Theory Goodstein_Sequence
section ‹Termination of the Goodstein Sequence›
theory Goodstein_Sequence
imports Multiset_More Syntactic_Ordinal
begin
text ‹
The ‹goodstein› function returns the successive values of the Goodstein
sequence. It is defined in terms of ‹encode› and ‹decode› functions,
which convert between natural numbers and ordinals. The development culminates
with a proof of Goodstein's theorem.
›
subsection ‹Lemmas about Division›
lemma div_mult_le: "m div n * n ≤ m" for m n :: nat
by (fact div_times_less_eq_dividend)
lemma power_div_same_base:
"b ^ y ≠ 0 ⟹ x ≥ y ⟹ b ^ x div b ^ y = b ^ (x - y)" for b :: "'a::semidom_divide"
by (metis add_diff_inverse leD nonzero_mult_div_cancel_left power_add)
subsection ‹Hereditary and Nonhereditary Base-‹n› Systems›
context
fixes base :: nat
assumes base_ge_2: "base ≥ 2"
begin
inductive well_base :: "'a multiset ⇒ bool" where
"(∀n. count M n < base) ⟹ well_base M"
lemma well_base_filter: "well_base M ⟹ well_base {#m ∈# M. p m#}"
by (auto simp: well_base.simps)
lemma well_base_image_inj: "well_base M ⟹ inj_on f (set_mset M) ⟹ well_base (image_mset f M)"
unfolding well_base.simps by (metis count_image_mset_le_count_inj_on le_less_trans)
lemma well_base_bound:
assumes
"well_base M" and
"∀m ∈# M. m < n"
shows "(∑m ∈# M. base ^ m) < base ^ n"
using assms
proof (induct n arbitrary: M)
case (Suc n)
note ih = this(1) and well_M = this(2) and in_M_lt_Sn = this(3)
let ?Meq = "{#m ∈# M. m = n#}"
let ?Mne = "{#m ∈# M. m ≠ n#}"
let ?K = "{#base ^ m. m ∈# M#}"
have M: "M = ?Meq + ?Mne"
by (simp)
have well_Mne: "well_base ?Mne"
by (rule well_base_filter[OF well_M])
have in_Mne_lt_n: "∀m ∈# ?Mne. m < n"
using in_M_lt_Sn by auto
have "sum_mset (image_mset ((^) base) ?Meq) ≤ (base - 1) * base ^ n"
unfolding filter_eq_replicate_mset using base_ge_2
by simp (metis Suc_pred diff_self_eq_0 le_SucE less_imp_le less_le_trans less_numeral_extra(3)
pos2 well_M well_base.cases zero_less_diff)
moreover have "base * base ^ n = base ^ n + (base - Suc 0) * base ^ n"
using base_ge_2 mult_eq_if by auto
ultimately show ?case
using ih[OF well_Mne in_Mne_lt_n] by (subst M) (simp del: union_filter_mset_complement)
qed simp
inductive well_base⇩h :: "hmultiset ⇒ bool" where
"(∀N ∈# hmsetmset M. well_base⇩h N) ⟹ well_base (hmsetmset M) ⟹ well_base⇩h M"
lemma well_base⇩h_mono_hmset: "well_base⇩h M ⟹ hmsetmset N ⊆# hmsetmset M ⟹ well_base⇩h N"
by (induct rule: well_base⇩h.induct, rule well_base⇩h.intros, blast)
(meson leD leI order_trans subseteq_mset_def well_base.simps)
lemma well_base⇩h_imp_well_base: "well_base⇩h M ⟹ well_base (hmsetmset M)"
by (erule well_base⇩h.cases) simp
subsection ‹Encoding of Natural Numbers into Ordinals›
function encode :: "nat ⇒ nat ⇒ hmultiset" where
"encode e n =
(if n = 0 then 0 else of_nat (n mod base) * ω^(encode 0 e) + encode (e + 1) (n div base))"
by pat_completeness auto
termination
using base_ge_2
proof (relation "measure (λ(e, n). n * (base ^ e + 1))"; simp)
