section ‹Examples› subsection ‹Misc› theory Example_Misc imports Main "HOL-Library.Extended" "../state_monad/State_Main" begin paragraph ‹Lists› fun min_list :: "'a::ord list ⇒ 'a" where "min_list (x # xs) = (case xs of [] ⇒ x | _ ⇒ min x (min_list xs))" lemma fold_min_commute: "fold min xs (min a b) = min a (fold min xs b)" for a :: "'a :: linorder" by (induction xs arbitrary: a; auto; metis min.commute min.assoc) lemma min_list_fold: "min_list (x # xs) = fold min xs x" for x :: "'a :: linorder" by (induction xs arbitrary: x; auto simp: fold_min_commute[symmetric]; metis min.commute) (* FIXME mv List *) lemma induct_list012: "⟦P []; ⋀x. P [x]; ⋀x y zs. P (y # zs) ⟹ P (x # y # zs)⟧ ⟹ P xs" by induction_schema (pat_completeness, lexicographic_order) lemma min_list_Min: "xs ≠ [] ⟹ min_list xs = Min (set xs)" by (induction xs rule: induct_list012)(auto) paragraph ‹Extended Data Type› (* TODO: Move to distribution! *) lemma Pinf_add_right[simp]: "∞ + x = ∞" by (cases x; simp) paragraph ‹Syntax› bundle app_syntax begin notation App (infixl "$" 999) notation Wrap ("⟪_⟫") end (* paragraph ‹Code Setup› definition map1⇩T' where "map1⇩T' f xs ≡ ⟨rec_list ⟨[]⟩ (λx xs a. ⟨λy. ⟨λys. ⟨y#ys⟩⟩⟩ . (f x) . a)⟩ . ⟨xs⟩ " lemma map1⇩T_map1⇩T': "map1⇩T = ⟨λf. ⟨λxs. map1⇩T' f xs⟩⟩" unfolding map1⇩T_def map1⇩T'_def .. lemmas [code] = mem_defs.checkmem'_def lemmas [code_unfold] = map⇩T_def map1⇩T_map1⇩T' paragraph ‹Simplifying monad expressions› lemma app_return_right: "f . ⟨g⟩ = do {f ← f; f g}" unfolding fun_app_lifted_def left_identity .. lemma app_return_left: "⟨f⟩ . g = g ⤜ f" unfolding fun_app_lifted_def left_identity .. lemma get_return: "(do {m ← get; ⟨f m⟩}) = State (λ mem. (f mem, mem))" unfolding get_def bind_def return_def by simp lemma get_put: "do {m ← get; put (f m)} = State (λ mem. ((), f mem))" unfolding get_def put_def bind_def return_def by simp lemma bind_return_assoc: "(do { x ← a; ⟨f x⟩ }) ⤜ b = do { x ← a; b (f x) }" by (auto split: prod.split simp add: bind_def return_def) lemma app_lifted_return_assoc: "(do { x ← a; ⟨f x⟩ }) . b = do { x ← a; b ⤜ f x }" unfolding fun_app_lifted_def bind_return_assoc .. (* There could be a simpproc for this pattern *) lemma bind_return_assoc2: "(do { x ← a; y ← b; ⟨f x y⟩ }) ⤜ c = do { x ← a; y ← b; c (f x y) }" by (auto split: prod.split simp add: bind_def return_def) lemma bind_return_assoc3: "(do { x ← a; y ← b; z ← c; ⟨f x y z⟩ }) ⤜ d = do { x ← a; y ← b; z ← c; d (f x y z) }" by (auto split: prod.split simp add: bind_def return_def) lemma if⇩T_return: "if⇩T ⟨b⟩ x⇩T y⇩T ≡ if b then x⇩T else y⇩T" unfolding if⇩T_def return_def bind_def by simp (* Would it be a good idea to just unfold fun_app_lifted? *) lemmas monad_unfolds = app_return_right app_return_left Monad.left_identity Monad.right_identity app_lifted_return_assoc bind_return_assoc bind_return_assoc2 bind_return_assoc3 get_return get_put map1⇩T_map1⇩T' if⇩T_return *) end