦈ ❙→ (x ❙=⇩E x) in v]"
proof (rule CP)
assume "[⦇O!,x⦈ in v]"
moreover have "[❙□(❙∀ F . ⦇F,x⦈ ❙≡ ⦇F,x⦈) in v]"
by PLM_solver
ultimately show "[(x) ❙=⇩E (x) in v]"
using "❙&I" eq_E_simple_1[equiv_rl] by blast
qed
lemma ord_eq_Eequiv_2[PLM]:
"[(x ❙=⇩E y) ❙→ (y ❙=⇩E x) in v]"
proof (rule CP)
assume "[x ❙=⇩E y in v]"
hence 1: "[⦇O!,x⦈ ❙& ⦇O!,y⦈ ❙& ❙□(❙∀ F . ⦇F,x⦈ ❙≡ ⦇F,y⦈) in v]"
using eq_E_simple_1[equiv_lr] by simp
have "[❙□(❙∀ F . ⦇F,y⦈ ❙≡ ⦇F,x⦈) in v]"
apply (PLM_subst_method
"λ F . ⦇F,x⦈ ❙≡ ⦇F,y⦈"
"λ F . ⦇F,y⦈ ❙≡ ⦇F,x⦈")
using oth_class_taut_3_g 1[conj2] by auto
thus "[y ❙=⇩E x in v]"
using eq_E_simple_1[equiv_rl] 1[conj1]
"❙&E" "❙&I" by meson
qed
lemma ord_eq_Eequiv_3[PLM]:
"[((x ❙=⇩E y) ❙& (y ❙=⇩E z)) ❙→ (x ❙=⇩E z) in v]"
proof (rule CP)
assume a: "[(x ❙=⇩E y) ❙& (y ❙=⇩E z) in v]"
have "[❙□((❙∀ F . ⦇F,x⦈ ❙≡ ⦇F,y⦈) ❙& (❙∀ F . ⦇F,y⦈ ❙≡ ⦇F,z⦈)) in v]"
using KBasic_3[equiv_rl] a[conj1, THEN eq_E_simple_1[equiv_lr,conj2]]
a[conj2, THEN eq_E_simple_1[equiv_lr,conj2]] "❙&I" by blast
moreover {
{
fix w
have "[((❙∀ F . ⦇F,x⦈ ❙≡ ⦇F,y⦈) ❙& (❙∀ F . ⦇F,y⦈ ❙≡ ⦇F,z⦈))
❙→ (❙∀ F . ⦇F,x⦈ ❙≡ ⦇F,z⦈) in w]"
by PLM_solver
}
hence "[❙□(((❙∀ F . ⦇F,x⦈ ❙≡ ⦇F,y⦈) ❙& (❙∀ F . ⦇F,y⦈ ❙≡ ⦇F,z⦈))
❙→ (❙∀ F . ⦇F,x⦈ ❙≡ ⦇F,z⦈)) in v]"
by (rule RN)
}
ultimately have "[❙□(❙∀ F . ⦇F,x⦈ ❙≡ ⦇F,z⦈) in v]"
using qml_1[axiom_instance,deduction,deduction] by blast
thus "[x ❙=⇩E z in v]"
using a[conj1, THEN eq_E_simple_1[equiv_lr,conj1,conj1]]
using a[conj2, THEN eq_E_simple_1[equiv_lr,conj1,conj2]]
eq_E_simple_1[equiv_rl] "❙&I"
by presburger
qed
lemma ord_eq_E_eq[PLM]:
"[(⦇O!,x⇧P⦈ ❙∨ ⦇O!,y⇧P⦈) ❙→ ((x⇧P ❙= y⇧P) ❙≡ (x⇧P ❙=⇩E y⇧P)) in v]"
proof (rule CP)
assume "[⦇O!,x⇧P⦈ ❙∨ ⦇O!,y⇧P⦈ in v]"
moreover {
assume "[⦇O!,x⇧P⦈ in v]"
hence "[(x⇧P ❙= y⇧P) ❙≡ (x⇧P ❙=⇩E y⇧P) in v]"
using "❙≡I" CP l_identity[axiom_instance, deduction, deduction]
ord_eq_Eequiv_1[deduction] eq_E_simple_2[deduction] by metis
}
moreover {
assume "[⦇O!,y⇧P⦈ in v]"
hence "[(x⇧P ❙= y⇧P) ❙≡ (x⇧P ❙=⇩E y⇧P) in v]"
using "❙≡I" CP l_identity[axiom_instance, deduction, deduction]
ord_eq_Eequiv_1[deduction] eq_E_simple_2[deduction] id_eq_2[deduction]
ord_eq_Eequiv_2[deduction] identity_ν_def by metis
}
ultimately show "[(x⇧P ❙= y⇧P) ❙≡ (x⇧P ❙=⇩E y⇧P) in v]"
using intro_elim_4_a CP by blast
qed
lemma ord_eq_E[PLM]:
"[(⦇O!,x⇧P⦈ ❙& ⦇O!,y⇧P⦈) ❙→ ((❙∀ F . ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈) ❙→ x⇧P ❙=⇩E y⇧P) in v]"
proof (rule CP; rule CP)
assume ord_xy: "[⦇O!,x⇧P⦈ ❙& ⦇O!,y⇧P⦈ in v]"
assume "[❙∀ F . ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈ in v]"
hence "[⦇❙λ z . z⇧P ❙=⇩E x⇧P, x⇧P⦈ ❙≡ ⦇❙λ z . z⇧P ❙=⇩E x⇧P, y⇧P⦈ in v]"
by (rule "❙∀E")
moreover have "[⦇❙λ z . z⇧P ❙=⇩E x⇧P, x⇧P⦈ in v]"
apply (rule beta_C_meta_1[equiv_rl])
unfolding identity⇩E_infix_def
apply show_proper
using ord_eq_Eequiv_1[deduction] ord_xy[conj1]
unfolding identity⇩E_infix_def by simp
ultimately have "[⦇❙λ z . z⇧P ❙=⇩E x⇧P, y⇧P⦈ in v]"
using "❙≡E" by blast
hence "[y⇧P ❙=⇩E x⇧P in v]"
unfolding identity⇩E_infix_def
apply (safe intro!:
beta_C_meta_1[where φ = "λ z . ⦇basic_identity⇩E,z,x⇧P⦈", equiv_lr])
by show_proper
thus "[x⇧P ❙=⇩E y⇧P in v]"
by (rule ord_eq_Eequiv_2[deduction])
qed
lemma ord_eq_E2[PLM]:
"[(⦇O!,x⇧P⦈ ❙& ⦇O!,y⇧P⦈) ❙→
((x⇧P ❙≠ y⇧P) ❙≡ (❙λz . z⇧P ❙=⇩E x⇧P) ❙≠ (❙λz . z⇧P ❙=⇩E y⇧P)) in v]"
proof (rule CP; rule "❙≡I"; rule CP)
assume ord_xy: "[⦇O!,x⇧P⦈ ❙& ⦇O!,y⇧P⦈ in v]"
assume "[x⇧P ❙≠ y⇧P in v]"
hence "[❙¬(x⇧P ❙=⇩E y⇧P) in v]"
using eq_E_simple_2 modus_tollens_1 by fast
moreover {
assume "[(❙λz . z⇧P ❙=⇩E x⇧P) ❙= (❙λz . z⇧P ❙=⇩E y⇧P) in v]"
moreover have "[⦇❙λz . z⇧P ❙=⇩E x⇧P, x⇧P⦈ in v]"
apply (rule beta_C_meta_1[equiv_rl])
unfolding identity⇩E_infix_def
apply show_proper
using ord_eq_Eequiv_1[deduction] ord_xy[conj1]
unfolding identity⇩E_infix_def by presburger
ultimately have "[⦇❙λz . z⇧P ❙=⇩E y⇧P, x⇧P⦈ in v]"
using l_identity[axiom_instance, deduction, deduction] by fast
hence "[x⇧P ❙=⇩E y⇧P in v]"
unfolding identity⇩E_infix_def
apply (safe intro!:
beta_C_meta_1[where φ = "λ z . ⦇basic_identity⇩E,z,y⇧P⦈", equiv_lr])
by show_proper
}
ultimately show "[(❙λz . z⇧P ❙=⇩E x⇧P) ❙≠ (❙λz . z⇧P ❙=⇩E y⇧P) in v]"
using modus_tollens_1 CP by blast
next
assume ord_xy: "[⦇O!,x⇧P⦈ ❙& ⦇O!,y⇧P⦈ in v]"
assume "[(❙λz . z⇧P ❙=⇩E x⇧P) ❙≠ (❙λz . z⇧P ❙=⇩E y⇧P) in v]"
moreover {
assume "[x⇧P ❙= y⇧P in v]"
hence "[(❙λz . z⇧P ❙=⇩E x⇧P) ❙= (❙λz . z⇧P ❙=⇩E y⇧P) in v]"
using id_eq_1 l_identity[axiom_instance, deduction, deduction]
by fast
}
ultimately show "[x⇧P ❙≠ y⇧P in v]"
using modus_tollens_1 CP by blast
qed
lemma ab_obey_1[PLM]:
"[(⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈) ❙→ ((❙∀ F . ⦃x⇧P, F⦄ ❙≡ ⦃y⇧P, F⦄) ❙→ x⇧P ❙= y⇧P) in v]"
proof(rule CP; rule CP)
assume abs_xy: "[⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ in v]"
assume enc_equiv: "[❙∀ F . ⦃x⇧P, F⦄ ❙≡ ⦃y⇧P, F⦄ in v]"
{
fix P
have "[⦃x⇧P, P⦄ ❙≡ ⦃y⇧P, P⦄ in v]"
using enc_equiv by (rule "❙∀E")
hence "[❙□(⦃x⇧P, P⦄ ❙≡ ⦃y⇧P, P⦄) in v]"