fix e n :: nat
assume n_ge_0: "n > 0"
have "e + e ≤ 2 ^ e"
by (induct e; simp) (metis add_diff_cancel_left' add_leD1 diff_is_0_eq' double_not_eq_Suc_double
le_antisym mult_2 not_less_eq_eq power_eq_0_iff zero_neq_numeral)
also have "… ≤ base ^ e"
using base_ge_2 by (simp add: power_mono)
also have "… ≤ n * base ^ e"
using n_ge_0 by (simp add: Suc_leI)
also have "… < n + n * base ^ e"
using n_ge_0 by simp
finally show "e + e < n + n * base ^ e"
by assumption
have "n div base * (base * base ^ e) ≤ n * base ^ e"
using base_ge_2 by (auto intro: div_mult_le)
moreover have "n div base < n"
using n_ge_0 base_ge_2 by simp
ultimately show "n div base + n div base * (base * base ^ e) < n + n * base ^ e"
by linarith
qed
declare encode.simps[simp del]
lemma encode_0[simp]: "encode e 0 = 0"
by (subst encode.simps) simp
lemma encode_Suc:
"encode e (Suc n) = of_nat (Suc n mod base) * ω^(encode 0 e) + encode (e + 1) (Suc n div base)"
by (subst encode.simps) simp
lemma encode_0_iff: "encode e n = 0 ⟷ n = 0"
proof (induct n arbitrary: e rule: less_induct)
case (less n)
note ih = this
show ?case
proof (cases n)
case 0
thus ?thesis
by simp
next
case n: (Suc m)
show ?thesis
proof (cases "n mod base = 0")
case True
hence "n div base ≠ 0"
using div_eq_0_iff n by fastforce
thus ?thesis
using ih[of "Suc m div base"] n
by (simp add: encode_Suc) (metis One_nat_def base_ge_2 div_eq_dividend_iff div_le_dividend
leD lessI nat_neq_iff numeral_2_eq_2)
next
case False
thus ?thesis
using n plus_hmultiset_def by (simp add: encode_Suc[unfolded of_nat_times_ω_exp])
qed
qed
qed
lemma encode_Suc_exp: "encode (Suc e) n = encode e (base * n)"
using base_ge_2
by (subst (1 2) encode.simps, subst (4) encode.simps, simp add: zero_hmultiset_def[symmetric])
lemma encode_exp_0: "encode e n = encode 0 (base ^ e * n)"
by (induct e arbitrary: n) (simp_all add: encode_Suc_exp mult.assoc mult.commute)
lemma mem_hmsetmset_encodeD: "M ∈# hmsetmset (encode e n) ⟹ ∃e' ≥ e. M = encode 0 e'"
proof (induct e n rule: encode.induct)
case (1 e n)
note ih = this(1-2) and M_in = this(3)
show ?case
proof (cases n)
case 0
thus ?thesis
using M_in by simp
next
case n: (Suc m)
{
assume "M ∈# replicate_mset (n mod base) (encode 0 e)"
hence ?thesis
by (meson in_replicate_mset order_refl)
}
moreover
{
assume "M ∈# hmsetmset (encode (e + 1) (n div base))"
hence ?thesis
using ih(2) le_add1 n order_trans by blast
}
ultimately show ?thesis
using M_in[unfolded n encode_Suc[unfolded of_nat_times_ω_exp], folded n]
unfolding hmsetmset_plus by auto
qed
qed
lemma less_imp_encode_less: "n < p ⟹ encode e n < encode e p"
proof (induct e n arbitrary: p rule: encode.induct)
case (1 e n)
note ih = this(1-2) and n_lt_p = this(3)
show ?case
proof (cases "n = 0")
case True
thus ?thesis
using n_lt_p base_ge_2 encode_0_iff[of e p] le_less by fastforce
next
case n_nz: False
let ?Ma = "replicate_mset (n mod base) (encode 0 e)"
