Theory GoedelVariantHOML3inS4

subsection‹GoedelVariantHOML3inS4.thy›
text‹The same as GoedelVariantHOML3, but now in logic S4, where the proof of theorem Th3 fails.›
theory GoedelVariantHOML3inS4 imports HOMLinHOLonlyS4 
begin 

consts PositiveProperty::"(eσ)σ" ("P") 

axiomatization where Ax1: "P φ  P ψ  P (φ . ψ)"

abbreviation "PosProps Φ  φ. Φ φ  P φ"
abbreviation "ConjOfPropsFrom φ Φ  (Ez. φ z  (ψ. Φ ψ  ψ z))"
axiomatization where Ax1Gen: "(PosProps Φ  ConjOfPropsFrom φ Φ)  P φ" 

axiomatization where Ax2a: "P φ e P ~φ"

definition God ("G") where "G x  φ. P φ  φ x"

abbreviation PropertyInclusion ("_N_") where "φ N ψ  (φ  (λx. )  (Ey. φ y  ψ y))"

definition Essence ("_Ess._") where "φ Ess. x  ψ. ψ x  (φ N ψ)"

axiomatization where Ax2b: "P φ   P φ"

lemma Ax2b': "¬P φ  (¬P φ)" using Ax2a Ax2b by blast

theorem Th1: "G x  G Ess. x" using Ax2a Ax2b Essence_def God_def by (smt (verit))

definition NecExist ("E") where "E x  φ. φ Ess. x  (Ex. φ x)"

axiomatization where Ax3: "P E"

theorem Th2: "G x  (Ey. G y)" using Ax3 Th1 God_def NecExist_def by smt

axiomatization where Ax4: "P φ  (φ N ψ)  P ψ"

theorem Th3: "(Ex. G x)  (Ey. G y)" ―‹nitpick sledgehammer› oops ―‹Open problem›

end