Theory KBO_Subterm_Coefficients_Undecidable
section ‹Undecidability of KBO with Subterm Coefficients›
theory KBO_Subterm_Coefficients_Undecidable
imports
Hilbert10_to_Inequality
Knuth_Bendix_Order.KBO
Linear_Poly_Termination_Undecidable
begin
lemma count_sum_list: "count (sum_list ms) x = sum_list (map (λ m. count m x) ms)"
by (induct ms, auto)
lemma sum_list_scf_list_prod: "sum_list (map f (scf_list scf as)) = sum_list (map (λ i. scf i * f (as ! i)) [0..<length as])"
unfolding scf_list_def
unfolding map_concat
unfolding sum_list_concat map_map o_def
apply (subst zip_nth_conv, force)
unfolding map_map o_def split
apply (rule arg_cong[of _ _ sum_list])
by (intro nth_equalityI, auto simp: sum_list_replicate)
lemma count_vars_term_different_var: assumes x: "x ∉ vars_term t"
shows "count (vars_term_ms (scf_term scf t)) x = 0"
proof -
from assms have "x ∉ vars_term (scf_term scf t)"
using vars_term_scf_subset by fastforce
thus ?thesis
by (simp add: count_eq_zero_iff)
qed
context kbo
begin
definition kbo_orientation :: "('f,'v)rule set ⇒ bool" where
"kbo_orientation R = (∀ (l,r) ∈ R. fst (kbo l r))"
end
definition kbo_with_sc_termination :: "('f,'v)rule set ⇒ bool" where
"kbo_with_sc_termination R = (∃ w w0 sc least pr_strict pr_weak. admissible_kbo w w0 pr_strict pr_weak least sc
∧ kbo.kbo_orientation w w0 sc least pr_strict pr_weak R)"
context poly_input
begin
context
fixes sc
assumes sc: "sc (a_sym, Suc (Suc 0)) 0 = (1 :: nat)"
"sc (a_sym, Suc (Suc 0)) (Suc 0) = 1"
begin
lemma count_vars_term_encode_num_nat:
"count (vars_term_ms (scf_term sc (encode_num x (int n)))) x = n"
unfolding encode_num_def nat_int
by (induct n, auto simp add: scf_list_def sc)
lemma count_vars_term_encode_num:
"c ≥ 0 ⟹ int (count (vars_term_ms (scf_term sc (encode_num x c))) x) = c"
using count_vars_term_encode_num_nat[of x "nat c"] by auto
lemma count_vars_term_v_pow_e:
"count (vars_term_ms (scf_term sc ((v_t x ^^ e) t))) y
= (sc (v_sym x,1) 0)^e * count (vars_term_ms (scf_term sc t)) y"
proof (induct e)
case (Suc e)
thus ?case by (simp split: if_splits add: scf_list_def sum_mset_sum_list sum_list_replicate count_sum_list sc)
qed force
lemma count_vars_term_encode_monom: assumes c: "c ≥ 0"
shows "int (count (vars_term_ms (scf_term sc (encode_monom x m c))) x)
= insertion (λ v. int (sc (v_sym v,1) 0)) (monom m c)"
proof -
define xes where "xes = var_list m"
from var_list[of m c]
have monom: "monom m c = Const c * (∏(x, e)← xes . PVar x ^ e) " unfolding xes_def .
