Theory Complex_Trigonometry
theory Complex_Trigonometry
imports "HOL-Analysis.Convex" Complex_Angles Complex_Triangles_Definitions
begin
section ‹Complex trigonometry›
text ‹In this section we add some trigonometric results, especially the law of sines›
lemma ang_sin:
shows‹Im ((b-a)*cnj(c-a)) = cmod (c-a) *cmod (b-a) * sin (angle_c c a b)›
proof -
have f0:‹sin (Arg (cnj c - cnj a)) = - sin (Arg ( c - a))›
by (metis arg_cnj_not_pi arg_cnj_pi complex_cnj_diff neg_0_equal_iff_equal sin_minus
sin_pi)
have f1:‹cos (Arg (cnj c - cnj a)) = cos (Arg (c - a))›
by (metis arg_cnj_not_pi arg_cnj_pi complex_cnj_diff cos_minus)
then have ‹b-a = cmod (b-a) * cis (Arg (b-a)) ∧ cnj (c-a) = cmod (c-a) * cis (Arg (cnj (c-a)))›
using rcis_cmod_Arg rcis_def
by (metis complex_mod_cnj)
then have ‹Im(cis (Arg (b-a)) * cis (Arg (cnj(c-a)))) = sin (angle_c c a b)›
unfolding ang_vec_def angle_c_def using f1 f0 by(auto simp:cis.code sin_diff)
then have ‹Im (cmod (b-a) * cis (Arg (b-a)) * cmod (c-a) * cis (Arg (cnj (c-a)))) =
cmod (c-a) *cmod (b-a) * sin (angle_c c a b) ›
by (metis Im_complex_of_real[of "cmod (c - a)"] Im_complex_of_real[of "cmod (b - a)"]
Im_mult_real[of "cor (cmod (c - a))"
"cis (Arg (cnj (c - a))) * (cor (cmod (b - a)) * cis (Arg (b - a)))"]
Im_mult_real[of "cor (cmod (b - a))" "cis (Arg (b - a)) * cis (Arg (cnj (c - a)))"]
Re_complex_of_real[of "cmod (c - a)"] Re_complex_of_real[of "cmod (b - a)"]
ab_semigroup_mult_class.mult_ac(1)[of "cor (cmod (b - a))" "cis (Arg (b - a))"
"cis (Arg (cnj (c - a)))"]
ab_semigroup_mult_class.mult_ac(1)[of "cis (Arg (cnj (c - a)))"
"cor (cmod (b - a)) * cis (Arg (b - a))" "cor (cmod (c - a))"]
ab_semigroup_mult_class.mult_ac(1)[of "cmod (c - a)" "cmod (b - a)"
"Im (cis (Arg (b - a)) * cis (Arg (cnj (c - a))))"]
mult.commute[of "cis (Arg (cnj (c - a)))" "cor (cmod (b - a)) * cis (Arg (b - a))"]
mult.commute[of "cis (Arg (cnj (c - a))) * (cor (cmod (b - a)) * cis (Arg (b - a)))"
"cor (cmod (c - a))"]
mult.commute[of "cor (cmod (b - a)) * cis (Arg (b - a)) * cor (cmod (c - a))"
"cis (Arg (cnj (c - a)))"])
then show ‹Im ((b - a) * cnj (c - a)) = cmod (c - a) * cmod (b - a) * sin (angle_c c a b)›
by (metis ‹b - a = cor (cmod (b - a)) * cis (Arg (b - a)) ∧ cnj (c - a) = cor (cmod (c - a)) * cis (Arg (cnj (c - a)))›
ab_semigroup_mult_class.mult_ac(1))
qed
lemma ang_cos:
shows‹Re ((b-a)*cnj(c-a)) = cmod (c-a) *cmod (b-a) * cos (angle_c c a b)›
proof -
have f0:‹sin (Arg (cnj c - cnj a)) = - sin (Arg ( c - a))›
by (metis arg_cnj_not_pi arg_cnj_pi complex_cnj_diff neg_0_equal_iff_equal sin_minus
sin_pi)
have f1:‹cos (Arg (cnj c - cnj a)) = cos (Arg (c - a))›
by (metis arg_cnj_not_pi arg_cnj_pi complex_cnj_diff cos_minus)