using en_eq_2 intro_elim_6_e intro_elim_6_f
en_eq_5[equiv_rl] by meson
}
hence "[❙□(❙∀ F . ⦃x⇧P, F⦄ ❙≡ ⦃y⇧P, F⦄) in v]"
using BF[deduction] "❙∀I" by fast
thus "[x⇧P ❙= y⇧P in v]"
unfolding identity_defs
using "❙∨I"(2) abs_xy "❙&I" by presburger
qed
lemma ab_obey_2[PLM]:
"[(⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈) ❙→ ((❙∃ F . ⦃x⇧P, F⦄ ❙& ❙¬⦃y⇧P, F⦄) ❙→ x⇧P ❙≠ y⇧P) in v]"
proof(rule CP; rule CP)
assume abs_xy: "[⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ in v]"
assume "[❙∃ F . ⦃x⇧P, F⦄ ❙& ❙¬⦃y⇧P, F⦄ in v]"
then obtain P where P_prop:
"[⦃x⇧P, P⦄ ❙& ❙¬⦃y⇧P, P⦄ in v]"
by (rule "❙∃E")
{
assume "[x⇧P ❙= y⇧P in v]"
hence "[⦃x⇧P, P⦄ ❙≡ ⦃y⇧P, P⦄ in v]"
using l_identity[axiom_instance, deduction, deduction]
oth_class_taut_4_a by fast
hence "[⦃y⇧P, P⦄ in v]"
using P_prop[conj1] by (rule "❙≡E")
}
thus "[x⇧P ❙≠ y⇧P in v]"
using P_prop[conj2] modus_tollens_1 CP by blast
qed
lemma ordnecfail[PLM]:
"[⦇O!,x⇧P⦈ ❙→ ❙□(❙¬(❙∃ F . ⦃x⇧P, F⦄)) in v]"
proof (rule CP)
assume "[⦇O!,x⇧P⦈ in v]"
hence "[❙□⦇O!,x⇧P⦈ in v]"
using oa_facts_1[deduction] by simp
moreover hence "[❙□(⦇O!,x⇧P⦈ ❙→ (❙¬(❙∃ F . ⦃x⇧P, F⦄))) in v]"
using nocoder[axiom_necessitation, axiom_instance] by simp
ultimately show "[❙□(❙¬(❙∃ F . ⦃x⇧P, F⦄)) in v]"
using qml_1[axiom_instance, deduction, deduction] by fast
qed
lemma o_objects_exist_1[PLM]:
"[❙◇(❙∃ x . ⦇E!,x⇧P⦈) in v]"
proof -
have "[❙◇(❙∃ x . ⦇E!,x⇧P⦈ ❙& ❙◇(❙¬⦇E!,x⇧P⦈)) in v]"
using qml_4[axiom_instance, conj1] .
hence "[❙◇((❙∃ x . ⦇E!,x⇧P⦈) ❙& (❙∃ x . ❙◇(❙¬⦇E!,x⇧P⦈))) in v]"
using sign_S5_thm_3[deduction] by fast
hence "[❙◇(❙∃ x . ⦇E!,x⇧P⦈) ❙& ❙◇(❙∃ x . ❙◇(❙¬⦇E!,x⇧P⦈)) in v]"
using KBasic2_8[deduction] by blast
thus ?thesis using "❙&E" by blast
qed
lemma o_objects_exist_2[PLM]:
"[❙□(❙∃ x . ⦇O!,x⇧P⦈) in v]"
apply (rule RN) unfolding Ordinary_def
apply (PLM_subst_method "λ x . ❙◇⦇E!,x⇧P⦈" "λ x . ⦇❙λy. ❙◇⦇E!,y⇧P⦈, x⇧P⦈")
apply (safe intro!: beta_C_meta_1[equiv_sym])
apply show_proper
using o_objects_exist_1 "BF❙◇"[deduction] by blast
lemma o_objects_exist_3[PLM]:
"[❙□(❙¬(❙∀ x . ⦇A!,x⇧P⦈)) in v]"
apply (PLM_subst_method "(❙∃x. ❙¬⦇A!,x⇧P⦈)" "❙¬(❙∀x. ⦇A!,x⇧P⦈)")
using cqt_further_2[equiv_sym] apply fast
apply (PLM_subst_method "λ x . ⦇O!,x⇧P⦈" "λ x . ❙¬⦇A!,x⇧P⦈")
using oa_contingent_2 o_objects_exist_2 by auto
lemma a_objects_exist_1[PLM]:
"[❙□(❙∃ x . ⦇A!,x⇧P⦈) in v]"
proof -
{
fix v
have "[❙∃ x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ (F ❙= F)) in v]"
using A_objects[axiom_instance] by simp
hence "[❙∃ x . ⦇A!,x⇧P⦈ in v]"
using cqt_further_5[deduction,conj1] by fast
}
thus ?thesis by (rule RN)
qed
lemma a_objects_exist_2[PLM]:
"[❙□(❙¬(❙∀ x . ⦇O!,x⇧P⦈)) in v]"
apply (PLM_subst_method "(❙∃x. ❙¬⦇O!,x⇧P⦈)" "❙¬(❙∀x. ⦇O!,x⇧P⦈)")
using cqt_further_2[equiv_sym] apply fast
apply (PLM_subst_method "λ x . ⦇A!,x⇧P⦈" "λ x . ❙¬⦇O!,x⇧P⦈")
using oa_contingent_3 a_objects_exist_1 by auto
lemma a_objects_exist_3[PLM]:
"[❙□(❙¬(❙∀ x . ⦇E!,x⇧P⦈)) in v]"
proof -
{
fix v
have "[❙∃ x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ (F ❙= F)) in v]"
using A_objects[axiom_instance] by simp
hence "[❙∃ x . ⦇A!,x⇧P⦈ in v]"
using cqt_further_5[deduction,conj1] by fast
then obtain a where
"[⦇A!,a⇧P⦈ in v]"
by (rule "❙∃E")
hence "[❙¬(❙◇⦇E!,a⇧P⦈) in v]"
unfolding Abstract_def
apply (safe intro!: beta_C_meta_1[equiv_lr])
by show_proper
hence "[(❙¬⦇E!,a⇧P⦈) in v]"
using KBasic2_4[equiv_rl] qml_2[axiom_instance,deduction]
by simp
hence "[❙¬(❙∀ x . ⦇E!,x⇧P⦈) in v]"
using "❙∃I" cqt_further_2[equiv_rl]
by fast
}
thus ?thesis
by (rule RN)
qed
lemma encoders_are_abstract[PLM]:
"[(❙∃ F . ⦃x⇧P, F⦄) ❙→ ⦇A!,x⇧P⦈ in v]"
using nocoder[axiom_instance] contraposition_2
oa_contingent_2[THEN oth_class_taut_5_d[equiv_lr], equiv_lr]
useful_tautologies_1[deduction]
vdash_properties_10 CP by metis
lemma A_objects_unique[PLM]:
"[❙∃! x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F) in v]"
proof -
have "[❙∃ x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F) in v]"
using A_objects[axiom_instance] by simp
then obtain a where a_prop:
"[⦇A!,a⇧P⦈ ❙& (❙∀ F . ⦃a⇧P, F⦄ ❙≡ φ F) in v]" by (rule "❙∃E")
moreover have "[❙∀ y . ⦇A!,y⇧P⦈ ❙& (❙∀ F . ⦃y⇧P, F⦄ ❙≡ φ F) ❙→ (y ❙= a) in v]"
proof (rule "❙∀I"; rule CP)
fix b
assume b_prop: "[⦇A!,b⇧P⦈ ❙& (❙∀ F . ⦃b⇧P, F⦄ ❙≡ φ F) in v]"
{
fix P
have "[⦃b⇧P,P⦄ ❙≡ ⦃a⇧P, P⦄ in v]"
using a_prop[conj2] b_prop[conj2] "❙≡I" "❙≡E"(1) "❙≡E"(2)
CP vdash_properties_10 "❙∀E" by metis
}
hence "[❙∀ F . ⦃b⇧P,F⦄ ❙≡ ⦃a⇧P, F⦄ in v]"
using "❙∀I" by fast
thus "[b ❙= a in v]"
unfolding identity_ν_def
using ab_obey_1[deduction, deduction]
a_prop[conj1] b_prop[conj1] "❙&I" by blast
qed
ultimately show ?thesis
unfolding exists_unique_def
using "❙&I" "❙∃I" by fast
qed
lemma obj_oth_1[PLM]:
"[❙∃! x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ ⦇F, y⇧P⦈) in v]"
using A_objects_unique .
lemma obj_oth_2[PLM]:
"[❙∃! x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ (⦇F, y⇧P⦈ ❙& ⦇F, z⇧P⦈)) in v]"
using A_objects_unique .
