Theory Preliminaries
section "Preliminaries"
theory Preliminaries
imports Complex_Main
"List-Index.List_Index"
"HOL-Library.AList"
"HOL-Library.Sublist"
"HOL-Eisbach.Eisbach"
"HOL-Library.Simps_Case_Conv"
begin
text ‹Stuff about options›
fun the_default :: "'a ⇒ 'a option ⇒ 'a" where
"the_default a None = a"
| "the_default _ (Some b) = b"
abbreviation Or :: "'a option ⇒ 'a option ⇒ 'a option" (infixl "OR" 60) where
"e1 OR e2 ≡ case e1 of None ⇒ e2 | p ⇒ p"
lemma Or_Some: "(e1 OR e2) = Some x ⟷ e1 = Some x ∨ (e1 = None ∧ e2 = Some x)"
by(auto split: option.split)
lemma Or_None: "(e1 OR e2) = None ⟷ e1 = None ∧ e2 = None"
by(auto split: option.split)
fun lift2_option :: "('a ⇒ 'b ⇒ 'c) ⇒ 'a option ⇒ 'b option ⇒ 'c option" where
"lift2_option _ None _ = None" |
"lift2_option _ _ None = None" |
"lift2_option f (Some x) (Some y) = Some (f x y)"
lemma lift2_option_not_None: "lift2_option f x y ≠ None ⟷ (x ≠ None ∧ y ≠ None)"
using lift2_option.elims by blast
lemma lift2_option_None: "lift2_option f x y = None ⟷ (x = None ∨ y = None)"
using lift2_option.elims by blast
text ‹Lookup functions for assoc lists›
fun find :: "('a ⇒ 'b option) ⇒ 'a list ⇒ 'b option" where
"find f [] = None" |
"find f (x#xs) = f x OR find f xs"
lemma findD:
"find f xs = Some p ⟹ ∃x ∈ set xs. f x = Some p"
by(induction xs arbitrary: p) (auto split: option.splits)
lemma find_None:
"find f xs = None ⟷ (∀x ∈ set xs. f x = None)"
by(induction xs) (auto split: option.splits)
lemma find_ListFind: "find f l = Option.bind (List.find (λx. case f x of None ⇒ False | _ ⇒ True) l) f"
by (induction l) (auto split: option.split)
lemma "List.find P l = Some p ⟹ ∃p ∈ set l . P p"
by (induction l) (auto split: if_splits)
lemma find_the_pair:
assumes "distinct (map fst pairs)"
and "⋀x y. x∈set (map fst pairs) ⟹ y∈set (map fst pairs) ⟹ P x ⟹ P y ⟹ x = y"
and "(x,y) ∈ set pairs" and "P x"
shows "List.find (λ(x,_) . P x) pairs = Some (x,y)"
using assms(1-3)
proof (induction pairs)
case Nil
then show ?case by simp
next
case (Cons pair pairs)
thm Cons.prems
show ?case
proof(cases "fst pair = x")
case True
then show ?thesis
using eq_key_imp_eq_value[OF Cons.prems(1,3)] assms(4) by force
next
case False
hence "(x,y) ∈ set pairs"
using Cons.prems(3) by fastforce
moreover have "⋀x y. x ∈ set (map fst pairs) ⟹ y ∈ set (map fst pairs) ⟹ P x ⟹ P y ⟹ x = y"
using Cons.prems(2) by (metis list.set_intros(2) list.simps(9))
ultimately have I: "List.find (λ(x,_) . P x) pairs = Some (x,y)"
using Cons.prems(1,3) by (auto intro!: Cons.IH)
moreover have "⋀y. y ∈ set (map fst (pair # pairs)) ⟹ P y ⟹ x = y"
using Cons.prems(2,3) assms(4) by (metis set_zip_leftD zip_map_fst_snd)
ultimately show ?thesis
using False by fastforce
qed
qed
fun remdups_on :: "('a ⇒ 'a ⇒ bool) ⇒ 'a list ⇒ 'a list" where
"remdups_on _ [] = []"
| "remdups_on cmp (x # xs) =
(if ∃x' ∈ set xs . cmp x x' then remdups_on cmp xs else x # remdups_on cmp xs)"
fun distinct_on :: "('a ⇒ 'a ⇒ bool) ⇒ 'a list ⇒ bool" where
"distinct_on _ [] ⟷ True"
| "distinct_on cmp (x # xs) ⟷ ¬(∃x' ∈ set xs . cmp x x') ∧ distinct_on cmp xs"
lemma "remdups_on (=) xs = remdups xs"
by (induction xs) auto
lemma remdups_on_antimono:
"(⋀x y . f x y ⟹ g x y) ⟹ set (remdups_on g xs) ⊆ set (remdups_on f xs)"
by (induction xs) auto