then have f2:‹b-a = cmod (b-a) * cis (Arg (b-a)) ∧ cnj (c-a) = cmod (c-a) * cis (Arg (cnj (c-a)))›
using rcis_cmod_Arg rcis_def
by (metis complex_mod_cnj)
then have ‹Re(cis (Arg (b-a)) * cis (Arg (cnj(c-a)))) = cos (angle_c c a b)›
unfolding ang_vec_def angle_c_def using f1 f0 by(auto simp:cis.code cos_diff)
then have ‹Re (cmod (b-a) * cmod (c-a)* cis (Arg (b-a)) * cis (Arg (cnj (c-a)))) =
Re (cmod (c-a) *cmod (b-a)) * cos (angle_c c a b) ›
proof -
have f1: "cor (cmod (b - a) * cmod (c - a)) * cis (Arg (b - a)) * cis (Arg (cnj (c - a)))
= cor (cmod (b - a) * cmod (c - a)) * (cis (Arg (b - a)) * cis (Arg (cnj (c - a))))"
using ab_semigroup_mult_class.mult_ac(1) by blast
have "cmod (b - a) * cmod (c - a) = cmod (c - a) * cmod (b - a)"
by argo
then show ?thesis
using f1 Im_complex_of_real Re_mult_real ‹Re (cis (Arg (b - a)) * cis (Arg (cnj (c - a))))
= cos (angle_c c a b)› by presburger
qed
then show ‹Re ((b-a)*cnj(c-a)) = cmod (c-a) *cmod (b-a) * cos (angle_c c a b)›
by (metis Re_complex_of_real f2 mult.assoc mult.commute of_real_mult)
qed
lemma law_of_cosines':
assumes h:‹A≠C› ‹A≠B›
shows "((cdist B C)⇧2 - (cdist A C)⇧2 - (cdist A B)⇧2 ) / (- 2*(cdist A C)*(cdist A B)) = (cos (∠ (C-A) (B-A)))"
using law_of_cosines[of B C A] h by(auto simp:field_simps)
lemma law_of_cosines'':
shows "(cdist A C)⇧2 = (cdist B C)⇧2 - (cdist A B)⇧2 + 2*(cdist A C)*(cdist A B)*(cos (∠ (C-A) (B-A)))"
using law_of_cosines[of B C A] by(auto simp:field_simps)
lemma law_of_cosines''':
shows " (cdist A B)⇧2 = (cdist B C)⇧2 - (cdist A C)⇧2 + 2*(cdist A C)*(cdist A B)*(cos (∠ (C-A) (B-A)))"
using law_of_cosines[of B C A] by(auto simp:field_simps)
subsection ‹The law of sines›
theorem law_of_sines:
assumes h1:‹b ≠ a› ‹a ≠ c› ‹b ≠ c›
shows "sin (angle_c a b c) * cdist b c = sin (angle_c c a b) * cdist a c" (is "?A = ?B")
proof -
{fix a b c ::complex
have f0:‹sin (Arg (cnj c - cnj a)) = - sin (Arg ( c - a))›
by (metis arg_cnj_not_pi arg_cnj_pi complex_cnj_diff neg_0_equal_iff_equal sin_minus
sin_pi)
have f1:‹cos (Arg (cnj c - cnj a)) = cos (Arg (c - a))›
by (metis arg_cnj_not_pi arg_cnj_pi complex_cnj_diff cos_minus)
assume ‹b-a ≠ 0› ‹c-a ≠ 0 ›
then have f2: ‹b-a = cmod (b-a) * cis (Arg (b-a)) ∧ cnj (c-a) = cmod (c-a) * cis (Arg (cnj (c-a)))›
using rcis_cmod_Arg rcis_def
by (metis complex_mod_cnj)
then have ‹Im(cis (Arg (b-a)) * cis (Arg (cnj(c-a)))) = sin (angle_c c a b)›
unfolding ang_vec_def angle_c_def using f1 f0 by(auto simp:cis.code sin_diff)
then have ‹Im (cmod (b-a) * cis (Arg (b-a)) * cmod (c-a) * cis (Arg (cnj (c-a)))) =
cmod (c-a) *cmod (b-a) * sin (angle_c c a b) ›
by (metis Im_complex_of_real[of "cmod (c - a)"] Im_complex_of_real[of "cmod (b - a)"]
Im_mult_real[of "cor (cmod (c - a))"