lemma obj_oth_3[PLM]:
"[❙∃! x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ (⦇F, y⇧P⦈ ❙∨ ⦇F, z⇧P⦈)) in v]"
using A_objects_unique .
lemma obj_oth_4[PLM]:
"[❙∃! x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ (❙□⦇F, y⇧P⦈)) in v]"
using A_objects_unique .
lemma obj_oth_5[PLM]:
"[❙∃! x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ (F ❙= G)) in v]"
using A_objects_unique .
lemma obj_oth_6[PLM]:
"[❙∃! x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ ❙□(❙∀ y . ⦇G, y⇧P⦈ ❙→ ⦇F, y⇧P⦈)) in v]"
using A_objects_unique .
lemma A_Exists_1[PLM]:
"[❙𝒜(❙∃! x :: ('a :: id_act) . φ x) ❙≡ (❙∃! x . ❙𝒜(φ x)) in v]"
unfolding exists_unique_def
proof (rule "❙≡I"; rule CP)
assume "[❙𝒜(❙∃α. φ α ❙& (❙∀β. φ β ❙→ β ❙= α)) in v]"
hence "[❙∃α. ❙𝒜(φ α ❙& (❙∀β. φ β ❙→ β ❙= α)) in v]"
using Act_Basic_11[equiv_lr] by blast
then obtain α where
"[❙𝒜(φ α ❙& (❙∀β. φ β ❙→ β ❙= α)) in v]"
by (rule "❙∃E")
hence 1: "[❙𝒜(φ α) ❙& ❙𝒜(❙∀β. φ β ❙→ β ❙= α) in v]"
using Act_Basic_2[equiv_lr] by blast
have 2: "[❙∀β. ❙𝒜(φ β ❙→ β ❙= α) in v]"
using 1[conj2] logic_actual_nec_3[axiom_instance, equiv_lr] by blast
{
fix β
have "[❙𝒜(φ β ❙→ β ❙= α) in v]"
using 2 by (rule "❙∀E")
hence "[❙𝒜(φ β) ❙→ (β ❙= α) in v]"
using logic_actual_nec_2[axiom_instance, equiv_lr, deduction]
id_act_3[equiv_rl] CP by blast
}
hence "[❙∀ β . ❙𝒜(φ β) ❙→ (β ❙= α) in v]"
by (rule "❙∀I")
thus "[❙∃α. ❙𝒜φ α ❙& (❙∀β. ❙𝒜φ β ❙→ β ❙= α) in v]"
using 1[conj1] "❙&I" "❙∃I" by fast
next
assume "[❙∃α. ❙𝒜φ α ❙& (❙∀β. ❙𝒜φ β ❙→ β ❙= α) in v]"
then obtain α where 1:
"[❙𝒜φ α ❙& (❙∀β. ❙𝒜φ β ❙→ β ❙= α) in v]"
by (rule "❙∃E")
{
fix β
have "[❙𝒜(φ β) ❙→ β ❙= α in v]"
using 1[conj2] by (rule "❙∀E")
hence "[❙𝒜(φ β ❙→ β ❙= α) in v]"
using logic_actual_nec_2[axiom_instance, equiv_rl] id_act_3[equiv_lr]
vdash_properties_10 CP by blast
}
hence "[❙∀ β . ❙𝒜(φ β ❙→ β ❙= α) in v]"
by (rule "❙∀I")
hence "[❙𝒜(❙∀ β . φ β ❙→ β ❙= α) in v]"
using logic_actual_nec_3[axiom_instance, equiv_rl] by fast
hence "[❙𝒜(φ α ❙& (❙∀ β . φ β ❙→ β ❙= α)) in v]"
using 1[conj1] Act_Basic_2[equiv_rl] "❙&I" by blast
hence "[❙∃α. ❙𝒜(φ α ❙& (❙∀β. φ β ❙→ β ❙= α)) in v]"
using "❙∃I" by fast
thus "[❙𝒜(❙∃α. φ α ❙& (❙∀β. φ β ❙→ β ❙= α)) in v]"
using Act_Basic_11[equiv_rl] by fast
qed
lemma A_Exists_2[PLM]:
"[(❙∃ y . y⇧P ❙= (❙ιx . φ x)) ❙≡ ❙𝒜(❙∃!x . φ x) in v]"
using actual_desc_1 A_Exists_1[equiv_sym]
intro_elim_6_e by blast
lemma A_descriptions[PLM]:
"[❙∃ y . y⇧P ❙= (❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P,F⦄ ❙≡ φ F)) in v]"
using A_objects_unique[THEN RN, THEN nec_imp_act[deduction]]
A_Exists_2[equiv_rl] by auto
lemma thm_can_terms2[PLM]:
"[(y⇧P ❙= (❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P,F⦄ ❙≡ φ F)))
❙→ (⦇A!,y⇧P⦈ ❙& (❙∀ F . ⦃y⇧P,F⦄ ❙≡ φ F)) in dw]"
using y_in_2 by auto
lemma can_ab2[PLM]:
"[(y⇧P ❙= (❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P,F⦄ ❙≡ φ F))) ❙→ ⦇A!,y⇧P⦈ in v]"
proof (rule CP)
assume "[y⇧P ❙= (❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P,F⦄ ❙≡ φ F)) in v]"
hence "[❙𝒜⦇A!,y⇧P⦈ ❙& ❙𝒜(❙∀ F . ⦃y⇧P,F⦄ ❙≡ φ F) in v]"
using nec_hintikka_scheme[equiv_lr, conj1]
Act_Basic_2[equiv_lr] by blast
thus "[⦇A!,y⇧P⦈ in v]"
using oa_facts_8[equiv_rl] "❙&E" by blast
qed
lemma desc_encode[PLM]:
"[⦃❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P,F⦄ ❙≡ φ F), G⦄ ❙≡ φ G in dw]"
proof -
obtain a where
"[a⇧P ❙= (❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P,F⦄ ❙≡ φ F)) in dw]"
using A_descriptions by (rule "❙∃E")
moreover hence "[⦃a⇧P, G⦄ ❙≡ φ G in dw]"
using hintikka[equiv_lr, conj1] "❙&E" "❙∀E" by fast
ultimately show ?thesis
using l_identity[axiom_instance, deduction, deduction] by fast
qed
lemma desc_nec_encode[PLM]:
"[⦃❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P,F⦄ ❙≡ φ F), G⦄ ❙≡ ❙𝒜(φ G) in v]"
proof -
obtain a where
"[a⇧P ❙= (❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P,F⦄ ❙≡ φ F)) in v]"
using A_descriptions by (rule "❙∃E")
moreover {
hence "[❙𝒜(⦇A!,a⇧P⦈ ❙& (❙∀ F . ⦃a⇧P,F⦄ ❙≡ φ F)) in v]"
using nec_hintikka_scheme[equiv_lr, conj1] by fast
hence "[❙𝒜(❙∀ F . ⦃a⇧P,F⦄ ❙≡ φ F) in v]"
using Act_Basic_2[equiv_lr,conj2] by blast
hence "[❙∀ F . ❙𝒜( ⦃a⇧P,F⦄ ❙≡ φ F) in v]"
using logic_actual_nec_3[axiom_instance, equiv_lr] by blast
hence "[❙𝒜(⦃a⇧P, G⦄ ❙≡ φ G) in v]"
using "❙∀E" by fast
hence "[❙𝒜⦃a⇧P, G⦄ ❙≡ ❙𝒜(φ G) in v]"
using Act_Basic_5[equiv_lr] by fast
hence "[⦃a⇧P, G⦄ ❙≡ ❙𝒜(φ G) in v]"
using en_eq_10[equiv_sym] intro_elim_6_e by blast
}
ultimately show ?thesis
using l_identity[axiom_instance, deduction, deduction] by fast
qed
notepad
begin
fix v
let ?x = "❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ (❙∃ q . q ❙& F ❙= (❙λ y . q)))"
have "[❙□(❙∃ p . ContingentlyTrue p) in v]"
using cont_tf_thm_3 RN by auto
hence "[❙𝒜(❙∃ p . ContingentlyTrue p) in v]"
using nec_imp_act[deduction] by simp
hence "[❙∃ p . ❙𝒜(ContingentlyTrue p) in v]"
using Act_Basic_11[equiv_lr] by auto
then obtain p⇩1 where
"[❙𝒜(ContingentlyTrue p⇩1) in v]"
by (rule "❙∃E")
hence "[❙𝒜p⇩1 in v]"
unfolding ContingentlyTrue_def
using Act_Basic_2[equiv_lr] "❙&E" by fast
hence "[❙𝒜p⇩1 ❙& ❙𝒜((❙λ y . p⇩1) ❙= (❙λ y . p⇩1)) in v]"
using "❙&I" id_eq_1[THEN RN, THEN nec_imp_act[deduction]] by fast
hence "[❙𝒜(p⇩1 ❙& (❙λ y . p⇩1) ❙= (❙λ y . p⇩1)) in v]"
using Act_Basic_2[equiv_rl] by fast
hence "[❙∃ q . ❙𝒜( q ❙& (❙λ y . p⇩1) ❙= (❙λ y . q)) in v]"
using "❙∃I" by fast
hence "[❙𝒜(❙∃ q . q ❙& (❙λ y . p⇩1) ❙= (❙λ y . q)) in v]"
using Act_Basic_11[equiv_rl] by fast
moreover have "[⦃?x, ❙λ y . p⇩1⦄ ❙≡ ❙𝒜(❙∃ q . q ❙& (❙λ y . p⇩1) ❙= (❙λ y . q)) in v]"
using desc_nec_encode by fast
ultimately have "[⦃?x, ❙λ y . p⇩1⦄ in v]"
using "❙≡E" by blast
end
lemma Box_desc_encode_1[PLM]:
"[❙□(φ G) ❙→ ⦃(❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)), G⦄ in v]"
proof (rule CP)
assume "[❙□(φ G) in v]"
hence "[❙𝒜(φ G) in v]"
using nec_imp_act[deduction] by auto
thus "[⦃❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P,F⦄ ❙≡ φ F), G⦄ in v]"
using desc_nec_encode[equiv_rl] by simp
qed
lemma Box_desc_encode_2[PLM]:
"[❙□(φ G) ❙→ ❙□(⦃(❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)), G⦄ ❙≡ φ G) in v]"
proof (rule CP)
assume a: "[❙□(φ G) in v]"
hence "[❙□(⦃(❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)), G⦄ ❙→ φ G) in v]"
using KBasic_1[deduction] by simp
moreover {
have "[⦃(❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)), G⦄ in v]"
using a Box_desc_encode_1[deduction] by auto
hence "[❙□⦃(❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)), G⦄ in v]"
using encoding[axiom_instance,deduction] by blast
hence "[❙□(φ G ❙→ ⦃(❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)), G⦄) in v]"
using KBasic_1[deduction] by simp
}
ultimately show "[❙□(⦃(❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)), G⦄
❙≡ φ G) in v]"
using "❙&I" KBasic_4[equiv_rl] by blast
qed
lemma box_phi_a_1[PLM]:
assumes "[❙□(❙∀ F . φ F ❙→ ❙□(φ F)) in v]"
shows "[(⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)) ❙→ ❙□(⦇A!,x⇧P⦈
❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)) in v]"
proof (rule CP)
assume a: "[(⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)) in v]"
have "[❙□⦇A!,x⇧P⦈ in v]"
using oa_facts_2[deduction] a[conj1] by auto
moreover have "[❙□(❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F) in v]"
proof (rule BF[deduction]; rule "❙∀I")
fix F
have θ: "[❙□(φ F ❙→ ❙□(φ F)) in v]"
using assms[THEN CBF[deduction]] by (rule "❙∀E")
moreover have "[❙□(⦃x⇧P, F⦄ ❙→ ❙□⦃x⇧P, F⦄) in v]"
using encoding[axiom_necessitation, axiom_instance] by simp
moreover have "[❙□⦃x⇧P, F⦄ ❙≡ ❙□(φ F) in v]"
proof (rule "❙≡I"; rule CP)
assume "[❙□⦃x⇧P, F⦄ in v]"
hence "[⦃x⇧P, F⦄ in v]"
using qml_2[axiom_instance, deduction] by blast
hence "[φ F in v]"
using a[conj2] "❙∀E"[where 'a=Π⇩1] "❙≡E" by blast
thus "[❙□(φ F) in v]"
using θ[THEN qml_2[axiom_instance, deduction], deduction] by simp
next
assume "[❙□(φ F) in v]"
hence "[φ F in v]"
using qml_2[axiom_instance, deduction] by blast
hence "[⦃x⇧P, F⦄ in v]"
using a[conj2] "❙∀E"[where 'a=Π⇩1] "❙≡E" by blast
thus "[❙□⦃x⇧P, F⦄ in v]"
using encoding[axiom_instance, deduction] by simp
qed
ultimately show "[❙□(⦃x⇧P,F⦄ ❙≡ φ F) in v]"
using sc_eq_box_box_3[deduction, deduction] "❙&I" by blast
qed
ultimately show "[❙□(⦇A!,x⇧P⦈ ❙& (❙∀F. ⦃x⇧P,F⦄ ❙≡ φ F)) in v]"
using "❙&I" KBasic_3[equiv_rl] by blast
qed
lemma box_phi_a_2[PLM]:
assumes "[❙□(❙∀ F . φ F ❙→ ❙□(φ F)) in v]"
shows "[y⇧P ❙= (❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F. ⦃x⇧P, F⦄ ❙≡ φ F))
❙→ (⦇A!,y⇧P⦈ ❙& (❙∀ F . ⦃y⇧P, F⦄ ❙≡ φ F)) in v]"
proof -
let ?ψ = "λ x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)"
have "[❙∀ x . ?ψ x ❙→ ❙□(?ψ x) in v]"
using box_phi_a_1[OF assms] "❙∀I" by fast
hence "[(❙∃! x . ?ψ x) ❙→ (❙∀ y . y⇧P ❙= (❙ιx . ?ψ x) ❙→ ?ψ y) in v]"
using unique_box_desc[deduction] by fast
hence "[(❙∀ y . y⇧P ❙= (❙ιx . ?ψ x) ❙→ ?ψ y) in v]"
using A_objects_unique modus_ponens by blast
thus ?thesis by (rule "❙∀E")
qed
lemma box_phi_a_3[PLM]:
assumes "[❙□(❙∀ F . φ F ❙→ ❙□(φ F)) in v]"
shows "[⦃❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F), G⦄ ❙≡ φ G in v]"
proof -
obtain a where
"[a⇧P ❙= (❙ιx . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ φ F)) in v]"
using A_descriptions by (rule "❙∃E")
moreover {
hence "[(❙∀ F . ⦃a⇧P, F⦄ ❙≡ φ F) in v]"
using box_phi_a_2[OF assms, deduction, conj2] by blast
hence "[⦃a⇧P, G⦄ ❙≡ φ G in v]" by (rule "❙∀E")
}
ultimately show ?thesis
using l_identity[axiom_instance, deduction, deduction] by fast
qed
lemma null_uni_uniq_1[PLM]:
"[❙∃! x . Null (x⇧P) in v]"
proof -
have "[❙∃ x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ (F ❙≠ F)) in v]"
using A_objects[axiom_instance] by simp
then obtain a where a_prop:
"[⦇A!,a⇧P⦈ ❙& (❙∀ F . ⦃a⇧P, F⦄ ❙≡ (F ❙≠ F)) in v]"
by (rule "❙∃E")
have 1: "[⦇A!,a⇧P⦈ ❙& (❙¬(❙∃ F . ⦃a⇧P, F⦄)) in v]"
using a_prop[conj1] apply (rule "❙&I")
proof -
{
assume "[❙∃ F . ⦃a⇧P, F⦄ in v]"
then obtain P where
"[⦃a⇧P, P⦄ in v]" by (rule "❙∃E")
hence "[P ❙≠ P in v]"
using a_prop[conj2, THEN "❙∀E", equiv_lr] by simp
hence "[❙¬(❙∃ F . ⦃a⇧P, F⦄) in v]"
using id_eq_1 reductio_aa_1 by fast
}
thus "[❙¬(❙∃ F . ⦃a⇧P, F⦄) in v]"
using reductio_aa_1 by blast
qed
moreover have "[❙∀ y . (⦇A!,y⇧P⦈ ❙& (❙¬(❙∃ F . ⦃y⇧P, F⦄))) ❙→ y ❙= a in v]"
proof (rule "❙∀I"; rule CP)
fix y
assume 2: "[⦇A!,y⇧P⦈ ❙& (❙¬(❙∃ F . ⦃y⇧P, F⦄)) in v]"
have "[❙∀ F . ⦃y⇧P, F⦄ ❙≡ ⦃a⇧P, F⦄ in v]"
using cqt_further_12[deduction] 1[conj2] 2[conj2] "❙&I" by blast
thus "[y ❙= a in v]"
using ab_obey_1[deduction, deduction]
"❙&I"[OF 2[conj1] 1[conj1]] identity_ν_def by presburger
qed
ultimately show ?thesis
using "❙&I" "❙∃I"
unfolding Null_def exists_unique_def by fast
qed
lemma null_uni_uniq_2[PLM]:
"[❙∃! x . Universal (x⇧P) in v]"
proof -
have "[❙∃ x . ⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P, F⦄ ❙≡ (F ❙= F)) in v]"
using A_objects[axiom_instance] by simp
then obtain a where a_prop:
"[⦇A!,a⇧P⦈ ❙& (❙∀ F . ⦃a⇧P, F⦄ ❙≡ (F ❙= F)) in v]"
by (rule "❙∃E")
have 1: "[⦇A!,a⇧P⦈ ❙& (❙∀ F . ⦃a⇧P, F⦄) in v]"
using a_prop[conj1] apply (rule "❙&I")
using "❙∀I" a_prop[conj2, THEN "❙∀E", equiv_rl] id_eq_1 by fast
moreover have "[❙∀ y . (⦇A!,y⇧P⦈ ❙& (❙∀ F . ⦃y⇧P, F⦄)) ❙→ y ❙= a in v]"
proof (rule "❙∀I"; rule CP)
fix y
assume 2: "[⦇A!,y⇧P⦈ ❙& (❙∀ F . ⦃y⇧P, F⦄) in v]"
have "[❙∀ F . ⦃y⇧P, F⦄ ❙≡ ⦃a⇧P, F⦄ in v]"
using cqt_further_11[deduction] 1[conj2] 2[conj2] "❙&I" by blast
thus "[y ❙= a in v]"
using ab_obey_1[deduction, deduction]
"❙&I"[OF 2[conj1] 1[conj1]] identity_ν_def
by presburger
qed
ultimately show ?thesis
using "❙&I" "❙∃I"
unfolding Universal_def exists_unique_def by fast
qed
lemma null_uni_uniq_3[PLM]:
"[❙∃ y . y⇧P ❙= (❙ιx . Null (x⇧P)) in v]"
using null_uni_uniq_1[THEN RN, THEN nec_imp_act[deduction]]
A_Exists_2[equiv_rl] by auto
lemma null_uni_uniq_4[PLM]:
"[❙∃ y . y⇧P ❙= (❙ιx . Universal (x⇧P)) in v]"
using null_uni_uniq_2[THEN RN, THEN nec_imp_act[deduction]]
A_Exists_2[equiv_rl] by auto
lemma null_uni_facts_1[PLM]:
"[Null (x⇧P) ❙→ ❙□(Null (x⇧P)) in v]"
proof (rule CP)
assume "[Null (x⇧P) in v]"
hence 1: "[⦇A!,x⇧P⦈ ❙& (❙¬(❙∃ F . ⦃x⇧P,F⦄)) in v]"
unfolding Null_def .
