Theory GoedelVariantHOML2
subsection‹GoedelVariantHOML2.thy (Figure 7 of \cite{J75})›
text‹After an appropriate modification of the definition of essence in Gödel’s 1970 ontological proof,
the inconsistency revealed in Figure 6 is avoided, and the argument can be successfully verified in modal
logic S5 (indeed, as shown, only symmetry of the accessibility relation is actually needed). Actualist
quantifiers (avoiding existential import) are used for quantification over entities, otherwise possibilist quantifiers
are used.›
theory GoedelVariantHOML2 imports HOMLinHOL ModalFilter
begin
consts PositiveProperty::"(e⇒σ)⇒σ" ("P")
axiomatization where Ax1: "⌊P φ ❙∧ P ψ ❙⊃ P (φ ❙. ψ)⌋"
axiomatization where Ax2a: "⌊P φ ❙∨⇧e P ❙~φ⌋"
definition God ("G") where "G x ≡ ❙∀φ. P φ ❙⊃ φ x"
abbreviation PropertyInclusion ("_❙⊃⇩N_") where "φ ❙⊃⇩N ψ ≡ ❙□(❙∀⇧Ey. φ y ❙⊃ ψ y)"
definition Essence ("_Ess._") where "φ Ess. x ≡ φ x ❙∧ (❙∀ψ. ψ x ❙⊃ (φ ❙⊃⇩N ψ))"
axiomatization where Ax2b: "⌊P φ ❙⊃ ❙□ P φ⌋"
lemma Ax2b': "⌊❙¬P φ ❙⊃ ❙□(❙¬P φ)⌋" using Ax2a Ax2b by blast
theorem Th1: "⌊G x ❙⊃ G Ess. x⌋" using Ax2a Ax2b Essence_def God_def by (smt (verit))
definition NecExist ("E") where "E x ≡ ❙∀φ. φ Ess. x ❙⊃ ❙□(❙∃⇧Ex. φ x)"
axiomatization where Ax3: "⌊P E⌋"
theorem Th2: "⌊G x ❙⊃ ❙□(❙∃⇧Ey. G y)⌋" using Ax3 Th1 God_def NecExist_def by smt
theorem Th3: "⌊❙◇(❙∃⇧Ex. G x) ❙⊃ ❙□(❙∃⇧Ey. G y)⌋"
proof -
have 1: "⌊(❙∃⇧Ex. G x) ❙⊃ ❙□(❙∃⇧Ey. G y)⌋" using Th2 by blast
have 2: "⌊❙◇(❙∃⇧Ex. G x) ❙⊃ ❙◇❙□(❙∃⇧Ey. G y)⌋" using 1 by blast
have 3: "⌊❙◇(❙∃⇧Ex. G x) ❙⊃ ❙□(❙∃⇧Ey. G y)⌋" using 2 Rsymm by blast
thus ?thesis by blast
qed
axiomatization where Ax4: "⌊P φ ❙∧ (φ ❙⊃⇩N ψ) ❙⊃ P ψ⌋"
lemma True nitpick[satisfy,card=1,eval="⌊P (λx.❙⊥)⌋"] oops
abbreviation "PosProps Φ ≡ ❙∀φ. Φ φ ❙⊃ P φ"
abbreviation "ConjOfPropsFrom φ Φ ≡ ❙□(❙∀⇧Ez. φ z ❙↔ (❙∀ψ. Φ ψ ❙⊃ ψ z))"
axiomatization where Ax1Gen: "⌊(PosProps Φ ❙∧ ConjOfPropsFrom φ Φ) ❙⊃ P φ⌋"
lemma L: "⌊P G⌋" using Ax1Gen God_def by (smt (verit))
theorem Th4: "⌊❙◇(❙∃⇧Ex. G x)⌋" using Ax2a Ax4 L by blast
theorem Th5: "⌊❙□(❙∃⇧Ex. G x)⌋" using Th3 Th4 by blast
lemma MC: "⌊φ ❙⊃ ❙□φ⌋"
proof -
{fix w fix Q
have 1: "∀x.(G x w ⟶ (❙∀Z. Z x ❙⊃ ❙□(❙∀⇧Ez. G z ❙⊃ Z z)) w)" using Ax2a Ax2b God_def by smt
have 2: "(∃x. G x w)⟶((Q ❙⊃ ❙□(❙∀⇧Ez. G z ❙⊃ Q)) w)" using 1 by force
have 3: "(Q ❙⊃ ❙□Q) w" using 2 Th5 Rsymm by blast}
thus ?thesis by auto
qed
lemma PosProps: "⌊P (λx.❙⊤) ❙∧ P (λx. x ❙= x)⌋" using Ax2a Ax4 by blast
lemma NegProps: "⌊❙¬P(λx.❙⊥) ❙∧ ❙¬P(λx. x ❙≠ x)⌋" using Ax2a Ax4 by blast
lemma UniqueEss1: "⌊φ Ess. x ❙∧ ψ Ess. x ❙⊃ ❙□(❙∀⇧Ey. φ y ❙↔ ψ y)⌋" using Essence_def by smt
lemma UniqueEss2: "⌊φ Ess. x ❙∧ ψ Ess. x ❙⊃ ❙□(φ ❙≡ ψ)⌋" nitpick[card i=1] oops
lemma UniqueEss3: "⌊φ Ess. x ❙⊃ ❙□(❙∀⇧Ey. φ y ❙⊃ y ❙≡ x)⌋" using Essence_def MC by auto
lemma Monotheism: "⌊G x ❙∧ G y ❙⊃ x ❙≡ y⌋" using Ax2a God_def by smt
lemma Filter: "⌊Filter P⌋" using Ax1 Ax4 MC NegProps PosProps Rsymm by smt
lemma UltraFilter: "⌊UFilter P⌋" using Ax2a Filter by smt
lemma True nitpick[satisfy,card=1,eval="⌊P (λx.❙⊥)⌋"] oops
end