Theory SINVAR_ACLcommunicateWith_impl
theory SINVAR_ACLcommunicateWith_impl
imports SINVAR_ACLcommunicateWith "../TopoS_Interface_impl"
begin
code_identifier code_module SINVAR_ACLcommunicateWith_impl => (Scala) SINVAR_ACLcommunicateWith
subsubsection ‹List Implementation›
fun sinvar :: "'v list_graph ⇒ ('v ⇒ 'v list) ⇒ bool" where
"sinvar G nP = (∀ v ∈ set (nodesL G). ∀a ∈ (set (succ_tran G v)). a ∈ set (nP v))"
definition "NetModel_node_props (P::('v::vertex, 'v list) TopoS_Params) =
(λ i. (case (node_properties P) i of Some property ⇒ property | None ⇒ SINVAR_ACLcommunicateWith.default_node_properties))"
lemma[code_unfold]: "SecurityInvariant.node_props SINVAR_ACLcommunicateWith.default_node_properties P = NetModel_node_props P"
by(simp add: NetModel_node_props_def)
definition "ACLcommunicateWith_offending_list = Generic_offending_list sinvar"
definition "ACLcommunicateWith_eval G P = (wf_list_graph G ∧
sinvar G (SecurityInvariant.node_props SINVAR_ACLcommunicateWith.default_node_properties P))"
lemma sinvar_correct: "wf_list_graph G ⟹ SINVAR_ACLcommunicateWith.sinvar (list_graph_to_graph G) nP = sinvar G nP"
by (metis SINVAR_ACLcommunicateWith.sinvar.simps SINVAR_ACLcommunicateWith_impl.sinvar.simps graph.select_convs(1) list_graph_to_graph_def succ_tran_correct)
interpretation SINVAR_ACLcommunicateWith_impl:TopoS_List_Impl
where default_node_properties=SINVAR_ACLcommunicateWith.default_node_properties
and sinvar_spec=SINVAR_ACLcommunicateWith.sinvar
and sinvar_impl=sinvar
and receiver_violation=SINVAR_ACLcommunicateWith.receiver_violation
and offending_flows_impl=ACLcommunicateWith_offending_list
and node_props_impl=NetModel_node_props
and eval_impl=ACLcommunicateWith_eval
apply(unfold TopoS_List_Impl_def)
apply(rule conjI)
apply(rule conjI)
apply(simp add: TopoS_ACLcommunicateWith; fail)
apply(intro allI impI)
apply(fact sinvar_correct)
apply(rule conjI)
apply(unfold ACLcommunicateWith_offending_list_def)
apply(intro allI impI)
apply(rule Generic_offending_list_correct)
apply(assumption)
apply(simp only: sinvar_correct; fail)
apply(rule conjI)
apply(intro allI)
apply(simp only: NetModel_node_props_def)
apply(metis ACLcommunicateWith.node_props.simps ACLcommunicateWith.node_props_eq_node_props_formaldef)
apply(simp only: ACLcommunicateWith_eval_def)
apply(intro allI impI)
apply(rule TopoS_eval_impl_proofrule[OF TopoS_ACLcommunicateWith])
apply(simp only: sinvar_correct; fail)
done
subsubsection ‹packing›
definition SINVAR_LIB_ACLcommunicateWith:: "('v::vertex, 'v list) TopoS_packed" where
"SINVAR_LIB_ACLcommunicateWith ≡
⦇ nm_name = ''ACLcommunicateWith'',
nm_receiver_violation = SINVAR_ACLcommunicateWith.receiver_violation,
nm_default = SINVAR_ACLcommunicateWith.default_node_properties,
nm_sinvar = sinvar,
nm_offending_flows = ACLcommunicateWith_offending_list,
nm_node_props = NetModel_node_props,
nm_eval = ACLcommunicateWith_eval
⦈"
interpretation SINVAR_LIB_ACLcommunicateWith_interpretation: TopoS_modelLibrary SINVAR_LIB_ACLcommunicateWith
SINVAR_ACLcommunicateWith.sinvar
apply(unfold TopoS_modelLibrary_def SINVAR_LIB_ACLcommunicateWith_def)
apply(rule conjI)
apply(simp)
apply(simp)
by(unfold_locales)
text ‹Examples›
context begin
text‹
1 can access 2 and 3
2 can access 3
›
private lemma "sinvar
⦇ nodesL = [1::nat, 2, 3],
edgesL = [(1,2), (2,3)]⦈
(((λv. SINVAR_ACLcommunicateWith.default_node_properties)
(1 := [2,3]))
(2 := [3]))" by eval
text‹
Everyone can access everyone, except for 1: 1 must not access 4.
The offending flows may be any edge on the path from 1 to 4
›
lemma "ACLcommunicateWith_offending_list
⦇ nodesL = [1::nat, 2, 3, 4],
edgesL = [(1,2), (2,3), (3, 4)]⦈
(((((λv. SINVAR_ACLcommunicateWith.default_node_properties)
(1 := [1,2,3]))
(2 := [1,2,3,4]))
(3 := [1,2,3,4]))
(4 := [1,2,3,4])) =
[[(1, 2)], [(2, 3)], [(3, 4)]]" by eval
text‹
If we add the additional edge from 1 to 3, then the offending flows are either
▪ [(3.4)], because this disconnects 4 from the graph completely
▪ any pair of edges which disconnects 1 from 3
›
lemma "ACLcommunicateWith_offending_list
⦇ nodesL = [1::nat, 2, 3, 4],
edgesL = [(1,2), (1,3), (2,3), (3, 4)]⦈
(((((λv. SINVAR_ACLcommunicateWith.default_node_properties)
(1 := [1,2,3]))
(2 := [1,2,3,4]))
(3 := [1,2,3,4]))
(4 := [1,2,3,4])) =
[[(1, 2), (1, 3)], [(1, 3), (2, 3)], [(3, 4)]]" by eval
end
hide_const (open) NetModel_node_props
hide_const (open) sinvar
end