have "[❙□⦇A!,x⇧P⦈ in v]"
using 1[conj1] oa_facts_2[deduction] by simp
moreover have "[❙□(❙¬(❙∃ F . ⦃x⇧P,F⦄)) in v]"
proof -
{
assume "[❙¬❙□(❙¬(❙∃ F . ⦃x⇧P,F⦄)) in v]"
hence "[❙◇(❙∃ F . ⦃x⇧P,F⦄) in v]"
unfolding diamond_def .
hence "[❙∃ F . ❙◇⦃x⇧P,F⦄ in v]"
using "BF❙◇"[deduction] by blast
then obtain P where "[❙◇⦃x⇧P,P⦄ in v]"
by (rule "❙∃E")
hence "[⦃x⇧P, P⦄ in v]"
using en_eq_3[equiv_lr] by simp
hence "[❙∃ F . ⦃x⇧P, F⦄ in v]"
using "❙∃I" by fast
}
thus ?thesis
using 1[conj2] modus_tollens_1 CP
useful_tautologies_1[deduction] by metis
qed
ultimately show "[❙□Null (x⇧P) in v]"
unfolding Null_def
using "❙&I" KBasic_3[equiv_rl] by blast
qed
lemma null_uni_facts_2[PLM]:
"[Universal (x⇧P) ❙→ ❙□(Universal (x⇧P)) in v]"
proof (rule CP)
assume "[Universal (x⇧P) in v]"
hence 1: "[⦇A!,x⇧P⦈ ❙& (❙∀ F . ⦃x⇧P,F⦄) in v]"
unfolding Universal_def .
have "[❙□⦇A!,x⇧P⦈ in v]"
using 1[conj1] oa_facts_2[deduction] by simp
moreover have "[❙□(❙∀ F . ⦃x⇧P,F⦄) in v]"
proof (rule BF[deduction]; rule "❙∀I")
fix F
have "[⦃x⇧P, F⦄ in v]"
using 1[conj2] by (rule "❙∀E")
thus "[❙□⦃x⇧P, F⦄ in v]"
using encoding[axiom_instance, deduction] by auto
qed
ultimately show "[❙□Universal (x⇧P) in v]"
unfolding Universal_def
using "❙&I" KBasic_3[equiv_rl] by blast
qed
lemma null_uni_facts_3[PLM]:
"[Null (❙a⇩∅) in v]"
proof -
let ?ψ = "λ x . Null x"
have "[((❙∃! x . ?ψ (x⇧P)) ❙→ (❙∀ y . y⇧P ❙= (❙ιx . ?ψ (x⇧P)) ❙→ ?ψ (y⇧P))) in v]"
using unique_box_desc[deduction] null_uni_facts_1[THEN "❙∀I"] by fast
have 1: "[(❙∀ y . y⇧P ❙= (❙ιx . ?ψ (x⇧P)) ❙→ ?ψ (y⇧P)) in v]"
using unique_box_desc[deduction, deduction] null_uni_uniq_1
null_uni_facts_1[THEN "❙∀I"] by fast
have "[❙∃ y . y⇧P ❙= (❙a⇩∅) in v]"
unfolding NullObject_def using null_uni_uniq_3 .
then obtain y where "[y⇧P ❙= (❙a⇩∅) in v]"
by (rule "❙∃E")
moreover hence "[?ψ (y⇧P) in v]"
using 1[THEN "❙∀E", deduction] unfolding NullObject_def by simp
ultimately show "[?ψ (❙a⇩∅) in v]"
using l_identity[axiom_instance, deduction, deduction] by blast
qed
lemma null_uni_facts_4[PLM]:
"[Universal (❙a⇩V) in v]"
proof -
let ?ψ = "λ x . Universal x"
have "[((❙∃! x . ?ψ (x⇧P)) ❙→ (❙∀ y . y⇧P ❙= (❙ιx . ?ψ (x⇧P)) ❙→ ?ψ (y⇧P))) in v]"
using unique_box_desc[deduction] null_uni_facts_2[THEN "❙∀I"] by fast
have 1: "[(❙∀ y . y⇧P ❙= (❙ιx . ?ψ (x⇧P)) ❙→ ?ψ (y⇧P)) in v]"
using unique_box_desc[deduction, deduction] null_uni_uniq_2
null_uni_facts_2[THEN "❙∀I"] by fast
have "[❙∃ y . y⇧P ❙= (❙a⇩V) in v]"
unfolding UniversalObject_def using null_uni_uniq_4 .
then obtain y where "[y⇧P ❙= (❙a⇩V) in v]"
by (rule "❙∃E")
moreover hence "[?ψ (y⇧P) in v]"
using 1[THEN "❙∀E", deduction]
unfolding UniversalObject_def by simp
ultimately show "[?ψ (❙a⇩V) in v]"
using l_identity[axiom_instance, deduction, deduction] by blast
qed
lemma aclassical_1[PLM]:
"[❙∀ R . ❙∃ x y . ⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& (x ❙≠ y)
❙& (❙λ z . ⦇R,z⇧P,x⇧P⦈) ❙= (❙λ z . ⦇R,z⇧P,y⇧P⦈) in v]"
proof (rule "❙∀I")
fix R
obtain a where θ:
"[⦇A!,a⇧P⦈ ❙& (❙∀ F . ⦃a⇧P, F⦄ ❙≡ (❙∃ y . ⦇A!,y⇧P⦈
❙& F ❙= (❙λ z . ⦇R,z⇧P,y⇧P⦈) ❙& ❙¬⦃y⇧P, F⦄)) in v]"
using A_objects[axiom_instance] by (rule "❙∃E")
{
assume "[❙¬⦃a⇧P, (❙λ z . ⦇R,z⇧P,a⇧P⦈)⦄ in v]"
hence "[❙¬(⦇A!,a⇧P⦈ ❙& (❙λ z . ⦇R,z⇧P,a⇧P⦈) ❙= (❙λ z . ⦇R,z⇧P,a⇧P⦈)
❙& ❙¬⦃a⇧P, (❙λ z . ⦇R,z⇧P,a⇧P⦈)⦄) in v]"
using θ[conj2, THEN "❙∀E", THEN oth_class_taut_5_d[equiv_lr], equiv_lr]
cqt_further_4[equiv_lr] "❙∀E" by fast
hence "[⦇A!,a⇧P⦈ ❙& (❙λ z . ⦇R,z⇧P,a⇧P⦈) ❙= (❙λ z . ⦇R,z⇧P,a⇧P⦈)
❙→ ⦃a⇧P, (❙λ z . ⦇R,z⇧P,a⇧P⦈)⦄ in v]"
apply - by PLM_solver
hence "[⦃a⇧P, (❙λ z . ⦇R,z⇧P,a⇧P⦈)⦄ in v]"
using θ[conj1] id_eq_1 "❙&I" vdash_properties_10 by fast
}
hence 1: "[⦃a⇧P, (❙λ z . ⦇R,z⇧P,a⇧P⦈)⦄ in v]"
using reductio_aa_1 CP if_p_then_p by blast
then obtain b where ξ:
"[⦇A!,b⇧P⦈ ❙& (❙λ z . ⦇R,z⇧P,a⇧P⦈) ❙= (❙λ z . ⦇R,z⇧P,b⇧P⦈)
❙& ❙¬⦃b⇧P, (❙λ z . ⦇R,z⇧P,a⇧P⦈)⦄ in v]"
using θ[conj2, THEN "❙∀E", equiv_lr] "❙∃E" by blast
have "[a ❙≠ b in v]"
proof -
{
assume "[a ❙= b in v]"
hence "[⦃b⇧P, (❙λ z . ⦇R,z⇧P,a⇧P⦈)⦄ in v]"
using 1 l_identity[axiom_instance, deduction, deduction] by fast
hence ?thesis
using ξ[conj2] reductio_aa_1 by blast
}
thus ?thesis using reductio_aa_1 by blast
qed
hence "[⦇A!,a⇧P⦈ ❙& ⦇A!,b⇧P⦈ ❙& a ❙≠ b
❙& (❙λ z . ⦇R,z⇧P,a⇧P⦈) ❙= (❙λ z . ⦇R,z⇧P,b⇧P⦈) in v]"
using θ[conj1] ξ[conj1, conj1] ξ[conj1, conj2] "❙&I" by presburger
hence "[❙∃ y . ⦇A!,a⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& a ❙≠ y
❙& (❙λz. ⦇R,z⇧P,a⇧P⦈) ❙= (❙λz. ⦇R,z⇧P,y⇧P⦈) in v]"
using "❙∃I" by fast
thus "[❙∃ x y . ⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& x ❙≠ y
❙& (❙λz. ⦇R,z⇧P,x⇧P⦈) ❙= (❙λz. ⦇R,z⇧P,y⇧P⦈) in v]"
using "❙∃I" by fast
qed
lemma aclassical_2[PLM]:
"[❙∀ R . ❙∃ x y . ⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& (x ❙≠ y)
