Theory First_Order_ML_Unification_Tests
subsection ‹First-Order ML Unification Tests›
theory First_Order_ML_Unification_Tests
imports
ML_Unification_Tests_Base
begin
paragraph ‹Summary›
text ‹Tests for @{ML_structure "First_Order_Unification"}.›
ML‹
structure Prop = SpecCheck_Property
structure UC = Unification_Combinator
structure UU = Unification_Util
open Unification_Tests_Base
structure Unif = First_Order_Unification
structure Norm = Envir_Normalisation
val match = Unif.match []
val match_hints =
let fun match binders =
UC.add_fallback_matcher
(Unif.e_match UU.match_types)
((fn binders =>
(Hints.map_retrieval (Hints.mk_retrieval Hints.TI.generalisations |> K)
#> Hints.UH.map_concl_unifier (Higher_Order_Pattern_Unification.match
|> Type_Unification.e_match UU.match_types |> K)
#> Hints.UH.map_normalisers (UU.beta_eta_short_norms_match |> K)
#> Hints.UH.map_prems_unifier (match |> UC.norm_matcher Norm.beta_norm_term_match |> K))
|> Context.proof_map
#> Test_Unification_Hints.try_hints binders)
|> UC.norm_matcher (UU.inst_norm_term' Unif.norms_match))
binders
in match [] end
val unify = Unif.unify []
val unify_hints =
let fun unif binders =
UC.add_fallback_unifier
(Unif.e_unify UU.unify_types)
((fn binders =>
(Hints.UH.map_concl_unifier (Higher_Order_Pattern_Unification.match
|> Type_Unification.e_match UU.match_types |> K)
#> Hints.UH.map_normalisers (UU.beta_eta_short_norms_unif |> K)
#> Hints.UH.map_prems_unifier (unif |> UC.norm_unifier Norm.beta_norm_term_unif |> K))
|> Context.proof_map
#> Test_Unification_Hints.try_hints binders)
|> UC.norm_unifier (UU.inst_norm_term' Unif.norms_unify))
binders
in unif [] end
›
subsubsection ‹Matching›
paragraph ‹Unit Tests›
ML_command‹
let
val ctxt = Proof_Context.set_mode Proof_Context.mode_schematic @{context}
|> Variable.declare_term @{term "f :: nat ⇒ bool ⇒ nat"}
val tests = map (apply2 (Syntax.read_term ctxt))[
("(?x :: nat ⇒ ?'Z) 1", "f 1"),
("?x :: nat", "(?x + 1 :: nat)"),
("(g :: nat ⇒ nat ⇒ nat) ?x ?x", "(g :: nat ⇒ nat ⇒ nat) (?x + 1) (?x + 1)"),
("λy. (?x :: nat ⇒ ?'Z) y", "λy. f y"),
("(g :: ?'X ⇒ ?'Y ⇒ ?'Z) (x :: ?'X) (y :: ?'Y)", "(g :: ?'Y ⇒ ?'Z ⇒ ?'Z) (x :: ?'Y) (y :: ?'Z)"),
("(g :: ?'Z ⇒ ?'X)", "λ(x :: ?'X). (g :: ?'X ⇒ ?'Y) x"),
("λ (x :: nat). (0 :: nat)", "λ (x :: nat). (0 :: nat)"),
("λ (x :: nat). x", "λ (x :: nat). x"),
("λ (x :: nat) (y :: bool). (x, y)", "λ (x :: nat) (y :: bool). (x, y)"),
("λ (x :: ?'A) (y :: bool). (?x :: ?'A ⇒ bool ⇒ ?'Z) x y", "λ (x :: nat) (y :: bool). f x y"),
("λ(x :: ?'X). (g :: ?'X ⇒ ?'X) x", "(g :: ?'X ⇒ ?'X)"),
("?g ?x ?y d", "g ?y ?x d"),
("f 0 True", "(λx y. f y x) True 0"),
("λ (x :: ?'a) y. f y", "λ(x :: ?'b). f"),
("λy z. (?x :: nat ⇒ bool ⇒ nat) y z", "f"),
("λx. (?f :: nat ⇒ bool ⇒ nat) 0 x", "λx. f 0 x")
]
val check = check_unit_tests_hints_match tests true []
in
Lecker.test_group ctxt () [
check "match" match,
check "match_hints" match_hints
]
end
›
subparagraph ‹Asymmetry›
ML_command‹
let
val ctxt = Proof_Context.set_mode Proof_Context.mode_schematic @{context}
|> Variable.declare_term @{term "f :: nat ⇒ bool ⇒ nat"}
val tests = map (apply2 (Syntax.read_term ctxt))[
("f 1", "(?x :: nat ⇒ ?'Z) 1")
]
val check = check_unit_tests_hints_match tests false []
in
Lecker.test_group ctxt () [
check "match" match,
check "match_hints" match_hints
]
end
›
subparagraph ‹Ground Hints›
ML_command‹
let
val ctxt = Proof_Context.set_mode Proof_Context.mode_schematic @{context}
val hints = map (Skip_Proof.make_thm (Proof_Context.theory_of ctxt) o Syntax.read_term ctxt) [
"?x ≡ 2 ⟹ ?x + (-?x :: int) ≡ 0",
"?x ≡ 0 ⟹ ?y ≡ 0 ⟹ (?x :: int) + ?y ≡ 0"
