Theory GoedelVariantHOML3possInS4
subsection‹GoedelVariantHOML3possInS4.thy›
text‹The same as GoedelVariantHOML3poss, but now in logic S4, where the proof of theorem Th3 fails.›
theory GoedelVariantHOML3possInS4 imports HOMLinHOLonlyS4
begin
consts PositiveProperty::"(e⇒σ)⇒σ" ("P")
axiomatization where Ax1: "⌊P φ ❙∧ P ψ ❙⊃ P (φ ❙. ψ)⌋"
abbreviation "PosProps Φ ≡ ❙∀φ. Φ φ ❙⊃ P φ"
abbreviation "ConjOfPropsFrom φ Φ ≡ ❙□(❙∀z. φ z ❙↔ (❙∀ψ. Φ ψ ❙⊃ ψ z))"
axiomatization where Ax1Gen: "⌊(PosProps Φ ❙∧ ConjOfPropsFrom φ Φ) ❙⊃ P φ⌋"
axiomatization where Ax2a: "⌊P φ ❙∨⇧e P ❙~φ⌋"
definition God ("G") where "G x ≡ ❙∀φ. P φ ❙⊃ φ x"
abbreviation PropertyInclusion ("_❙⊃⇩N_") where "φ ❙⊃⇩N ψ ≡ ❙□(φ ❙≠ (λx. ❙⊥) ❙∧ (❙∀y. φ y ❙⊃ ψ y))"
definition Essence ("_Ess._") where "φ Ess. x ≡ ❙∀ψ. ψ x ❙⊃ (φ ❙⊃⇩N ψ)"
axiomatization where Ax2b: "⌊P φ ❙⊃ ❙□ P φ⌋"
lemma Ax2b': "⌊❙¬P φ ❙⊃ ❙□(❙¬P φ)⌋" using Ax2a Ax2b by blast
theorem Th1: "⌊G x ❙⊃ G Ess. x⌋" using Ax2a Ax2b Essence_def God_def by (smt (verit))
definition NecExist ("E") where "E x ≡ ❙∀φ. (φ Ess. x) ❙⊃ ❙□(❙∃x. φ x)"
axiomatization where Ax3: "⌊P E⌋"
axiomatization where Ax4: "⌊P φ ❙∧ (φ ❙⊃⇩N ψ) ❙⊃ P ψ⌋"
theorem Th2: "⌊G x ❙⊃ ❙□(❙∃y. G y)⌋" using Ax3 Th1 God_def NecExist_def by smt
theorem Th3: "⌊❙◇(❙∃x. G x) ❙⊃ ❙□(❙∃y. G y)⌋" oops
end