"cis (Arg (cnj (c - a))) * (cor (cmod (b - a)) * cis (Arg (b - a)))"]
Im_mult_real[of "cor (cmod (b - a))" "cis (Arg (b - a)) * cis (Arg (cnj (c - a)))"]
Re_complex_of_real[of "cmod (c - a)"] Re_complex_of_real[of "cmod (b - a)"]
ab_semigroup_mult_class.mult_ac(1)[of "cor (cmod (b - a))" "cis (Arg (b - a))"
"cis (Arg (cnj (c - a)))"]
ab_semigroup_mult_class.mult_ac(1)[of "cis (Arg (cnj (c - a)))"
"cor (cmod (b - a)) * cis (Arg (b - a))" "cor (cmod (c - a))"]
ab_semigroup_mult_class.mult_ac(1)[of "cmod (c - a)" "cmod (b - a)"
"Im (cis (Arg (b - a)) * cis (Arg (cnj (c - a))))"]
mult.commute[of "cis (Arg (cnj (c - a)))" "cor (cmod (b - a)) * cis (Arg (b - a))"]
mult.commute[of "cis (Arg (cnj (c - a))) * (cor (cmod (b - a)) * cis (Arg (b - a)))"
"cor (cmod (c - a))"]
mult.commute[of "cor (cmod (b - a)) * cis (Arg (b - a)) * cor (cmod (c - a))"
"cis (Arg (cnj (c - a)))"])
then have ‹Im ((b-a)*cnj(c-a)) = cmod (c-a) *cmod (b-a) * sin (angle_c c a b)›
using ang_sin by presburger
}note ang=this
have i2:‹sin (angle_c c a b) = Im((b-a)*cnj(c-a))/ (cmod(b-a)*cmod(c-a))›
using ang[of b a c] h1 by(auto)
have ‹sin (angle_c a b c) = Im((c-b)*cnj(a-b)) / (cmod (c-b)*cmod (a-b))›
using ang h1 by(auto)
then have imp1:‹cmod (c-b) * sin (angle_c a b c) = Im((c-b)*cnj(a-b)) / (cmod (a-b)) ›
by auto
from i2 have imp2:‹cmod (c-a) * sin (angle_c c a b) = Im((b-a)*cnj(c-a))/ (cmod(b-a)) ›
by auto
show ?thesis using imp1 imp2 by(auto simp:field_simps norm_minus_commute)
qed
lemma law_of_sines': assumes h1:‹b ≠ a› ‹a ≠ c› ‹b ≠ c›
shows "sin (angle_c a b c) * cdist b a = sin (angle_c b c a) * cdist a c"
proof -
{fix a b c ::complex
have f0:‹sin (Arg (cnj c - cnj a)) = - sin (Arg ( c - a))›
by (metis arg_cnj_not_pi arg_cnj_pi complex_cnj_diff neg_0_equal_iff_equal sin_minus
sin_pi)
have f1:‹cos (Arg (cnj c - cnj a)) = cos (Arg (c - a))›
by (metis arg_cnj_not_pi arg_cnj_pi complex_cnj_diff cos_minus)
assume ‹b-a ≠ 0› ‹c-a ≠ 0 ›
then have f2:‹b-a = cmod (b-a) * cis (Arg (b-a)) ∧ cnj (c-a) = cmod (c-a) * cis (Arg (cnj (c-a)))›
using rcis_cmod_Arg rcis_def
by (metis complex_mod_cnj)
then have ‹Im(cis (Arg (b-a)) * cis (Arg (cnj(c-a)))) = sin (angle_c c a b)›
unfolding ang_vec_def angle_c_def using f0 f1 by(auto simp:cis.code sin_diff)
then have ‹Im (cmod (b-a) * cis (Arg (b-a)) * cmod (c-a) * cis (Arg (cnj (c-a)))) =
cmod (c-a) *cmod (b-a) * sin (angle_c c a b) ›
by (metis Im_complex_of_real[of "cmod (c - a)"] Im_complex_of_real[of "cmod (b - a)"]
Im_mult_real[of "cor (cmod (c - a))"
"cis (Arg (cnj (c - a))) * (cor (cmod (b - a)) * cis (Arg (b - a)))"]
Im_mult_real[of "cor (cmod (b - a))" "cis (Arg (b - a)) * cis (Arg (cnj (c - a)))"]
Re_complex_of_real[of "cmod (c - a)"] Re_complex_of_real[of "cmod (b - a)"]