lemma remdups_on_subset_input: "set (remdups_on f xs) ⊆ set xs"
by (induction xs) auto
lemma distinct_on_remdups_on: "distinct_on f (remdups_on f xs)"
proof (induction xs)
case Nil
then show ?case
by simp
next
case (Cons x xs)
then show ?case
using remdups_on_subset_input by fastforce
qed
lemma distinct_on_no_compare: "(⋀x y . f x y ⟹ f y x)⟹
distinct_on f xs ⟹ x∈set xs ⟹ y∈set xs ⟹ x≠y ⟹ ¬ f x y"
by (induction xs) auto
fun lookup :: "('a ⇒ bool) ⇒ ('a × 'b) list ⇒ 'b option" where
"lookup _ [] = None"
| "lookup f ((x,y)#xs) = (if f x then Some y else lookup f xs)"
lemma lookup_present_eq_key: "distinct (map fst al) ⟹ (k, v) ∈ set al ⟷ lookup (λx. x=k) al = Some v"
by (induction al) (auto simp add: rev_image_eqI split: if_splits)
lemma lookup_None_iff: "lookup P xs = None ⟷ ¬ (∃x. x ∈ set (map fst xs) ∧ P x)"
by (induction xs) (auto split: if_splits)
lemma find_Some: "List.find P l = Some p ⟹ p∈set l ∧ P p"
by (induction l) (auto split: if_splits)
lemma find_Some_imp_lookup_Some:
"List.find (λ(k,_). P k) xs = Some (k,v) ⟹ lookup P xs = Some v"
by (induction xs) auto
lemma lookup_Some_imp_find_Some:
"lookup P xs = Some v ⟹ ∃x. List.find (λ(k,_). P k) xs = Some (x,v)"
by (induction xs) auto
lemma lookup_None_iff_find_None: "lookup P xs = None ⟷ List.find (λ(k,_). P k) xs = None"
by (induction xs) auto
lemma lookup_eq_order_irrelevant:
assumes "distinct (map fst pairs)" and "distinct (map fst pairs')" and "set pairs = set pairs'"
shows "lookup (λx. x=k) pairs = lookup (λx. x=k) pairs'"
proof (cases "lookup (λx. x=k) pairs")
case None
then show ?thesis using lookup_None_iff
by (metis assms(3) set_map)
next
case (Some v)
hence "(k,v)∈set pairs"
using assms(1) by (simp add: lookup_present_eq_key)
hence el: "(k,v)∈set pairs'" using assms(3) by blast
show ?thesis using lookup_present_eq_key[OF assms(2)] el Some by simp
qed
lemma lookup_Some_append_back:
"lookup (λx. x=k) insts = Some v ⟹ lookup (λx. x=k) (insts@[(k,v')]) = Some v"
by (induction insts arbitrary: ) auto
lemma lookup_eq_key_not_present: "key ∉ set (map fst inst) ⟹ lookup (λx. x = key) inst = None"
by (induction inst) auto
lemma lookup_in_empty[simp]: "lookup f [] = None" by simp
lemma lookup_in_single[simp]: "lookup f [(k, v)] = (if f k then Some v else None)" by simp
lemma lookup_present_eq_key': "lookup (λx. x=k) al = Some v ⟹ (k, v) ∈ set al "
by (induction al) (auto simp add: rev_image_eqI split: if_splits)
lemma lookup_present_eq_key'': "distinct (map fst al) ⟹ lookup (λx. x=k) al = Some v ⟷ (k, v) ∈ set al "
by (induction al) (auto simp add: rev_image_eqI split: if_splits)
lemma key_present_imp_eq_lookup_finds_value: "k ∈ fst ` set al ⟹ ∃v . lookup (λx. x=k) al = Some v"
by (induction al) (auto simp add: rev_image_eqI)
lemma list_allI: "(⋀x. x∈set l ⟹ P x) ⟹ list_all P l"
by (induction l) auto
lemma map2_sym: "(⋀x y . f x y = f y x) ⟹ map2 f xs ys = map2 f ys xs"
proof (induction xs arbitrary: ys)
case Nil
then show ?case by simp
next
case (Cons a xs)
then show ?case by (induction ys) auto
qed
lemma idem_map2: assumes "(⋀x. f x x = x)" shows "map2 f l l = l"
proof-
have "length l = length l" by simp
then show "map2 f l l = l" by (induction l l rule: list_induct2) (use assms in auto)
qed
lemma rev_induct2[consumes 1, case_names Nil snoc]:
assumes "length xs = length ys"