❙& (❙λ z . ⦇R,x⇧P,z⇧P⦈) ❙= (❙λ z . ⦇R,y⇧P,z⇧P⦈) in v]"
proof (rule "❙∀I")
fix R
obtain a where θ:
"[⦇A!,a⇧P⦈ ❙& (❙∀ F . ⦃a⇧P, F⦄ ❙≡ (❙∃ y . ⦇A!,y⇧P⦈
❙& F ❙= (❙λ z . ⦇R,y⇧P,z⇧P⦈) ❙& ❙¬⦃y⇧P, F⦄)) in v]"
using A_objects[axiom_instance] by (rule "❙∃E")
{
assume "[❙¬⦃a⇧P, (❙λ z . ⦇R,a⇧P,z⇧P⦈)⦄ in v]"
hence "[❙¬(⦇A!,a⇧P⦈ ❙& (❙λ z . ⦇R,a⇧P,z⇧P⦈) ❙= (❙λ z . ⦇R,a⇧P,z⇧P⦈)
❙& ❙¬⦃a⇧P, (❙λ z . ⦇R,a⇧P,z⇧P⦈)⦄) in v]"
using θ[conj2, THEN "❙∀E", THEN oth_class_taut_5_d[equiv_lr], equiv_lr]
cqt_further_4[equiv_lr] "❙∀E" by fast
hence "[⦇A!,a⇧P⦈ ❙& (❙λ z . ⦇R,a⇧P,z⇧P⦈) ❙= (❙λ z . ⦇R,a⇧P,z⇧P⦈)
❙→ ⦃a⇧P, (❙λ z . ⦇R,a⇧P,z⇧P⦈)⦄ in v]"
apply - by PLM_solver
hence "[⦃a⇧P, (❙λ z . ⦇R,a⇧P,z⇧P⦈)⦄ in v]"
using θ[conj1] id_eq_1 "❙&I" vdash_properties_10 by fast
}
hence 1: "[⦃a⇧P, (❙λ z . ⦇R,a⇧P,z⇧P⦈)⦄ in v]"
using reductio_aa_1 CP if_p_then_p by blast
then obtain b where ξ:
"[⦇A!,b⇧P⦈ ❙& (❙λ z . ⦇R,a⇧P,z⇧P⦈) ❙= (❙λ z . ⦇R,b⇧P,z⇧P⦈)
❙& ❙¬⦃b⇧P, (❙λ z . ⦇R,a⇧P,z⇧P⦈)⦄ in v]"
using θ[conj2, THEN "❙∀E", equiv_lr] "❙∃E" by blast
have "[a ❙≠ b in v]"
proof -
{
assume "[a ❙= b in v]"
hence "[⦃b⇧P, (❙λ z . ⦇R,a⇧P,z⇧P⦈)⦄ in v]"
using 1 l_identity[axiom_instance, deduction, deduction] by fast
hence ?thesis using ξ[conj2] reductio_aa_1 by blast
}
thus ?thesis using ξ[conj2] reductio_aa_1 by blast
qed
hence "[⦇A!,a⇧P⦈ ❙& ⦇A!,b⇧P⦈ ❙& a ❙≠ b
❙& (❙λ z . ⦇R,a⇧P,z⇧P⦈) ❙= (❙λ z . ⦇R,b⇧P,z⇧P⦈) in v]"
using θ[conj1] ξ[conj1, conj1] ξ[conj1, conj2] "❙&I" by presburger
hence "[❙∃ y . ⦇A!,a⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& a ❙≠ y
❙& (❙λz. ⦇R,a⇧P,z⇧P⦈) ❙= (❙λz. ⦇R,y⇧P,z⇧P⦈) in v]"
using "❙∃I" by fast
thus "[❙∃ x y . ⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& x ❙≠ y
❙& (❙λz. ⦇R,x⇧P,z⇧P⦈) ❙= (❙λz. ⦇R,y⇧P,z⇧P⦈) in v]"
using "❙∃I" by fast
qed
lemma aclassical_3[PLM]:
"[❙∀ F . ❙∃ x y . ⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& (x ❙≠ y)
❙& ((❙λ⇧0 ⦇F,x⇧P⦈) ❙= (❙λ⇧0 ⦇F,y⇧P⦈)) in v]"
proof (rule "❙∀I")
fix R
obtain a where θ:
"[⦇A!,a⇧P⦈ ❙& (❙∀ F . ⦃a⇧P, F⦄ ❙≡ (❙∃ y . ⦇A!,y⇧P⦈
❙& F ❙= (❙λ z . ⦇R,y⇧P⦈) ❙& ❙¬⦃y⇧P, F⦄)) in v]"
using A_objects[axiom_instance] by (rule "❙∃E")
{
assume "[❙¬⦃a⇧P, (❙λ z . ⦇R,a⇧P⦈)⦄ in v]"
hence "[❙¬(⦇A!,a⇧P⦈ ❙& (❙λ z . ⦇R,a⇧P⦈) ❙= (❙λ z . ⦇R,a⇧P⦈)
❙& ❙¬⦃a⇧P, (❙λ z . ⦇R,a⇧P⦈)⦄) in v]"
using θ[conj2, THEN "❙∀E", THEN oth_class_taut_5_d[equiv_lr], equiv_lr]
cqt_further_4[equiv_lr] "❙∀E" by fast
hence "[⦇A!,a⇧P⦈ ❙& (❙λ z . ⦇R,a⇧P⦈) ❙= (❙λ z . ⦇R,a⇧P⦈)
❙→ ⦃a⇧P, (❙λ z . ⦇R,a⇧P⦈)⦄ in v]"
apply - by PLM_solver
hence "[⦃a⇧P, (❙λ z . ⦇R,a⇧P⦈)⦄ in v]"
using θ[conj1] id_eq_1 "❙&I" vdash_properties_10 by fast
}
hence 1: "[⦃a⇧P, (❙λ z . ⦇R,a⇧P⦈)⦄ in v]"
using reductio_aa_1 CP if_p_then_p by blast
then obtain b where ξ:
"[⦇A!,b⇧P⦈ ❙& (❙λ z . ⦇R,a⇧P⦈) ❙= (❙λ z . ⦇R,b⇧P⦈)
❙& ❙¬⦃b⇧P, (❙λ z . ⦇R,a⇧P⦈)⦄ in v]"
using θ[conj2, THEN "❙∀E", equiv_lr] "❙∃E" by blast
have "[a ❙≠ b in v]"
proof -
{
assume "[a ❙= b in v]"
hence "[⦃b⇧P, (❙λ z . ⦇R,a⇧P⦈)⦄ in v]"
using 1 l_identity[axiom_instance, deduction, deduction] by fast
hence ?thesis
using ξ[conj2] reductio_aa_1 by blast
}
thus ?thesis using reductio_aa_1 by blast
qed
moreover {
have "[⦇R,a⇧P⦈ ❙= ⦇R,b⇧P⦈ in v]"
unfolding identity⇩𝗈_def
using ξ[conj1, conj2] by auto
hence "[(❙λ⇧0 ⦇R,a⇧P⦈) ❙= (❙λ⇧0 ⦇R,b⇧P⦈) in v]"
using lambda_p_q_p_eq_q[equiv_rl] by simp
}
ultimately have "[⦇A!,a⇧P⦈ ❙& ⦇A!,b⇧P⦈ ❙& a ❙≠ b
❙& ((❙λ⇧0 ⦇R,a⇧P⦈) ❙=(❙λ⇧0 ⦇R,b⇧P⦈)) in v]"
using θ[conj1] ξ[conj1, conj1] ξ[conj1, conj2] "❙&I"
by presburger
hence "[❙∃ y . ⦇A!,a⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& a ❙≠ y
❙& (❙λ⇧0 ⦇R,a⇧P⦈) ❙= (❙λ⇧0 ⦇R,y⇧P⦈) in v]"
using "❙∃I" by fast
thus "[❙∃ x y . ⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& x ❙≠ y
❙& (❙λ⇧0 ⦇R,x⇧P⦈) ❙= (❙λ⇧0 ⦇R,y⇧P⦈) in v]"
using "❙∃I" by fast
qed
lemma aclassical2[PLM]:
"[❙∃ x y . ⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& x ❙≠ y ❙& (❙∀ F . ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈) in v]"
proof -
let ?R⇩1 = "❙λ⇧2 (λ x y . ❙∀ F . ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈)"
have "[❙∃ x y . ⦇A!,x⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& x ❙≠ y
❙& (❙λz. ⦇?R⇩1,z⇧P,x⇧P⦈) ❙= (❙λz. ⦇?R⇩1,z⇧P,y⇧P⦈) in v]"
using aclassical_1 by (rule "❙∀E")
then obtain a where
"[❙∃ y . ⦇A!,a⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& a ❙≠ y
❙& (❙λz. ⦇?R⇩1,z⇧P,a⇧P⦈) ❙= (❙λz. ⦇?R⇩1,z⇧P,y⇧P⦈) in v]"
by (rule "❙∃E")
then obtain b where ab_prop:
"[⦇A!,a⇧P⦈ ❙& ⦇A!,b⇧P⦈ ❙& a ❙≠ b
❙& (❙λz. ⦇?R⇩1,z⇧P,a⇧P⦈) ❙= (❙λz. ⦇?R⇩1,z⇧P,b⇧P⦈) in v]"
by (rule "❙∃E")
have "[⦇?R⇩1, a⇧P, a⇧P⦈ in v]"
apply (rule beta_C_meta_2[equiv_rl])
apply show_proper
using oth_class_taut_4_a[THEN "❙∀I"] by fast
hence "[⦇❙λ z . ⦇?R⇩1, z⇧P, a⇧P⦈, a⇧P⦈ in v]"
apply - apply (rule beta_C_meta_1[equiv_rl])
apply show_proper
by auto
