Theory GoedelVariantHOML2possInS4

subsection‹GoedelVariantHOML2possInS4.thy›
text‹The same as GoedelVariantHOML2poss, but now in logic S4, where the proof of theorem Th3 fails.›
theory GoedelVariantHOML2possInS4 imports HOMLinHOLonlyS4
begin 

consts PositiveProperty::"(eσ)σ" ("P") 

axiomatization where Ax1: "P φ  P ψ  P (φ . ψ)"

abbreviation "PosProps Φ  φ. Φ φ  P φ"

abbreviation "ConjOfPropsFrom φ Φ  (z. φ z  (ψ. Φ ψ  ψ z))"

axiomatization where Ax1Gen: "(PosProps Φ  ConjOfPropsFrom φ Φ)  P φ"

axiomatization where Ax2a: "P φ e P ~φ"

definition God ("G") where "G x  φ. P φ  φ x"

abbreviation PropertyInclusion ("_N_") where "φ N ψ  (y::e. φ y  ψ y)"

definition Essence ("_Ess._") where "φ Ess. x  φ x  (ψ. ψ x  (φ N ψ))"

axiomatization where Ax2b: "P φ   P φ"

lemma Ax2b': "¬P φ  (¬P φ)" using Ax2a Ax2b by blast

theorem Th1: "G x  G Ess. x" using Ax2a Ax2b Essence_def God_def by (smt (verit))

definition NecExist ("E") where "E x  φ. φ Ess. x  (x. φ x)"

axiomatization where Ax3: "P E"

axiomatization where Ax4: "P φ  (φ N ψ)  P ψ"

theorem Th2: "G x  (y. G y)" using Ax3 Th1 God_def NecExist_def by smt

theorem Th3: "(x. G x)  (y. G y)" ―‹nitpick sledgehammer› oops ―‹Open problem›

end