assumes "P [] []"
assumes "(⋀x xs y ys. length xs = length ys ⟹ P xs ys ⟹ P (xs @ [x]) (ys @ [y]))"
shows "P xs ys"
proof-
have "length (rev xs) = length (rev ys)" using assms(1) by simp
hence "P (rev (rev xs)) (rev (rev ys))"
using assms(2-3) by (induction rule: list_induct2[of "rev xs" "rev ys"]) simp_all
thus ?thesis by simp
qed
lemma alist_map_corr: "distinct (map fst al) ⟹ (k,v) ∈ set al ⟷ map_of al k = Some v"
by simp
lemma distinct_fst_imp_distinct: "distinct (map fst l) ⟹ distinct l"
by (induction l) auto
lemma length_alist:
assumes "distinct (map fst al)" and "distinct (map fst al')" and "set al = set al'"
shows "length al = length al'"
using assms by (metis distinct_card length_map set_map)
lemma same_map_of_imp_same_length:
"distinct (map fst ars1) ⟹ distinct (map fst ars2) ⟹ map_of ars1 = map_of ars2
⟹ length ars1 = length ars2"
using length_alist map_of_inject_set by blast
lemma in_range_if_ex_key: "v ∈ ran m ⟷ (∃k. m k = Some v)"
by (auto simp add: ranI ran_def)
lemma set_AList_delete_bound: "set (AList.delete a l) ⊆ set l"
by (induction l) auto
lemma list_all_clearjunk_cons:
"list_all P (x#(AList.clearjunk l)) ⟹ list_all P (AList.clearjunk (x#l))"
by (induction l rule: AList.clearjunk.induct) (auto simp add: delete_twist)
lemma lookup_AList_delete: "k'≠k ⟹ lookup (λx. x = k) al = lookup (λx. x = k) (AList.delete k' al)"
by (induction al) auto
lemma lookup_AList_clearjunk: "lookup (λx. x = k) al = lookup (λx. x = k) (AList.clearjunk al)"
proof (induction al)
case Nil
then show ?case
by simp
next
case (Cons a al)
then show ?case
proof(cases "fst a=k")
case True
then show ?thesis
by (metis (full_types) clearjunk.simps(2) lookup.simps(2) prod.collapse)
next
case False
have "lookup (λx. x = k) (AList.clearjunk (a # al))
= lookup (λx. x = k) (a # AList.clearjunk (AList.delete (fst a) al))"
by simp
also have "… = lookup (λx. x = k) (AList.clearjunk (AList.delete (fst a) al))"
by (metis (full_types) False lookup.simps(2) surjective_pairing)
also have "… = lookup (λx. x = k) (AList.clearjunk al)"
by (metis False clearjunk_delete lookup_AList_delete)
also have "… = lookup (λx. x = k) al"
using Cons.IH by auto
also have "… = lookup (λx. x = k) (a # al)"
by (metis (full_types) False lookup.simps(2) surjective_pairing)
finally show ?thesis
by simp
qed
qed
definition "diff_list xs ys ≡ fold removeAll ys xs"
lemma diff_list_set[simp]: "set (diff_list xs ys) = set xs - set ys"
unfolding diff_list_def by (induction ys arbitrary: xs) auto
lemma diff_list_set_from_Nil[simp]: "diff_list [] ys = []"
using last_in_set by fastforce
lemma diff_list_set_remove_Nil[simp]: "diff_list xs [] = xs"
unfolding diff_list_def by (induction xs) auto
lemma diff_list_rec: "diff_list (x # xs) ys = (if x∈set ys then diff_list xs ys else x#diff_list xs ys)"
unfolding diff_list_def by (induction ys arbitrary: x xs) auto
lemma diff_list_order_irr: "set ys = set ys' ⟹ diff_list xs ys = diff_list xs ys'"
proof (induction ys arbitrary: ys' xs)
case Nil
then show ?case by simp
next
case (Cons y ys)
then show ?case
by (induction xs arbitrary: y ys ys') (simp_all add: diff_list_rec)
qed
lemma fold_Option_bind_eq_Some_start_not_None:
"fold (λnew option . Option.bind option (f new)) list start = Some res
⟹ start ≠ None"