let ?Na = "replicate_mset (p mod base) (encode 0 e)"
let ?Pa = "replicate_mset (n mod base - p mod base) (encode 0 e)"
have "HMSet ?Ma + encode (Suc e) (n div base) < HMSet ?Na + encode (Suc e) (p div base)"
proof (cases "n mod base < p mod base")
case mod_lt: True
show ?thesis
by (rule add_less_le_mono, simp add: mod_lt,
metis ih(2)[of "p div base", OF n_nz] Suc_eq_plus1 div_le_mono le_less n_lt_p)
next
case mod_ge: False
hence div_lt: "n div base < p div base"
by (metis add_le_cancel_left div_le_mono div_mult_mod_eq le_neq_implies_less less_imp_le
n_lt_p nat_neq_iff)
let ?M = "hmsetmset (encode (Suc e) (n div base))"
let ?N = "hmsetmset (encode (Suc e) (p div base))"
have "?M < ?N"
by (auto intro!: ih(2)[folded Suc_eq_plus1] n_nz div_lt)
then obtain X Y where
X_nemp: "X ≠ {#}" and
X_sub: "X ⊆# ?N" and
M: "?M = ?N - X + Y" and
ex_gt: "∀y. y ∈# Y ⟶ (∃x. x ∈# X ∧ x > y)"
using less_multiset⇩D⇩M by metis
{
fix x
assume x_in_X: "x ∈# X"
hence x_in_N: "x ∈# ?N"
using X_sub by blast
then obtain e' where
e'_gt: "e' > e" and
x: "x = encode 0 e'"
by (auto simp: Suc_le_eq dest: mem_hmsetmset_encodeD)
have "x > encode 0 e"
unfolding x using ih(1)[OF n_nz] e'_gt by (blast dest: Suc_lessD)
}
hence ex_gt_e: "∃x ∈# X. x > encode 0 e"
using X_nemp by auto
have X_sub': "X ⊆# ?Na + ?N"
using X_sub by (simp add: subset_mset.add_increasing)
have mam_eq: "?Ma + ?M = ?Na + ?N - X + (Y + ?Pa)"
proof -
from mod_ge have "?Ma = ?Na + ?Pa"
by (simp add: replicate_mset_plus [symmetric])
moreover have "?Na + ?N - X = ?Na + (?N - X)"
by (meson X_sub multiset_diff_union_assoc)
ultimately show ?thesis
by (simp add: M)
qed
have max_X: "⋀k. k ∈# Y + ?Pa ⟹ ∃a. a ∈# X ∧ k < a"
using ex_gt mod_ge ex_gt_e by (metis in_replicate_mset union_iff)
show ?thesis
by (subst (4 8) hmultiset.collapse[symmetric],
unfold HMSet_plus[symmetric] HMSet_less less_multiset⇩D⇩M,
rule exI[of _ X], rule exI[of _ "Y + ?Pa"],
intro conjI impI allI X_nemp X_sub' mam_eq, elim max_X)
qed
thus ?thesis
using n_nz n_lt_p by (subst (1 2) encode.simps[unfolded of_nat_times_ω_exp]) auto
qed
qed
inductive aligned⇩e :: "nat ⇒ hmultiset ⇒ bool" where
"(∀m ∈# hmsetmset M. m ≥ encode 0 e) ⟹ aligned⇩e e M"
lemma aligned⇩e_encode: "aligned⇩e e (encode e M)"
by (subst encode_exp_0, rule aligned⇩e.intros,
metis encode_exp_0 leD leI lessI less_imp_encode_less lift_Suc_mono_less_iff
mem_hmsetmset_encodeD)
lemma well_base⇩h_encode: "well_base⇩h (encode e n)"
proof (induct e n rule: encode.induct)
case (1 e n)
note ih = this
have well2: "∀M ∈# hmsetmset (encode (Suc e) (n div base)). well_base⇩h M"
using ih(2) well_base⇩h.cases by (metis Suc_eq_plus1 Zero_not_Suc count_empty div_0
encode_0_iff hmsetmset_empty_iff in_countE)
have cnt1: "count (hmsetmset (encode (Suc e) (n div base))) (encode 0 e) = 0"
using aligned⇩e_encode[unfolded aligned⇩e.simps]
less_imp_encode_less[of n "Suc n" for n, simplified]
by (meson count_inI leD)
show ?case
proof (rule well_base⇩h.intros)