]
val tests = map (apply2 (Syntax.read_term ctxt))[
("(2 + -2) + (0 + 0) :: int", "0 :: int")
]
val check_hints = check_unit_tests_hints_match tests
in
Lecker.test_group ctxt () [
check_hints false [] "match" match,
check_hints false [] "match_hints without hints" match_hints,
check_hints true hints "match_hints with hints" match_hints
]
end
›
subsubsection ‹Unification›
paragraph ‹Generated Tests›
ML_command‹
structure Test_Params =
struct
val unify = unify
val unify_hints = unify_hints
val params = {
nv = 4,
ni = 2,
max_h = 5,
max_args = 4
}
end
structure First_Order_Tests = First_Order_Unification_Tests(Test_Params)
val _ = First_Order_Tests.tests @{context} (SpecCheck_Random.new ())
›
paragraph ‹Unit Tests›
subparagraph ‹Occurs-Check›
ML_command‹
let
val unit_tests = [
(
Var (("x", 0), TVar (("X", 0), [])),
Var (("y", 0), TVar (("X", 0), []) --> TFree ("'a", [])) $
Var (("x", 0), TVar (("X", 0), []))
),
(
Var (("y", 0), TVar (("X", 0), []) --> TFree ("'a", [])) $
Var (("x", 0), TVar (("X", 0), [])),
Var (("x", 0), TVar (("X", 0), []))
),
(
Free (("f", [TVar (("X", 0), []), TVar (("X", 0), [])] ---> TFree ("'a", []))) $
Var (("x", 0), TVar (("X", 0), [])) $
Var (("y", 0), TVar (("X", 0), [])),
Free (("f", [TVar (("X", 0), []), TVar (("X", 0), [])] ---> TFree ("'a", []))) $
Var (("y", 0), TVar (("X", 0), [])) $ (
Free (("g", TVar (("X", 0), []) --> TVar (("X", 0), []))) $
Var (("x", 0), TVar (("X", 0), []))
)
),
(
Free (("f", [TVar (("X", 0), []), TVar (("Y", 0), [])] ---> TFree ("'a", []))) $
Var (("x", 0), TVar (("X", 0), [])) $
Var (("y", 0), TVar (("Y", 0), [])),
Free (("f", [TVar (("Y", 0), []), TVar (("X", 0), [])] ---> TFree ("'a", []))) $
Var (("y", 0), TVar (("Y", 0), [])) $ (
Free (("g", TVar (("X", 0), []) --> TVar (("X", 0), []))) $
Var (("x", 0), TVar (("X", 0), []))
)
)
]
fun check name unif ctxt _ =
check_list unit_tests ("occurs-check for " ^ name)
(Prop.prop (not o terms_unify_thms_correct_unif ctxt unif)) ctxt
|> K ()
in
Lecker.test_group @{context} () [
check "unify" unify,
check "unify_hints" unify_hints
]
end
›
subparagraph ‹Lambda-Abstractions›
ML_command‹
let
val ctxt = Proof_Context.set_mode Proof_Context.mode_schematic @{context}
|> Variable.declare_term @{term "f :: nat ⇒ bool ⇒ nat"}
val tests = map (apply2 (Syntax.read_term ctxt))[
("λ (x :: nat). (0 :: nat)", "λ (x :: nat). (0 :: nat)"),
("λ (x :: nat). x", "λ (x :: nat). x"),
("λ (x :: nat) (y :: bool). (x, y)", "λ (x :: nat) (y :: bool). (x, y)"),
("λ (x :: ?'a) y. f y", "λ(x :: ?'b). f"),
("λ (x :: nat) (y :: bool). f x y", "λ (x :: nat) (y :: bool). (?x :: nat ⇒ bool ⇒ ?'Z) x y"),
("λx. (?f :: nat ⇒ bool ⇒ nat) 0 x", "λx. f ?g x"),
("(?f :: nat ⇒ bool ⇒ nat) (?n :: nat)", "?g :: bool ⇒ nat")
]
val check = check_unit_tests_hints_unif tests true []
in
Lecker.test_group ctxt () [
check "unify" unify,
check "unify_hints" unify_hints
]
end
›
ML_command‹
let
val ctxt = Proof_Context.set_mode Proof_Context.mode_schematic @{context}
val hints = map (Skip_Proof.make_thm (Proof_Context.theory_of ctxt) o Syntax.read_term ctxt) [
"?x ≡ (0 :: nat) ⟹ ?y ≡ ?z ⟹ ?x + ?y ≡ ?z"
]
val tests = map (apply2 (Syntax.read_term ctxt))[
("λ (x :: nat) (y :: bool). x", "λ (x :: nat) (y :: bool). 0 + x"),
("0 + (λ (x :: nat) (y :: bool). x) 0 ?y", "0 + (λ (x :: nat) (y :: bool). 0 + x) 0 ?z")
]
val check_hints = check_unit_tests_hints_unif tests
in
Lecker.test_group ctxt () [
check_hints false [] "unify" unify,
check_hints false [] "unify_hints without hints" unify_hints,
check_hints true hints "unify_hints with hints" unify_hints
]
end
›
end