by (induction list arbitrary: start res)
(fastforce split: option.splits if_splits simp add: bind_eq_Some_conv)+
lemma fold_Option_bind_eq_Some_at_point_not_None:
"fold (λnew option . Option.bind option (f new)) (l1@l2) start = Some res
⟹ fold (λnew option . Option.bind option (f new)) (l1) start ≠ None"
by (induction l1 arbitrary: start res l2) (use fold_Option_bind_eq_Some_start_not_None in
‹fastforce split: option.splits if_splits simp add: bind_eq_Some_conv›)+
lemma fold_Option_bind_eq_Some_start_not_None':
"fold (λ(x,y) option . Option.bind option (f x y)) list start = Some res
⟹ start ≠ None"
proof (induction list arbitrary: start res)
case Nil
then show ?case
by simp
next
case (Cons a list)
then show ?case
by (fastforce split: option.splits if_splits prod.splits simp add: bind_eq_Some_conv)
qed
lemma fold_Option_bind_eq_None_start_None:
"fold (λ(x,y) option . Option.bind option (f x y)) list None = None"
by (induction list) (auto split: option.splits if_splits prod.splits)
lemma fold_Option_bind_at_some_point_None_eq_None:
"fold (λ(x,y) option . Option.bind option (f x y)) l1 start = None ⟹
fold (λ(x,y) option . Option.bind option (f x y)) (l1@l2) start = None"
proof (induction l1 arbitrary: start l2)
case Nil
then show ?case using fold_Option_bind_eq_Some_start_not_None' by fastforce
next
case (Cons a l1)
then show ?case by simp
qed
lemma fold_Option_bind_eq_Some_at_each_point_Some:
"fold (λ(x,y) option . Option.bind option (f x y)) (l1@l2) start = Some res
⟹ (∃point . fold (λ(x,y) option . Option.bind option (f x y)) l1 start = Some point
∧ fold (λ(x,y) option . Option.bind option (f x y)) l2 (Some point) = Some res)"
proof (induction l1 arbitrary: start res l2)
case Nil
then show ?case
using fold_Option_bind_eq_Some_start_not_None' by fastforce
next
case (Cons a l1)
then show ?case by simp
qed
lemma fold_Option_bind_eq_Some_at_each_point_Some':
assumes "fold (λ(x,y) option . Option.bind option (f x y)) (xs@ys) start = Some res"
obtains point where
"fold (λ(x,y) option . Option.bind option (f x y)) xs start = Some point" and
"fold (λ(x,y) option . Option.bind option (f x y)) ys (Some point) = Some res"
using assms fold_Option_bind_eq_Some_at_each_point_Some by fast
corollary fold_Option_bind_eq_Some_at_point_not_None':
"fold (λ(x,y) option . Option.bind option (f x y)) (l1@l2) start = Some res
⟹ fold (λ(x,y) option . Option.bind option (f x y)) (l1) start ≠ None"
using fold_Option_bind_eq_Some_at_each_point_Some by fast
lemma fold_matches_first_step_not_None:
assumes
"fold (λ(T, U) subs . Option.bind subs (f T U)) (zip (x#xs) (y#ys)) (Some subs) = Some subs'"
obtains point where
"f x y subs = Some point"
"fold (λ(T, U) subs . Option.bind subs (f T U)) (zip (xs) (ys)) (Some point) = Some subs'"
using assms fold_Option_bind_eq_Some_start_not_None' not_None_eq by fastforce
lemma fold_matches_last_step_not_None:
assumes
"length xs = length ys"
"fold (λ(T, U) subs . Option.bind subs (f T U)) (zip (xs@[x]) (ys@[y])) (Some subs) = Some subs'"
obtains point where
"fold (λ(T, U) subs . Option.bind subs (f T U)) (zip (xs) (ys)) (Some subs) = Some point"
"f x y point = Some subs'"
using assms fold_Option_bind_eq_Some_at_each_point_Some'[where xs="zip xs ys" and ys="[(x,y)]"
and start="Some subs" and res="subs'" and f="f"] by auto
end