show "∀M ∈# hmsetmset (encode e n). well_base⇩h M"
by (subst encode.simps[unfolded of_nat_times_ω_exp],
simp add: zero_hmultiset_def hmsetmset_plus, use ih(1) well2 in blast)
next
show "well_base (hmsetmset (encode e n))"
using cnt1 base_ge_2
by (subst encode.simps[unfolded of_nat_times_ω_exp],
simp add: well_base.simps zero_hmultiset_def hmsetmset_plus,
metis ih(2) well_base⇩h.simps Suc_eq_plus1 less_numeral_extra(3) well_base.simps)
qed
qed
subsection ‹Decoding of Natural Numbers from Ordinals›
primrec decode :: "nat ⇒ hmultiset ⇒ nat" where
"decode e (HMSet M) = (∑m ∈# M. base ^ decode 0 m) div base ^ e"
lemma decode_unfold: "decode e M = (∑m ∈# hmsetmset M. base ^ decode 0 m) div base ^ e"
by (cases M) simp
lemma decode_0[simp]: "decode e 0 = 0"
unfolding zero_hmultiset_def by simp
inductive aligned⇩d :: "nat ⇒ hmultiset ⇒ bool" where
"(∀m ∈# hmsetmset M. decode 0 m ≥ e) ⟹ aligned⇩d e M"
lemma aligned⇩d_0[simp]: "aligned⇩d 0 M"
by (rule aligned⇩d.intros) simp
lemma aligned⇩d_mono_exp_Suc: "aligned⇩d (Suc e) M ⟹ aligned⇩d e M"
by (auto simp: aligned⇩d.simps)
lemma aligned⇩d_mono_hmset:
assumes "aligned⇩d e M" and "hmsetmset M' ⊆# hmsetmset M"
shows "aligned⇩d e M'"
using assms by (auto simp: aligned⇩d.simps)
lemma decode_exp_shift_Suc:
assumes align⇩d: "aligned⇩d (Suc e) M"
shows "decode e M = base * decode (Suc e) M"
proof (subst (1 2) decode_unfold, subst (1 2) sum_mset_distrib_div_if_dvd)
note align' = align⇩d[unfolded aligned⇩d.simps, simplified, unfolded Suc_le_eq]
show "∀m ∈# hmsetmset M. base ^ Suc e dvd base ^ decode 0 m"
using align' Suc_leI le_imp_power_dvd by blast
show "∀m ∈# hmsetmset M. base ^ e dvd base ^ decode 0 m"
using align' by (simp add: le_imp_power_dvd le_less)
have base_e_nz: "base ^ e ≠ 0"
using base_ge_2 by simp
have mult_base:
"base ^ decode 0 m div base ^ e = base * (base ^ decode 0 m div (base * base ^ e))"
if m_in: "m ∈# hmsetmset M" for m
using m_in align'
by (subst power_div_same_base[OF base_e_nz], force,
metis Suc_diff_Suc Suc_leI mult_is_0 power_Suc power_div_same_base power_not_zero)
show "(∑m∈#hmsetmset M. base ^ decode 0 m div base ^ e) =
base * (∑m∈#hmsetmset M. base ^ decode 0 m div base ^ Suc e)"
by (auto simp: sum_mset_distrib_left intro!: arg_cong[of _ _ sum_mset] image_mset_cong
elim!: mult_base)
qed
lemma decode_exp_shift:
assumes "aligned⇩d e M"
shows "decode 0 M = base ^ e * decode e M"
using assms by (induct e) (auto simp: decode_exp_shift_Suc dest: aligned⇩d_mono_exp_Suc)
lemma decode_plus:
assumes align⇩d_M: "aligned⇩d e M"
shows "decode e (M + N) = decode e M + decode e N"
using align⇩d_M[unfolded aligned⇩d.simps, simplified]
by (subst (1 2 3) decode_unfold) (auto simp: hmsetmset_plus
intro!: le_imp_power_dvd div_plus_div_distrib_dvd_left[OF sum_mset_dvd])
lemma less_imp_decode_less:
assumes
"well_base⇩h M" and
"aligned⇩d e M" and
"aligned⇩d e N" and
"M < N"
shows "decode e M < decode e N"
using assms
proof (induct M arbitrary: N e rule: less_induct)