show ?thesis unfolding encode_monom_def monom xes_def[symmetric]
proof (induct xes)
case Nil
show ?case by (simp add: count_vars_term_encode_num[OF c] insertion_Const sc)
next
case (Cons xe xes)
obtain x e where xe: "xe = (x,e)" by force
show ?case
by (simp add: xe count_vars_term_v_pow_e Cons
insertion_Const insertion_mult insertion_power insertion_Var when_def)
qed
qed
text ‹Lemma 4.5›
lemma count_vars_term_encode_poly_generic: assumes "positive_poly r"
shows "int (count (vars_term_ms (scf_term sc (encode_poly x r))) x) =
insertion (λ v. int (sc (v_sym v,1) 0)) r"
proof -
define mcs where "mcs = monom_list r"
from monom_list[of r] have r: "r = (∑(m, c)← mcs. monom m c)" unfolding mcs_def by auto
have mcs: "(m,c) ∈ set mcs ⟹ c ≥ 0" for m c
using monom_list_coeff assms unfolding mcs_def positive_poly_def by auto
show ?thesis unfolding encode_poly_def mcs_def[symmetric] unfolding r insertion_sum_list map_map o_def
using mcs
proof (induct mcs)
case (Cons mc mcs)
obtain m c where mc: "mc = (m,c)" by force
from Cons(2) mc have c: "c ≥ 0" by auto
note monom = count_vars_term_encode_monom[OF this, of x m]
show ?case
apply (simp add: mc monom scf_list_def sc)
apply (subst Cons(1))
using Cons(2) by (auto simp: when_def)
qed simp
qed
end
text ‹Theorem 4.6›
theorem kbo_sc_termination_R_imp_solution:
assumes "kbo_with_sc_termination R"
shows "positive_poly_problem p q"
proof -
from assms[unfolded kbo_with_sc_termination_def] obtain w w0 sc least pr_strict pr_weak
where
"admissible_kbo w w0 pr_strict pr_weak least sc"
and orient: "kbo.kbo_orientation w w0 sc least pr_strict pr_weak R"
by blast
interpret admissible_kbo w w0 pr_strict pr_weak least sc by fact
define l where "l i = args lhs_R ! i" for i
define r where "r i = args rhs_R ! i" for i
define as :: "nat list" where "as = [0,1,2,3]"
have upt_as: "[0..<length as] = as" unfolding as_def by auto
have lhs: "lhs_R = Fun f_sym (map l as)" unfolding lhs_R_def l_def as_def by simp
have rhs: "rhs_R = Fun f_sym (map r as)" unfolding rhs_R_def r_def as_def by simp
from orient[unfolded kbo_orientation_def R_def]
have "fst (kbo lhs_R rhs_R)" by auto
from this[unfolded kbo.simps[of lhs_R]]
have "vars_term_ms (SCF rhs_R) ⊆# vars_term_ms (SCF lhs_R)" by (auto split: if_splits)
hence count: "count (vars_term_ms (SCF rhs_R)) x ≤ count (vars_term_ms (SCF lhs_R)) x" for x
by (rule mset_subset_eq_count)
let ?f = "(f_sym, length as)"
{
fix i
assume i: "i ∈ set as"
from i have vl: "vars_term (l i) ⊆ {i}" unfolding l_def lhs_R_def as_def y1_def y2_def y3_def
using vars_encode_poly[of i p] by auto
from count_vars_term_different_var[of _ "l i" sc] vl
have count_l_diff: "i ≠ j ⟹ count (vars_term_ms (SCF (l i))) j = 0" for j by auto
from i have vr: "vars_term (r i) ⊆ {i}" unfolding r_def rhs_R_def as_def y1_def y2_def y3_def
using vars_encode_poly[of i q] by auto
from count_vars_term_different_var[of _ "r i" sc] vr
have count_r_diff: "i ≠ j ⟹ count (vars_term_ms (SCF (r i))) j = 0" for j by auto
{
fix x
have "count (vars_term_ms (SCF rhs_R)) x
= sum_list (map (λ i. count (vars_term_ms (SCF (r i))) x) (scf_list (sc ?f) as))" unfolding rhs
apply (simp add: o_def)
apply (unfold mset_map[symmetric] sum_mset_sum_list)
apply (unfold count_sum_list map_map o_def)
by simp
also have "… = (∑i←as. sc ?f i * count (vars_term_ms (SCF (r (as ! i)))) x)"
unfolding sum_list_scf_list_prod upt_as ..
finally have "count (vars_term_ms (SCF rhs_R)) x = (∑i←as. sc ?f i * count (vars_term_ms (SCF (r (as ! i)))) x)" .
} note count_rhs = this
{
fix x
have "count (vars_term_ms (SCF lhs_R)) x
= sum_list (map (λ i. count (vars_term_ms (SCF (l i))) x) (scf_list (sc ?f) as))" unfolding lhs
apply (simp add: o_def)
apply (unfold mset_map[symmetric] sum_mset_sum_list)
apply (unfold count_sum_list map_map o_def)
by simp
also have "… = (∑i←as. sc ?f i * count (vars_term_ms (SCF (l (as ! i)))) x)"
unfolding sum_list_scf_list_prod upt_as ..
finally have "count (vars_term_ms (SCF lhs_R)) x = (∑i←as. sc ?f i * count (vars_term_ms (SCF (l (as ! i)))) x)" .