hence "[⦇❙λ z . ⦇?R⇩1, z⇧P, b⇧P⦈, a⇧P⦈ in v]"
using ab_prop[conj2] l_identity[axiom_instance, deduction, deduction]
by fast
hence "[⦇?R⇩1, a⇧P, b⇧P⦈ in v]"
apply (safe intro!: beta_C_meta_1[where φ=
"λz . ⦇❙λ⇧2 (λx y. ❙∀F. ⦇F,x⇧P⦈ ❙≡ ⦇F,y⇧P⦈),z,b⇧P⦈", equiv_lr])
by show_proper
moreover have "IsProperInXY (λx y. ❙∀F. ⦇F,x⦈ ❙≡ ⦇F,y⦈)"
by show_proper
ultimately have "[❙∀F. ⦇F,a⇧P⦈ ❙≡ ⦇F,b⇧P⦈ in v]"
using beta_C_meta_2[equiv_lr] by blast
hence "[⦇A!,a⇧P⦈ ❙& ⦇A!,b⇧P⦈ ❙& a ❙≠ b ❙& (❙∀F. ⦇F,a⇧P⦈ ❙≡ ⦇F,b⇧P⦈) in v]"
using ab_prop[conj1] "❙&I" by presburger
hence "[❙∃ y . ⦇A!,a⇧P⦈ ❙& ⦇A!,y⇧P⦈ ❙& a ❙≠ y ❙& (❙∀F. ⦇F,a⇧P⦈ ❙≡ ⦇F,y⇧P⦈) in v]"
using "❙∃I" by fast
thus ?thesis using "❙∃I" by fast
qed
subsection‹Propositional Properties›
text‹\label{TAO_PLM_PropositionalProperties}›
lemma prop_prop2_1:
"[❙∀ p . ❙∃ F . F ❙= (❙λ x . p) in v]"
proof (rule "❙∀I")
fix p
have "[(❙λ x . p) ❙= (❙λ x . p) in v]"
using id_eq_prop_prop_1 by auto
thus "[❙∃ F . F ❙= (❙λ x . p) in v]"
by PLM_solver
qed
lemma prop_prop2_2:
"[F ❙= (❙λ x . p) ❙→ ❙□(❙∀ x . ⦇F,x⇧P⦈ ❙≡ p) in v]"
proof (rule CP)
assume 1: "[F ❙= (❙λ x . p) in v]"
{
fix v
{
fix x
have "[⦇(❙λ x . p), x⇧P⦈ ❙≡ p in v]"
apply (rule beta_C_meta_1)
by show_proper
}
hence "[❙∀ x . ⦇(❙λ x . p), x⇧P⦈ ❙≡ p in v]"
by (rule "❙∀I")
}
hence "[❙□(❙∀ x . ⦇(❙λ x . p), x⇧P⦈ ❙≡ p) in v]"
by (rule RN)
thus "[❙□(❙∀x. ⦇F,x⇧P⦈ ❙≡ p) in v]"
using l_identity[axiom_instance,deduction,deduction,
OF 1[THEN id_eq_prop_prop_2[deduction]]] by fast
qed
lemma prop_prop2_3:
"[Propositional F ❙→ ❙□(Propositional F) in v]"
proof (rule CP)
assume "[Propositional F in v]"
hence "[❙∃ p . F ❙= (❙λ x . p) in v]"
unfolding Propositional_def .
then obtain q where "[F ❙= (❙λ x . q) in v]"
by (rule "❙∃E")
hence "[❙□(F ❙= (❙λ x . q)) in v]"
using id_nec[equiv_lr] by auto
hence "[❙∃ p . ❙□(F ❙= (❙λ x . p)) in v]"
using "❙∃I" by fast
thus "[❙□(Propositional F) in v]"
unfolding Propositional_def
using sign_S5_thm_1[deduction] by fast
qed
lemma prop_indis:
"[Indiscriminate F ❙→ (❙¬(❙∃ x y . ⦇F,x⇧P⦈ ❙& (❙¬⦇F,y⇧P⦈))) in v]"
proof (rule CP)
assume "[Indiscriminate F in v]"
hence 1: "[❙□((❙∃x. ⦇F,x⇧P⦈) ❙→ (❙∀x. ⦇F,x⇧P⦈)) in v]"
unfolding Indiscriminate_def .
{
assume "[❙∃ x y . ⦇F,x⇧P⦈ ❙& ❙¬⦇F,y⇧P⦈ in v]"
then obtain x where "[❙∃ y . ⦇F,x⇧P⦈ ❙& ❙¬⦇F,y⇧P⦈ in v]"
by (rule "❙∃E")
then obtain y where 2: "[⦇F,x⇧P⦈ ❙& ❙¬⦇F,y⇧P⦈ in v]"
by (rule "❙∃E")
hence "[❙∃ x . ⦇F, x⇧P⦈ in v]"
using "❙&E"(1) "❙∃I" by fast
hence "[❙∀ x . ⦇F,x⇧P⦈ in v]"
using 1[THEN qml_2[axiom_instance, deduction], deduction] by fast
hence "[⦇F,y⇧P⦈ in v]"
using cqt_orig_1[deduction] by fast
hence "[⦇F,y⇧P⦈ ❙& (❙¬⦇F,y⇧P⦈) in v]"
using 2 "❙&I" "❙&E" by fast
hence "[❙¬(❙∃ x y . ⦇F,x⇧P⦈ ❙& ❙¬⦇F,y⇧P⦈) in v]"
using pl_1[axiom_instance, deduction, THEN modus_tollens_1]
oth_class_taut_1_a by blast
}
thus "[❙¬(❙∃ x y . ⦇F,x⇧P⦈ ❙& ❙¬⦇F,y⇧P⦈) in v]"
using reductio_aa_2 if_p_then_p deduction_theorem by blast
qed
lemma prop_in_thm:
"[Propositional F ❙→ Indiscriminate F in v]"
proof (rule CP)
assume "[Propositional F in v]"
hence "[❙□(Propositional F) in v]"
using prop_prop2_3[deduction] by auto
moreover {
fix w
assume "[❙∃ p . (F ❙= (❙λ y . p)) in w]"
then obtain q where q_prop: "[F ❙= (❙λ y . q) in w]"
by (rule "❙∃E")
{
assume "[❙∃ x . ⦇F,x⇧P⦈ in w]"
then obtain a where "[⦇F,a⇧P⦈ in w]"
by (rule "❙∃E")
hence "[⦇❙λ y . q, a⇧P⦈ in w]"
using q_prop l_identity[axiom_instance,deduction,deduction] by fast
hence q: "[q in w]"
apply (safe intro!: beta_C_meta_1[where φ="λy. q", equiv_lr])
apply show_proper
by simp
{
fix x
have "[⦇❙λ y . q, x⇧P⦈ in w]"
apply (safe intro!: q beta_C_meta_1[equiv_rl])
by show_proper
hence "[⦇F,x⇧P⦈ in w]"
using q_prop[eq_sym] l_identity[axiom_instance, deduction, deduction]
by fast
}
hence "[❙∀ x . ⦇F,x⇧P⦈ in w]"
by (rule "❙∀I")
}
hence "[(❙∃ x . ⦇F,x⇧P⦈) ❙→ (❙∀ x . ⦇F, x⇧P⦈) in w]"
by (rule CP)
}
ultimately show "[Indiscriminate F in v]"
unfolding Propositional_def Indiscriminate_def
using RM_1[deduction] deduction_theorem by blast
qed
lemma prop_in_f_1:
"[Necessary F ❙→ Indiscriminate F in v]"
unfolding Necessary_defs Indiscriminate_def
using pl_1[axiom_instance, THEN RM_1] by simp
lemma prop_in_f_2:
"[Impossible F ❙→ Indiscriminate F in v]"
proof -
{
fix w
have "[(❙¬(❙∃ x . ⦇F,x⇧P⦈)) ❙→ ((❙∃ x . ⦇F,x⇧P⦈) ❙→ (❙∀ x . ⦇F,x⇧P⦈)) in w]"
using useful_tautologies_3 by auto
hence "[(❙∀ x . ❙¬⦇F,x⇧P⦈) ❙→ ((❙∃ x . ⦇F,x⇧P⦈) ❙→ (❙∀ x . ⦇F,x⇧P⦈)) in w]"
apply - apply (PLM_subst_method "❙¬(❙∃ x. ⦇F,x⇧P⦈)" "(❙∀ x. ❙¬⦇F,x⇧P⦈)")
using cqt_further_4 unfolding exists_def by fast+
}
thus ?thesis
unfolding Impossible_defs Indiscriminate_def using RM_1 CP by blast
qed
lemma prop_in_f_3_a:
"[❙¬(Indiscriminate (E!)) in v]"
proof (rule reductio_aa_2)
show "[❙□❙¬(❙∀x. ⦇E!,x⇧P⦈) in v]"
using a_objects_exist_3 .
