Theory Formula

(*<*)
theory Formula
  imports Trace
begin
(*>*)

section ‹Metric First-Order Temporal Logic›

subsection ‹Syntax›

type_synonym ('n, 'a) event = "('n × 'a list)"
type_synonym ('n, 'a) database = "('n, 'a) event set"
type_synonym ('n, 'a) prefix = "('n × 'a list) prefix"
type_synonym ('n, 'a) trace = "('n × 'a list) trace"
type_synonym ('n, 'a) env = "'n  'a"
type_synonym ('n, 'a) envset = "'n  'a set"

datatype (fv_trm: 'n, 'a) trm = is_Var: Var 'n ("v") | is_Const: Const 'a ("c")

lemma in_fv_trm_conv: "x  fv_trm t  t = v x"
  by (cases t) auto

datatype ('n, 'a) formula = 
  TT                                            ("")
| FF                                            ("")
| Eq_Const 'n 'a                                ("_  _" [85, 85] 85)
| Pred 'n "('n, 'a) trm list"                   ("_  _" [85, 85] 85)
| Neg "('n, 'a) formula"                        ("¬F _" [82] 82)
| Or "('n, 'a) formula" "('n, 'a) formula"      (infixr "F" 80)
| And "('n, 'a) formula" "('n, 'a) formula"     (infixr "F" 80)
| Imp "('n, 'a) formula" "('n, 'a) formula"     (infixr "F" 79)
| Iff "('n, 'a) formula" "('n, 'a) formula"     (infixr "F" 79)
| Exists "'n" "('n, 'a) formula"                ("F_. _" [70,70] 70)
| Forall "'n" "('n, 'a) formula"                ("F_. _" [70,70] 70)
| Prev  "('n, 'a) formula"                     ("Y _ _" [1000, 65] 65)
| Next  "('n, 'a) formula"                     ("X _ _" [1000, 65] 65)
| Once  "('n, 'a) formula"                     ("P _ _" [1000, 65] 65)
| Historically  "('n, 'a) formula"             ("H _ _" [1000, 65] 65)
| Eventually  "('n, 'a) formula"               ("F _ _" [1000, 65] 65)
| Always  "('n, 'a) formula"                   ("G _ _" [1000, 65] 65)
| Since "('n, 'a) formula"  "('n, 'a) formula" ("_ S _ _" [60,1000,60] 60)
| Until "('n, 'a) formula"  "('n, 'a) formula" ("_ U _ _" [60,1000,60] 60)

primrec fv :: "('n, 'a) formula  'n set" where
  "fv (r  ts) =  (fv_trm ` set ts)"
| "fv  = {}"
| "fv  = {}"
| "fv (x  c) = {x}"
| "fv (¬F φ) = fv φ"
| "fv (φ F ψ) = fv φ  fv ψ"
| "fv (φ F ψ) = fv φ  fv ψ"
| "fv (φ F ψ) = fv φ  fv ψ"
| "fv (φ F ψ) = fv φ  fv ψ"
| "fv (Fx. φ) = fv φ - {x}"
| "fv (Fx. φ) = fv φ - {x}"
| "fv (Y I φ) = fv φ"
| "fv (X I φ) = fv φ"
| "fv (P I φ) = fv φ"
| "fv (H I φ) = fv φ"
| "fv (F I φ) = fv φ"
| "fv (G I φ) = fv φ"
| "fv (φ S I ψ) = fv φ  fv ψ"
| "fv (φ U I ψ) = fv φ  fv ψ"

primrec "consts" :: "('n, 'a) formula  'a set" where
  "consts (r  ts) = {}" ― ‹terms may also contain constants,
     but these only filter out values from the trace and do not introduce
     new values of interest (i.e., do not extend the active domain)›
| "consts  = {}"
| "consts  = {}"
| "consts (x  c) = {c}"
| "consts (¬F φ) = consts φ"
| "consts (φ F ψ) = consts φ  consts ψ"
| "consts (φ F ψ) = consts φ  consts ψ"
| "consts (φ F ψ) = consts φ  consts ψ"
| "consts (φ F ψ) = consts φ  consts ψ"
| "consts (Fx. φ) = consts φ"
| "consts (Fx. φ) = consts φ"
| "consts (Y I φ) = consts φ"
| "consts (X I φ) = consts φ"
| "consts (P I φ) = consts φ"
| "consts (H I φ) = consts φ"
| "consts (F I φ) = consts φ"
| "consts (G I φ) = consts φ"
| "consts (φ S I ψ) = consts φ  consts ψ"
| "consts (φ U I ψ) = consts φ  consts ψ"