case (less M)
note ih = this(1) and well⇩h_M = this(2) and align⇩d_M = this(3) and align⇩d_N = this(4) and
M_lt_N = this(5)
obtain K Ma Na where
M: "M = K + Ma" and
N: "N = K + Na" and
hds: "head_ω Ma < head_ω Na"
using hmset_pair_decompose_less[OF M_lt_N] by blast
obtain H where
H: "head_ω Na = ω^H"
using hds head_ω_def by fastforce
have H_in: "H ∈# hmsetmset Na"
by (metis (no_types) H Max_in add_mset_eq_single add_mset_not_empty finite_set_mset head_ω_def
hmsetmset_empty_iff hmultiset.simps(1) set_mset_eq_empty_iff zero_hmultiset_def)
have well⇩h_Ma: "well_base⇩h Ma"
by (rule well_base⇩h_mono_hmset[OF well⇩h_M]) (simp add: M hmsetmset_plus)
have align⇩d_K: "aligned⇩d e K"
using M align⇩d_M aligned⇩d_mono_hmset hmsetmset_plus by auto
have align⇩d_Ma: "aligned⇩d e Ma"
using M align⇩d_M aligned⇩d_mono_hmset hmsetmset_plus by auto
have align⇩d_Na: "aligned⇩d e Na"
using N align⇩d_N aligned⇩d_mono_hmset hmsetmset_plus by auto
have "inj_on (decode 0) (set_mset (hmsetmset Ma))"
unfolding inj_on_def
proof clarify
fix x y
assume
x_in: "x ∈# hmsetmset Ma" and
y_in: "y ∈# hmsetmset Ma" and
dec_eq: "decode 0 x = decode 0 y"
{
fix x y
assume
x_in: "x ∈# hmsetmset Ma" and
y_in: "y ∈# hmsetmset Ma" and
x_lt_y: "x < y"
have x_lt_M: "x < M"
unfolding M using mem_hmsetmset_imp_less[OF x_in] by (simp add: trans_less_add2_hmset)
have well⇩h_x: "well_base⇩h x"
using well⇩h_Ma well_base⇩h.simps x_in by blast
have "decode 0 x < decode 0 y"
by (rule ih[OF x_lt_M well⇩h_x aligned⇩d_0 aligned⇩d_0 x_lt_y])
}
thus "x = y"
using x_in y_in dec_eq by (metis leI less_irrefl_nat order.not_eq_order_implies_strict)
qed
hence well_dec_Ma: "well_base (image_mset (decode 0) (hmsetmset Ma))"
by (rule well_base_image_inj[OF well_base⇩h_imp_well_base[OF well⇩h_Ma]])
have H_bound: "∀m ∈# hmsetmset Ma. decode 0 m < decode 0 H"
proof
fix m
assume m_in: "m ∈# hmsetmset Ma"
have "∀m ∈# hmsetmset (head_ω Ma). m < H"
using hds[unfolded H] using head_ω_def by auto
hence m_lt_H: "m < H"
using m_in
by (metis Max_less_iff empty_iff finite_set_mset head_ω_def hmultiset.sel insert_iff
set_mset_add_mset_insert)
have m_lt_M: "m < M"
using mem_hmsetmset_imp_less[OF m_in] by (simp add: M trans_less_add2_hmset)
have well⇩h_m: "well_base⇩h m"
using m_in well⇩h_Ma well_base⇩h.cases by blast
show "decode 0 m < decode 0 H"
by (rule ih[OF m_lt_M well⇩h_m aligned⇩d_0 aligned⇩d_0 m_lt_H])
qed
have "decode 0 Ma < base ^ decode 0 H"
using well_base_bound[OF well_dec_Ma, simplified, OF H_bound] by (subst decode_unfold) simp
also have "… ≤ decode 0 Na"
by (subst (2) decode_unfold, simp, rule sum_image_mset_mono_mem[OF H_in])
finally have "decode e Ma < decode e Na"
using decode_exp_shift[OF align⇩d_Ma] decode_exp_shift[OF align⇩d_Na] by simp
thus "decode e M < decode e N"
unfolding M N by (simp add: decode_plus[OF align⇩d_K])
qed
lemma inj_decode: "inj_on (decode e) {M. well_base⇩h M ∧ aligned⇩d e M}"
unfolding inj_on_def Ball_def mem_Collect_eq