ab_semigroup_mult_class.mult_ac(1)[of "cor (cmod (b - a))" "cis (Arg (b - a))"
"cis (Arg (cnj (c - a)))"]
ab_semigroup_mult_class.mult_ac(1)[of "cis (Arg (cnj (c - a)))"
"cor (cmod (b - a)) * cis (Arg (b - a))" "cor (cmod (c - a))"]
ab_semigroup_mult_class.mult_ac(1)[of "cmod (c - a)" "cmod (b - a)"
"Im (cis (Arg (b - a)) * cis (Arg (cnj (c - a))))"]
mult.commute[of "cis (Arg (cnj (c - a)))" "cor (cmod (b - a)) * cis (Arg (b - a))"]
mult.commute[of "cis (Arg (cnj (c - a))) * (cor (cmod (b - a)) * cis (Arg (b - a)))"
"cor (cmod (c - a))"]
mult.commute[of "cor (cmod (b - a)) * cis (Arg (b - a)) * cor (cmod (c - a))"
"cis (Arg (cnj (c - a)))"])
then have ‹Im ((b-a)*cnj(c-a)) = cmod (c-a) *cmod (b-a) * sin (angle_c c a b)›
using ang_sin by presburger
}note ang=this
have i2:‹sin (angle_c b c a) = Im((a-c)*cnj(b - c))/ (cmod(b-c)*cmod(a-c))›
using ang[of a c b] h1 by(auto)
have ‹sin (angle_c a b c) = Im((c-b)*cnj(a-b)) / (cmod (c-b)*cmod (a-b))›
using ang h1 by(auto)
then have imp1:‹cmod (a-b) * sin (angle_c a b c) = Im((c-b)*cnj(a-b)) / (cmod (c-b)) ›
by auto
from i2 have imp2:‹cmod (a-c) * sin (angle_c b c a) = Im((a-c)*cnj(b-c))/ (cmod(b-c)) ›
by auto
show ?thesis using imp1 imp2
by (metis cdist_commute h1(1,2,3) law_of_sines)
qed
lemma ang_pos_pos:‹q≠p ⟹ p≠ r ⟹ r ≠ q ⟹ angle_c q r p ≥ 0 ⟹ angle_c r p q ≥0›
using law_of_sines'[of r q p]
by (smt (verit) ang_vec_bounded angle_c_def cdist_def mult_neg_pos mult_nonneg_nonneg
right_minus_eq sin_ge_zero sin_gt_zero sin_minus zero_less_norm_iff)
lemma cmod_pos:‹cmod a ≥ 0›
by simp
lemma ang_neg_neg:‹q≠p ⟹ p≠ r ⟹ r ≠ q ⟹ angle_c q r p < 0 ⟹ angle_c r p q < 0›
proof -
assume ‹q≠p› ‹p≠ r› ‹r ≠ q› ‹angle_c q r p < 0›
then have ‹sin (angle_c q r p) < 0›
using ang_c_in
by (metis ang_vec_def angle_c_def canon_ang(1) minus_less_iff neg_0_less_iff_less sin_gt_zero sin_minus)
then have ‹sin (angle_c q r p) * cdist r q < 0›
using ‹r ≠ q› mult_neg_pos by fastforce
from law_of_sines'[of r q p] have ‹sin (angle_c r p q)<0›
by (metis ‹p ≠ r› ‹q ≠ p› ‹r ≠ q› ‹sin (angle_c q r p) * cdist r q < 0›
cdist_def linorder_not_less mult_less_0_iff norm_ge_zero)
then show ?thesis
using ang_c_in[of r p q]
by (metis ang_vec_def angle_c_def canon_ang(2) linorder_not_less sin_ge_zero)
qed
lemma collinear_sin_neq_0:
‹¬collinear a2 b2 c2 ⟹ sin (angle_c a2 c2 b2) ≠ 0›
unfolding collinear_def angle_c_def
by (metis Im_complex_div_eq_0 ang_sin angle_c_def collinear_def
collinear_sym1 collinear_sym2' mult_eq_0_iff)
lemma collinear_sin_neq_pi:
‹¬collinear a2 b2 c2 ⟹ sin (angle_c a2 c2 b2) ≠ pi›
unfolding collinear_def angle_c_def
by (metis add_cancel_right_left dual_order.antisym dual_order.trans le_add_same_cancel1
linordered_nonzero_semiring_class.zero_le_one one_add_one one_neq_zero pi_ge_two sin_le_one)
