Theory Simps_To
section ‹Simps To›
theory Simps_To
imports
ML_Tactic_Utils
Setup_Result_Commands
begin
paragraph ‹Summary›
text ‹Simple frameworks to ask for the simp-normal form of a term on the user-level.›
setup_result simps_to_base_logger = ‹Logger.new_logger Logger.root "Simps_To_Base"›
paragraph ‹Using Simplification On Left Term›
definition "SIMPS_TO s t ≡ (s ≡ t)"
lemma SIMPS_TO_eq: "SIMPS_TO s t ≡ (s ≡ t)"
unfolding SIMPS_TO_def by simp
text ‹Prevent simplification of second/right argument›
lemma SIMPS_TO_cong [cong]: "s ≡ s' ⟹ SIMPS_TO s t ≡ SIMPS_TO s' t" by simp
lemma SIMPS_TOI: "PROP SIMPS_TO s s" unfolding SIMPS_TO_eq by simp
lemma SIMPS_TOD: "PROP SIMPS_TO s t ⟹ s ≡ t" unfolding SIMPS_TO_eq by simp
ML_file‹simps_to.ML›
paragraph ‹Using Simplification On Left Term Followed By Unification›
definition "SIMPS_TO_UNIF s t ≡ (s ≡ t)"
text ‹Prevent simplification›
lemma SIMPS_TO_UNIF_cong [cong]: "SIMPS_TO_UNIF s t ≡ SIMPS_TO_UNIF s t" by simp
lemma SIMPS_TO_UNIF_eq: "SIMPS_TO_UNIF s t ≡ (s ≡ t)" unfolding SIMPS_TO_UNIF_def by simp
lemma SIMPS_TO_UNIFI: "PROP SIMPS_TO s s' ⟹ s' ≡ t ⟹ PROP SIMPS_TO_UNIF s t"
unfolding SIMPS_TO_UNIF_eq SIMPS_TO_eq by simp
lemma SIMPS_TO_UNIFD: "PROP SIMPS_TO_UNIF s t ⟹ s ≡ t"
unfolding SIMPS_TO_UNIF_eq by simp
ML_file‹simps_to_unif.ML›
paragraph ‹Examples›
experiment
begin
lemma
assumes [simp]: "P ≡ Q"
and [simp]: "Q ≡ R"
shows "PROP SIMPS_TO P Q"
apply simp
ML_command‹
Simps_To.SIMPS_TO_thm_resultsq (simp_tac @{context}) @{context} @{cterm P}
|> Seq.list_of |> map @{print}
›
oops
schematic_goal
assumes [simp]: "P ≡ Q"
and [simp]: "Q ≡ R"
shows "PROP SIMPS_TO P ?Q"
by (tactic ‹Simps_To.SIMPS_TO_tac (Simps_To.simp_inst_tac (simp_tac @{context})) @{context} 1›)
end
end