} note count_lhs = this
note count_lhs count_rhs count_l_diff count_r_diff
} note cf = this[unfolded as_def]
let ?f = "(f_sym, Suc (Suc (Suc (Suc 0))))"
{
fix i :: nat
assume i: "i ∈ {0,1,2,3}"
have "sc ?f i * count (vars_term_ms (SCF (r i))) i = count (vars_term_ms (SCF rhs_R)) i"
by (subst cf(2), insert i, auto simp add: cf)
also have "… ≤ count (vars_term_ms (SCF lhs_R)) i" by fact
also have "… = sc ?f i * count (vars_term_ms (SCF (l i))) i"
by (subst cf(1), insert i, auto simp add: cf)
finally have "count (vars_term_ms (SCF (r i))) i ≤ count (vars_term_ms (SCF (l i))) i"
using scf[of i "Suc (Suc (Suc (Suc 0)))" f_sym] i by auto
} note count_le = this
from count_le[of 0, unfolded r_def l_def rhs_R_def lhs_R_def y1_def]
have "sc (a_sym, Suc (Suc 0)) 0 ≤ 1"
apply simp
apply (unfold mset_map[symmetric] sum_mset_sum_list)
by (simp add: count_sum_list sum_list_scf_list_prod)
with scf[of 0 "Suc (Suc 0)" a_sym]
have a20: "sc (a_sym, Suc (Suc 0)) 0 = 1" by auto
from count_le[of 1, unfolded r_def l_def rhs_R_def lhs_R_def y2_def]
have "sc (a_sym, Suc (Suc 0)) 1 ≤ 1"
apply simp
apply (unfold mset_map[symmetric] sum_mset_sum_list)
by (simp add: count_sum_list sum_list_scf_list_prod)
with scf[of 1 "Suc (Suc 0)" a_sym]
have a21: "sc (a_sym, Suc (Suc 0)) (Suc 0) = 1" by auto
note encode = count_vars_term_encode_poly_generic[of sc, OF a20 a21]
have "Suc (count (vars_term_ms (SCF (encode_poly y3 q))) y3) = count (vars_term_ms (SCF (r 2))) 2"
by (simp add: r_def rhs_R_def scf_list_def a20 a21 y3_def)
also have "… ≤ count (vars_term_ms (SCF (l 2))) 2" using count_le[of 2] by simp
also have "… = Suc (count (vars_term_ms (SCF (encode_poly y3 p))) y3)"
by (simp add: l_def lhs_R_def scf_list_def a20 a21 y3_def)
finally have "int (count (vars_term_ms (SCF (encode_poly y3 q))) y3) ≤ int (count (vars_term_ms (SCF (encode_poly y3 p))) y3)"
by auto
from this[unfolded encode[OF pq(1)] encode[OF pq(2)]]
show ?thesis
unfolding positive_poly_problem_def[OF pq]
by (intro exI[of _ "λv. int (sc (v_sym v, 1) 0)"], auto simp: positive_interpr_def scf)
qed
end
context solvable_poly_problem
begin
definition w0 :: nat where "w0 = 1"
fun sc :: "symbol × nat ⇒ nat ⇒ nat" where
"sc (v_sym i, Suc 0) _ = nat (α i)"
| "sc _ _ = 1"
context fixes wr :: nat
begin
fun w_R :: "symbol × nat ⇒ nat" where
"w_R (f_sym,n) = (if n = 4 then 0 else 1)"
| "w_R (a_sym,n) = (if n = 2 then 0 else 1)"
| "w_R (o_sym,0) = wr"
| "w_R _ = 1"
end
definition w_rhs where "w_rhs = weight_fun.weight (w_R 1) w0 sc rhs_R"
abbreviation w where "w ≡ w_R w_rhs"
definition least where "least f = (w (f, 0) = w0 ∧ (∀ g. w (g, 0) = w0 ⟶ (g, 0 :: nat) = (f, 0)))"
lemma α0: "α x > 0" using α(1) unfolding positive_interpr_def by auto
sublocale admissible_kbo w w0 "(λ _ _. False)" "(=)" least sc
apply (unfold_locales)
subgoal for f unfolding w0_def
by (cases f, auto simp add: weight_fun.weight.simps w_rhs_def rhs_R_def)
subgoal by (simp add: w0_def)
subgoal for f g n by (cases f, auto)
subgoal for f unfolding least_def by auto
subgoal for i n f by (cases f; cases n; cases "n - 1"; auto intro: α0)
by auto
lemma insertion_pos: "positive_poly r ⟹ insertion α r ≥ 0"
unfolding positive_poly_def by (smt (verit) α0 insertion_nonneg)
lemma count_vars_term_encode_poly: assumes "positive_poly r"
shows "count (vars_term_ms (SCF (encode_poly x r))) y = (nat (insertion α r) when x = y)"
proof (cases "y = x")
case False
with count_vars_term_different_var[of y "encode_poly x r" sc] vars_encode_poly[of x r]
show ?thesis by (auto simp: when_def)
next
case y: True
from count_vars_term_encode_poly_generic[of sc _ x, OF _ _ assms]
have "int (count (vars_term_ms (SCF (encode_poly x r))) x)
= insertion (λv. int (sc (v_sym v, 1) 0)) r" by auto
also have "(λv. int (sc (v_sym v, 1) 0)) = α"
by (intro ext, insert α0, auto simp: order.order_iff_strict)
finally show ?thesis unfolding y
using insertion_pos[OF assms] by auto
qed
text ‹Theorem 4.7 in context›
theorem kbo_with_sc_termination: "kbo_with_sc_termination R"
unfolding kbo_with_sc_termination_def
proof (intro exI conjI)
show "admissible_kbo w w0 (λ _ _. False) (=) least sc" ..
