Theory GoedelVariantHOML3AndersonQuant

subsection‹GoedelVariantHOML3AndersonQuan.thy›
text‹The same as GoedelVariantHOML3, but now for a mixed use of actualist and possibilist quantifiers 
for entities; cf. Footnote 20 in \cite{J75}.›
theory GoedelVariantHOML3AndersonQuant imports HOMLinHOL ModalFilter
begin 

consts PositiveProperty::"(eσ)σ" ("P") 

axiomatization where Ax1: "P φ  P ψ  P (φ . ψ)"

axiomatization where Ax2a: "P φ e P ~φ" 

definition God ("G") where "G x  φ. P φ  φ x"

abbreviation PropertyInclusion ("_N_") where "φ N ψ  (φ  (λx. )  (y::e. φ y  ψ y))" 

definition Essence ("_Ess._") where "φ Ess. x  ψ. ψ x  (φ N ψ)"

axiomatization where Ax2b: "P φ   P φ"

lemma Ax2b': "¬P φ  (¬P φ)" using Ax2a Ax2b by blast

theorem Th1: "G x  G Ess. x" using Ax2a Ax2b Essence_def God_def by (smt (verit))

definition NecExist ("E") where "E x  φ. φ Ess. x  (Ex. φ x)"

axiomatization where Ax3: "P E"

theorem Th2: "G x  (Ey. G y)" using Ax3 Th1 God_def NecExist_def by smt

theorem Th3: "(Ex. G x)  (Ey. G y)" 
  ―‹sledgehammer(Th2 Rsymm)› ―‹Proof found›
  proof -
    have 1: "(Ex. G x)  (Ey. G y)" using Th2 by blast
    have 2: "(Ex. G x)  (Ey. G y)" using 1 by blast
    have 3: "(Ex. G x)  (Ey. G y)" using 2 Rsymm by blast
    thus ?thesis by blast
  qed

axiomatization where Ax4: "P φ  (φ N ψ)  P ψ"

lemma True nitpick[satisfy,card=1,eval="⌊P (λx.)⌋"] oops ―‹Two models found of cardinality one›

abbreviation "PosProps Φ  φ. Φ φ  P φ"
abbreviation "ConjOfPropsFrom φ Φ  (Ez. φ z  (ψ. Φ ψ  ψ z))"
axiomatization where Ax1Gen: "(PosProps Φ  ConjOfPropsFrom φ Φ)  P φ" 

lemma L: "P G" using Ax1Gen God_def by (smt (verit))

theorem Th4: "(Ex. G x)" 
  ―‹sledgehammer[timeout=200](Ax2a L Ax1Gen)› oops ―‹sorry› ―‹Proof found›

axiomatization where Th4: "(Ex. G x)"

theorem Th5: "(Ex. G x)" using Th3 Th4 by blast

lemma MC: "φ  φ" 
  ―‹sledgehammer(Ax2a Ax2b Th5 God\_def Rsymm)› ―‹Proof found›
  proof - {fix w fix Q
    have 1: "x.(G x w  (Z. Z x  (z. G z  Z z)) w)" using Ax2a Ax2b God_def by smt
    have 2: "(x. G x w)((Q  (z. G z  Q)) w)" using 1 by force
    have 3: "(Q  Q) w" using 2 Th5 Rsymm by blast} 
   thus ?thesis by auto 
 qed

lemma PosProps: "P (λx.)  P(λx. x = x)" using Ax2a Ax4 L Th4 by smt
lemma NegProps: "¬P(λx.)  ¬P(λx. x  x)" using Ax2a Ax4 L Th4 by smt
lemma UniqueEss1: "φ Ess. x  ψ Ess. x  (y. φ y  ψ y)" oops ―‹Unclear, open question› 
lemma UniqueEss2: "φ Ess. x  ψ Ess. x  (φ  ψ)" oops ―‹Unclear, open question› 
lemma UniqueEss3: "φ Ess. x  (y. φ y  y  x)" using Essence_def MC by auto
lemma Monotheism: "G x  G y  x  y" using Ax2a God_def by smt
lemma Filter: "Filter P" using Ax1 Ax4 MC NegProps PosProps Rsymm Ax2a God_def Th5 by (smt (verit, ccfv_threshold))
lemma UltraFilter: "UFilter P" using Ax2a Filter by blast 
lemma True nitpick[satisfy,card=1,eval="⌊P (λx.)⌋"] oops ―‹One model found of cardinality one›

end