by (metis less_imp_decode_less less_irrefl_nat neqE)
lemma decode_0_iff: "well_base⇩h M ⟹ aligned⇩d e M ⟹ decode e M = 0 ⟷ M = 0"
by (metis aligned⇩d_0 decode_0 decode_exp_shift encode_0 less_imp_decode_less mult_0_right neqE
not_less_zero well_base⇩h_encode)
lemma decode_encode: "decode e (encode e n) = n"
proof (induct e n rule: encode.induct)
case (1 e n)
note ih = this
show ?case
proof (cases "n = 0")
case n_nz: False
have align⇩d1: "aligned⇩d e (of_nat (n mod base) * ω^(encode 0 e))"
unfolding of_nat_times_ω_exp using n_nz by (auto simp: ih(1) aligned⇩d.simps)
have align⇩d2: "aligned⇩d (Suc e) (encode (Suc e) (n div base))"
by (safe intro!: aligned⇩d.intros, subst ih(1)[OF n_nz, symmetric],
auto dest: mem_hmsetmset_encodeD intro!: Suc_le_eq[THEN iffD2]
less_imp_decode_less[OF well_base⇩h_encode aligned⇩d_0 aligned⇩d_0] less_imp_encode_less)
show ?thesis
using ih base_ge_2
by (subst encode.simps[unfolded of_nat_times_ω_exp])
(simp add: decode_plus[OF align⇩d1[unfolded of_nat_times_ω_exp]]
decode_exp_shift_Suc[OF align⇩d2])
qed simp
qed
lemma encode_decode_exp_0: "well_base⇩h M ⟹ encode 0 (decode 0 M) = M"
by (auto intro: inj_onD[OF inj_decode] decode_encode well_base⇩h_encode)
end
lemma well_base⇩h_mono_base:
assumes
well⇩h: "well_base⇩h base M" and
two: "2 ≤ base" and
bases: "base ≤ base'"
shows "well_base⇩h base' M"
using two well⇩h
by (induct rule: well_base⇩h.induct)
(meson two bases less_le_trans order_trans well_base⇩h.intros well_base.simps)
subsection ‹The Goodstein Sequence and Goodstein's Theorem›
context
fixes start :: nat
begin
primrec goodstein :: "nat ⇒ nat" where
"goodstein 0 = start"
| "goodstein (Suc i) = decode (i + 3) 0 (encode (i + 2) 0 (goodstein i)) - 1"
lemma goodstein_step:
assumes gi_gt_0: "goodstein i > 0"
shows "encode (i + 2) 0 (goodstein i) > encode (i + 3) 0 (goodstein (i + 1))"
proof -
let ?Ei = "encode (i + 2) 0 (goodstein i)"
let ?reencode = "encode (i + 3) 0"
let ?decoded_Ei = "decode (i + 3) 0 ?Ei"
have two_le: "2 ≤ i + 3"
by simp
have "well_base⇩h (i + 2) ?Ei"
by (rule well_base⇩h_encode) simp
hence well⇩h: "well_base⇩h (i + 3) ?Ei"
by (rule well_base⇩h_mono_base) simp_all
have decoded_Ei_gt_0: "?decoded_Ei > 0"
by (metis gi_gt_0 gr0I encode_0_iff le_add2 decode_0_iff[OF _ well⇩h aligned⇩d_0] two_le)
have "?reencode (?decoded_Ei - 1) < ?reencode ?decoded_Ei"
by (rule less_imp_encode_less[OF two_le]) (use decoded_Ei_gt_0 in linarith)
also have "… = ?Ei"
by (simp only: encode_decode_exp_0[OF two_le well⇩h])
finally show ?thesis
by simp
qed
theorem goodsteins_theorem: "∃i. goodstein i = 0"
proof -
let ?G = "λi. encode (i + 2) 0 (goodstein i)"
obtain i where
"¬ ?G i > ?G (i + 1)"
using wf_iff_no_infinite_down_chain[THEN iffD1, OF wf,
unfolded not_ex not_all mem_Collect_eq prod.case, rule_format, of ?G]
by auto
hence "goodstein i = 0"
using goodstein_step by (metis add.assoc gr0I one_plus_numeral semiring_norm(3))
thus ?thesis
by blast
qed
end
end