lemma collinear_iff:
assumes ‹a≠b ∧ b≠c ∧ c≠a›
shows ‹collinear a b c ⟷ (angle_c a b c = pi ∨ angle_c a b c = 0)›
apply(rule iffI)
using assms unfolding collinear_def using collinear_angle collinear_def apply(fastforce)
by (metis collinear_def collinear_sin_neq_0 collinear_sym1 sin_pi sin_zero)
definition ‹innerprod a b ≡ cnj a * b›
lemma left_lin_innerprod:‹innerprod (x + y) z = innerprod x z + innerprod y z›
unfolding innerprod_def
by (simp add: mult.commute ring_class.ring_distribs(1))
lemma right_lin_innerprod:‹innerprod x (y+z) = innerprod x y + innerprod x z›
unfolding innerprod_def
by (simp add: ring_class.ring_distribs(1))
lemma leftlin_innerprod:‹innerprod x (t*y) = t * innerprod x y›
unfolding innerprod_def by(auto)
lemma rightsesqlin_innerprod:‹innerprod (t*x) (y) = cnj t * innerprod x y›
unfolding innerprod_def by(auto)
lemma norm_eq_csqrt_inner:‹norm x = csqrt (innerprod x x)›
using complex_mod_sqrt_Re_mult_cnj innerprod_def by force
lemma abs2_eq_inner:‹abs (innerprod x y)^2 = innerprod x y * cnj (innerprod x y)›
unfolding innerprod_def abs_complex_def apply(rule complex_eqI)
by (metis comp_apply complex_mult_cnj_cmod of_real_power)+
lemma complex_add_inner_cnj:‹t*innerprod x y + cnj (t*innerprod x y) = 2* Re (t*innerprod x y)›
using complex_add_cnj by blast
lemma Re_innerprod_inner:‹Re (innerprod (a-b) (c-b)) = (a-b)∙(c-b)›
unfolding innerprod_def inner_complex_def by(auto simp:field_simps)
lemma angle_c_arccos_pos:
assumes h:‹a≠b ∧ b≠ c› ‹angle_c a b c ≥ 0›
shows ‹angle_c a b c = arccos ((Re (innerprod (a-b) (c - b)))/(cmod(a-b)*cmod(c-b)))›
proof -
have ‹Re ((a-b)*cnj(c-b)) = (Re (innerprod (a-b) (c - b)))›
unfolding innerprod_def by(auto simp:field_simps)
then have ‹((Re (innerprod (a-b) (c - b)))/(cmod(a-b)*cmod(c-b))) = cos (angle_c a b c)›
by (metis (no_types, lifting) ang_cos angle_c_commute cos_minus divisors_zero
h(1) mult.commute nonzero_mult_div_cancel_left norm_eq_zero right_minus_eq)
then show ?thesis
using ang_vec_bounded angle_c_def arccos_cos h(2) by presburger
qed
lemma angle_c_arccos_neg:
assumes h:‹a≠b ∧ b≠ c› ‹angle_c a b c ≤ 0 ›
shows ‹- angle_c a b c = arccos ((Re (innerprod (a-b) (c - b)))/(cmod(a-b)*cmod(c-b)))›
proof -
have ‹Re ((a-b)*cnj(c-b)) = (Re (innerprod (a-b) (c - b)))›
unfolding innerprod_def by(auto simp:field_simps)
then have ‹((Re (innerprod (a-b) (c - b)))/(cmod(a-b)*cmod(c-b))) = cos (angle_c a b c)›
by (metis (no_types, lifting) ang_cos angle_c_commute cos_minus divisors_zero
h(1) mult.commute nonzero_mult_div_cancel_left norm_eq_zero right_minus_eq)
then show ?thesis
using ang_vec_bounded angle_c_def arccos_cos h(2)
by (metis arccos_cos2 less_le_not_le)
qed
end