Theory GoedelVariantHOML1
section‹Gödel’s ontological argument -- 1970 manuscript›
subsection‹GoedelVariantHOML1.thy (Figure 6 of \cite{J75})›
text‹Gödel’s axioms and definitions, as presented in the 1970 manuscript, are inconsistent. Actualist
quantifiers (avoiding existential import) are used for quantification over entities, otherwise possibilist quantifiers
are used.›
theory GoedelVariantHOML1 imports HOMLinHOL
begin
consts PositiveProperty::"(e⇒σ)⇒σ" ("P")
axiomatization where Ax1: "⌊P φ ❙∧ P ψ ❙⊃ P (φ ❙. ψ)⌋"
axiomatization where Ax2a: "⌊P φ ❙∨⇧e P ❙~φ⌋"
definition God ("G") where "G x ≡ ❙∀φ. P φ ❙⊃ φ x"
abbreviation PropertyInclusion ("_❙⊃⇩N_") where "φ ❙⊃⇩N ψ ≡ ❙□(❙∀⇧Ey. φ y ❙⊃ ψ y)"
definition Essence ("_Ess._") where "φ Ess. x ≡ ❙∀ψ. ψ x ❙⊃ (φ ❙⊃⇩N ψ)"
axiomatization where Ax2b: "⌊P φ ❙⊃ ❙□ P φ⌋"
lemma Ax2b': "⌊❙¬P φ ❙⊃ ❙□(❙¬P φ)⌋" using Ax2a Ax2b by blast
theorem Th1: "⌊G x ❙⊃ G Ess. x⌋" using Ax2a Ax2b Essence_def God_def by (smt (verit))
definition NecExist ("E") where "E x ≡ ❙∀φ. φ Ess. x ❙⊃ ❙□(❙∃⇧Ex. φ x)"
axiomatization where Ax3: "⌊P E⌋"
theorem Th2: "⌊G x ❙⊃ ❙□(❙∃⇧Ey. G y)⌋" using Ax3 Th1 God_def NecExist_def by smt
theorem Th3: "⌊❙◇(❙∃⇧Ex. G x) ❙⊃ ❙□(❙∃⇧Ey. G y)⌋"
proof -
have 1: "⌊(❙∃⇧Ex. G x) ❙⊃ ❙□(❙∃⇧Ey. G y)⌋" using Th2 by blast
have 2: "⌊❙◇(❙∃⇧Ex. G x) ❙⊃ ❙◇❙□(❙∃⇧Ey. G y)⌋" using 1 by blast
have 3: "⌊❙◇(❙∃⇧Ex. G x) ❙⊃ ❙□(❙∃⇧Ey. G y)⌋" using 2 Rsymm by blast
thus ?thesis by blast
qed
axiomatization where Ax4: "⌊P φ ❙∧ (φ ❙⊃⇩N ψ) ❙⊃ P ψ⌋"
lemma True nitpick[satisfy,expect=unknown] oops
lemma EmptyEssL: "⌊(λy.❙⊥) Ess. x⌋" using Essence_def by auto
theorem Inconsistency: False
proof -
have 1: "⌊❙¬(P (λx.❙⊥))⌋" using Ax2a Ax4 by blast
have 2: "⌊P (λx.(λy.❙⊥) Ess. x ❙⊃ ❙□(❙∃⇧Ez. (λy.❙⊥)z))⌋" using Ax3 Ax4 NecExist_def by smt
have 3: "⌊P (λx.❙□(❙∃⇧Ez. (λx.❙⊥) z))⌋" using 2 EmptyEssL by simp
have 4: "⌊P (λx.❙□❙⊥)⌋" using 3 by auto
have 5: "⌊P (λx.❙⊥)⌋" using 4 Ax2a Ax4 by smt
have 6: "⌊❙⊥⌋" using 1 5 by blast
thus ?thesis by blast
qed
end