show "kbo_orientation R" unfolding R_def kbo_orientation_def
proof (clarify)
{
fix t :: "(symbol,var)term"
assume "(o_sym,0) ∉ funas_term t"
hence "weight_fun.weight (w_R (Suc 0)) w0 sc t = weight t" (is "?id t")
proof (induct t)
case (Var x)
show ?case by (auto simp: weight_fun.weight.simps)
next
case (Fun f ts)
hence "t ∈ set ts ⟹ ?id t" for t by auto
hence IH: "map2 (λti i. weight_fun.weight (w_R (Suc 0)) w0 sc ti * sc (f, length ts) i) ts
[0..<length ts] =
map2 (λti i. weight ti * sc (f, length ts) i) ts [0..<length ts]"
by (intro nth_equalityI, auto)
have id: "w_R (Suc 0) (f, length ts) = w (f, length ts)"
using Fun(2) by (cases f; cases ts, auto)
show ?case by (auto simp: id weight_fun.weight.simps Let_def IH)
qed
} note weight_switch = this
from funas_encode_poly_q[of y3]
have o_q: "(o_sym,0) ∉ funas_term (encode_poly y3 q)" by (auto simp: F_def)
have "weight rhs_R = 3 + 3 * w0 + weight (encode_poly y3 q)"
unfolding rhs_R_def by (simp add: scf_list_def)
also have "… = w_rhs" unfolding weight_switch[OF o_q, symmetric]
unfolding w_rhs_def rhs_R_def by (simp add: weight_fun.weight.simps)
also have "… < w0 + w_rhs" using w0 by auto
also have "… ≤ weight lhs_R" unfolding lhs_R_def
by (simp add: scf_list_def)
finally have weight: "weight rhs_R < weight lhs_R" .
from α(2) insertion_pos[OF pq(1)] insertion_pos[OF pq(2)]
have sol: "nat (insertion α q) ≤ nat (insertion α p)" by auto
have vars: "vars_term_ms (SCF rhs_R) ⊆# vars_term_ms (SCF lhs_R)"
proof (intro mset_subset_eqI)
fix x
show "count (vars_term_ms (SCF rhs_R)) x ≤ count (vars_term_ms (SCF lhs_R)) x"
unfolding rhs_R_def lhs_R_def using y_vars sol
by (simp add: scf_list_def count_vars_term_encode_poly[OF pq(1)] count_vars_term_encode_poly[OF pq(2)])
qed
from weight vars show "fst (kbo lhs_R rhs_R)"
unfolding kbo.simps[of lhs_R rhs_R] by auto
qed
qed
end
text ‹Theorem 4.7 outside solvable-context›
context poly_input
begin
theorem solvable_imp_kbo_with_sc_termination:
assumes "positive_poly_problem p q"
shows "kbo_with_sc_termination R"
by (rule solvable_poly_problem.kbo_with_sc_termination, unfold_locales, fact)
text ‹Combining 4.6 and 4.7›
corollary solvable_iff_kbo_with_sc_termination:
"positive_poly_problem p q ⟷ kbo_with_sc_termination R"
using solvable_imp_kbo_with_sc_termination kbo_sc_termination_R_imp_solution by blast
end
end