next
assume "[Indiscriminate E! in v]"
thus "[❙¬❙□❙¬(❙∀ x . ⦇E!,x⇧P⦈) in v]"
unfolding Indiscriminate_def
using o_objects_exist_1 KBasic2_5[deduction,deduction]
unfolding diamond_def by blast
qed
lemma prop_in_f_3_b:
"[❙¬(Indiscriminate (E!⇧-)) in v]"
proof (rule reductio_aa_2)
assume "[Indiscriminate (E!⇧-) in v]"
moreover have "[❙□(❙∃ x . ⦇E!⇧-, x⇧P⦈) in v]"
apply (PLM_subst_method "λ x . ❙¬⦇E!, x⇧P⦈" "λ x . ⦇E!⇧-, x⇧P⦈")
using thm_relation_negation_1_1[equiv_sym] apply simp
unfolding exists_def
apply (PLM_subst_method "λ x . ⦇E!, x⇧P⦈" "λ x . ❙¬❙¬⦇E!, x⇧P⦈")
using oth_class_taut_4_b apply simp
using a_objects_exist_3 by auto
ultimately have "[❙□(❙∀x. ⦇E!⇧-,x⇧P⦈) in v]"
unfolding Indiscriminate_def
using qml_1[axiom_instance, deduction, deduction] by blast
thus "[❙□(❙∀x. ❙¬⦇E!,x⇧P⦈) in v]"
apply -
apply (PLM_subst_method "λ x . ⦇E!⇧-, x⇧P⦈" "λ x . ❙¬⦇E!, x⇧P⦈")
using thm_relation_negation_1_1 by auto
next
show "[❙¬❙□(❙∀ x . ❙¬⦇E!, x⇧P⦈) in v]"
using o_objects_exist_1
unfolding diamond_def exists_def
apply -
apply (PLM_subst_method "❙¬❙¬(❙∀x. ❙¬⦇E!,x⇧P⦈)" "❙∀x. ❙¬⦇E!,x⇧P⦈")
using oth_class_taut_4_b[equiv_sym] by auto
qed
lemma prop_in_f_3_c:
"[❙¬(Indiscriminate (O!)) in v]"
proof (rule reductio_aa_2)
show "[❙¬(❙∀ x . ⦇O!,x⇧P⦈) in v]"
using a_objects_exist_2[THEN qml_2[axiom_instance, deduction]]
by blast
next
assume "[Indiscriminate O! in v]"
thus "[(❙∀ x . ⦇O!,x⇧P⦈) in v]"
unfolding Indiscriminate_def
using o_objects_exist_2 qml_1[axiom_instance, deduction, deduction]
qml_2[axiom_instance, deduction] by blast
qed
lemma prop_in_f_3_d:
"[❙¬(Indiscriminate (A!)) in v]"
proof (rule reductio_aa_2)
show "[❙¬(❙∀ x . ⦇A!,x⇧P⦈) in v]"
using o_objects_exist_3[THEN qml_2[axiom_instance, deduction]]
by blast
next
assume "[Indiscriminate A! in v]"
thus "[(❙∀ x . ⦇A!,x⇧P⦈) in v]"
unfolding Indiscriminate_def
using a_objects_exist_1 qml_1[axiom_instance, deduction, deduction]
qml_2[axiom_instance, deduction] by blast
qed
lemma prop_in_f_4_a:
"[❙¬(Propositional E!) in v]"
using prop_in_thm[deduction] prop_in_f_3_a modus_tollens_1 CP
by meson
lemma prop_in_f_4_b:
"[❙¬(Propositional (E!⇧-)) in v]"
using prop_in_thm[deduction] prop_in_f_3_b modus_tollens_1 CP
by meson
lemma prop_in_f_4_c:
"[❙¬(Propositional (O!)) in v]"
using prop_in_thm[deduction] prop_in_f_3_c modus_tollens_1 CP
by meson
lemma prop_in_f_4_d:
"[❙¬(Propositional (A!)) in v]"
using prop_in_thm[deduction] prop_in_f_3_d modus_tollens_1 CP
by meson
lemma prop_prop_nec_1:
"[❙◇(❙∃ p . F ❙= (❙λ x . p)) ❙→ (❙∃ p . F ❙= (❙λ x . p)) in v]"
proof (rule CP)
assume "[❙◇(❙∃ p . F ❙= (❙λ x . p)) in v]"
hence "[❙∃ p . ❙◇(F ❙= (❙λ x . p)) in v]"
using "BF❙◇"[deduction] by auto
then obtain p where "[❙◇(F ❙= (❙λ x . p)) in v]"
by (rule "❙∃E")
hence "[❙◇❙□(❙∀x. ⦃x⇧P,F⦄ ❙≡ ⦃x⇧P,❙λx. p⦄) in v]"
unfolding identity_defs .
hence "[❙□(❙∀x. ⦃x⇧P,F⦄ ❙≡ ⦃x⇧P,❙λx. p⦄) in v]"
using "5❙◇"[deduction] by auto
hence "[(F ❙= (❙λ x . p)) in v]"
unfolding identity_defs .
thus "[❙∃ p . (F ❙= (❙λ x . p)) in v]"
by PLM_solver
qed
lemma prop_prop_nec_2:
"[(❙∀ p . F ❙≠ (❙λ x . p)) ❙→ ❙□(❙∀ p . F ❙≠ (❙λ x . p)) in v]"
apply (PLM_subst_method
"❙¬(❙∃ p . (F ❙= (❙λ x . p)))"
"(❙∀ p . ❙¬(F ❙= (❙λ x . p)))")
using cqt_further_4 apply blast
apply (PLM_subst_method
"❙¬❙◇(❙∃p. F ❙= (❙λx. p))"
"❙□❙¬(❙∃p. F ❙= (❙λx. p))")
using KBasic2_4[equiv_sym] prop_prop_nec_1
contraposition_1 by auto
lemma prop_prop_nec_3:
"[(❙∃ p . F ❙= (❙λ x . p)) ❙→ ❙□(❙∃ p . F ❙= (❙λ x . p)) in v]"
using prop_prop_nec_1 derived_S5_rules_1_b by simp
lemma prop_prop_nec_4:
"[❙◇(❙∀ p . F ❙≠ (❙λ x . p)) ❙→ (❙∀ p . F ❙≠ (❙λ x . p)) in v]"
using prop_prop_nec_2 derived_S5_rules_2_b by simp
lemma enc_prop_nec_1:
"[❙◇(❙∀ F . ⦃x⇧P, F⦄ ❙→ (❙∃ p . F ❙= (❙λ x . p)))
❙→ (❙∀ F . ⦃x⇧P, F⦄ ❙→ (❙∃ p . F ❙= (❙λ x . p))) in v]"
proof (rule CP)
assume "[❙◇(❙∀F. ⦃x⇧P,F⦄ ❙→ (❙∃p. F ❙= (❙λx. p))) in v]"
hence 1: "[(❙∀F. ❙◇(⦃x⇧P,F⦄ ❙→ (❙∃p. F ❙= (❙λx. p)))) in v]"
using "Buridan❙◇"[deduction] by auto
{
fix Q
assume "[⦃x⇧P,Q⦄ in v]"
hence "[❙□⦃x⇧P,Q⦄ in v]"
using encoding[axiom_instance, deduction] by auto
moreover have "[❙◇(⦃x⇧P,Q⦄ ❙→ (❙∃p. Q ❙= (❙λx. p))) in v]"
using cqt_1[axiom_instance, deduction] 1 by fast
ultimately have "[❙◇(❙∃p. Q ❙= (❙λx. p)) in v]"
using KBasic2_9[equiv_lr,deduction] by auto
hence "[(❙∃p. Q ❙= (❙λx. p)) in v]"
using prop_prop_nec_1[deduction] by auto
}
thus "[(❙∀ F . ⦃x⇧P, F⦄ ❙→ (❙∃ p . F ❙= (❙λ x . p))) in v]"
apply - by PLM_solver
qed
lemma enc_prop_nec_2:
"[(❙∀ F . ⦃x⇧P, F⦄ ❙→ (❙∃ p . F ❙= (❙λ x . p))) ❙→ ❙□(❙∀ F . ⦃x⇧P, F⦄
❙→ (❙∃ p . F ❙= (❙λ x . p))) in v]"
using derived_S5_rules_1_b enc_prop_nec_1 by blast
end
end