Theory ScottVariantHOMLpossInS4
subsection‹ScottVariantHOMLpossInS4.thy›
text‹›
theory ScottVariantHOMLpossInS4 imports HOMLinHOLonlyS4
begin
consts PositiveProperty::"(e⇒σ)⇒σ" ("P")
axiomatization where A1: "⌊❙¬P φ ❙↔ P ❙~φ⌋"
axiomatization where A2: "⌊P φ ❙∧ ❙□(❙∀y. φ y ❙⊃ ψ y) ❙⊃ P ψ⌋"
theorem T1: "⌊P φ ❙⊃ ❙◇(❙∃x. φ x)⌋" using A1 A2 by blast
definition God ("G") where "G x ≡ ❙∀φ. P φ ❙⊃ φ x"
axiomatization where A3: "⌊P G⌋"
theorem Coro: "⌊❙◇(❙∃x. G x)⌋" using A3 T1 by blast
axiomatization where A4: "⌊P φ ❙⊃ ❙□ P φ⌋"
definition Ess ("_Ess._") where "φ Ess. x ≡ φ x ❙∧ (❙∀ψ. ψ x ❙⊃ ❙□(❙∀y::e. φ y ❙⊃ ψ y))"
theorem T2: "⌊G x ❙⊃ G Ess. x⌋" using A1 A4 Ess_def God_def by fastforce
definition NecExist ("NE") where "NE x ≡ ❙∀φ. φ Ess. x ❙⊃ ❙□(❙∃x. φ x)"
axiomatization where A5: "⌊P NE⌋"
lemma True nitpick[satisfy,card=1,eval="⌊P (λx.❙⊥)⌋"] oops
theorem T3: "⌊❙□(❙∃x. G x)⌋" nitpick[card e=1, card i=2] oops
lemma MC: "⌊φ ❙⊃ ❙□φ⌋" nitpick[card e=1, card i=2] oops
end