Theory GoedelVariantHOML1inS4
subsection‹GoedelVariantHOML1inS4.thy›
text‹The same as GoedelVariantHOML1, but now in logic S4.›
theory GoedelVariantHOML1inS4 imports HOMLinHOLonlyS4
begin
consts PositiveProperty::"(e⇒σ)⇒σ" ("P")
axiomatization where Ax1: "⌊P φ ❙∧ P ψ ❙⊃ P (φ ❙. ψ)⌋"
axiomatization where Ax2a: "⌊P φ ❙∨⇧e P ❙~φ⌋"
definition God ("G") where "G x ≡ ❙∀φ. P φ ❙⊃ φ x"
abbreviation PropertyInclusion ("_❙⊃⇩N_") where "φ ❙⊃⇩N ψ ≡ ❙□(❙∀⇧Ey. φ y ❙⊃ ψ y)"
definition Essence ("_Ess._") where "φ Ess. x ≡ ❙∀ψ. ψ x ❙⊃ (φ ❙⊃⇩N ψ)"
axiomatization where Ax2b: "⌊P φ ❙⊃ ❙□ P φ⌋"
lemma Ax2b': "⌊❙¬P φ ❙⊃ ❙□(❙¬P φ)⌋" using Ax2a Ax2b by blast
theorem Th1: "⌊G x ❙⊃ G Ess. x⌋" using Ax2a Ax2b Essence_def God_def by (smt (verit))
definition NecExist ("E") where "E x ≡ ❙∀φ. φ Ess. x ❙⊃ ❙□(❙∃⇧Ex. φ x)"
axiomatization where Ax3: "⌊P E⌋"
theorem Th2: "⌊G x ❙⊃ ❙□(❙∃⇧Ey. G y)⌋" using Ax3 Th1 God_def NecExist_def by smt
axiomatization where Ax4: "⌊P φ ❙∧ (φ ❙⊃⇩N ψ) ❙⊃ P ψ⌋"
theorem Th3: "⌊❙◇(❙∃⇧Ex. G x) ❙⊃ ❙□(❙∃⇧Ey. G y)⌋" using Ax3 Essence_def God_def NecExist_def Rrefl by fastforce
end