lemma finite_fv_trm[simp]: "finite (fv_trm t)"
  by (cases t) simp_all

lemma finite_fv[simp]: "finite (fv φ)"
  by (induction φ) simp_all

lemma finite_consts[simp]: "finite (consts φ)"
  by (induction φ) simp_all

definition nfv :: "('n, 'a) formula  nat" where
  "nfv φ = card (fv φ)"

fun future_bounded :: "('n, 'a) formula  bool" where
  "future_bounded  = True"
| "future_bounded  = True"
| "future_bounded (_  _) = True"
| "future_bounded (_  _) = True"
| "future_bounded (¬F φ) = future_bounded φ"
| "future_bounded (φ F ψ) = (future_bounded φ  future_bounded ψ)"
| "future_bounded (φ F ψ) = (future_bounded φ  future_bounded ψ)"
| "future_bounded (φ F ψ) = (future_bounded φ  future_bounded ψ)"
| "future_bounded (φ F ψ) = (future_bounded φ  future_bounded ψ)"
| "future_bounded (F_. φ) = future_bounded φ"
| "future_bounded (F_. φ) = future_bounded φ"
| "future_bounded (Y I φ) = future_bounded φ"
| "future_bounded (X I φ) = future_bounded φ"
| "future_bounded (P I φ) = future_bounded φ"
| "future_bounded (H I φ) = future_bounded φ"
| "future_bounded (F I φ) = (future_bounded φ  right I  )"
| "future_bounded (G I φ) = (future_bounded φ  right I  )"
| "future_bounded (φ S I ψ) = (future_bounded φ  future_bounded ψ)"
| "future_bounded (φ U I ψ) = (future_bounded φ  future_bounded ψ  right I  )"

subsection ‹Semantics›

primrec eval_trm :: "('n, 'a) env  ('n, 'a) trm  'a"("__" [70,89] 89) where
  "eval_trm v (v x) = v x"
| "eval_trm v (c x) = x"

lemma eval_trm_fv_cong: "xfv_trm t. v x = v' x  vt = v't"
  by (induction t) simp_all

definition eval_trms :: "('n, 'a) env  ('n, 'a) trm list  'a list" ("__" [70,89] 89) where
  "eval_trms v ts = map (eval_trm v) ts"

lemma eval_trms_fv_cong: 
  "tset ts. xfv_trm t. v x = v' x  vts = v'ts"
  using eval_trm_fv_cong[of _ v v']
  by (auto simp: eval_trms_def)

(* vs :: "'a envset" is used whenever we define executable functions *)
primrec eval_trm_set :: "('n, 'a) envset  ('n, 'a) trm  ('n, 'a) trm × 'a set"("__" [70,89] 89) where
  "eval_trm_set vs (v x) = (v x, vs x)"
| "eval_trm_set vs (c x) = (c x, {x})"

definition eval_trms_set :: "('n, 'a) envset  ('n, 'a) trm list  (('n, 'a) trm × 'a set) list" ("__" [70,89] 89)
  where "eval_trms_set vs ts = map (eval_trm_set vs) ts"

lemma eval_trms_set_Nil: "vs[] = []"
  by (simp add: eval_trms_set_def)

lemma eval_trms_set_Cons: 
  "vs(t # ts) = vst # vsts"
  by (simp add: eval_trms_set_def)

primrec sat :: "('n, 'a) trace  ('n, 'a) env  nat  ('n, 'a) formula  bool" ("_, _, _  _" [56, 56, 56, 56] 55) where
  "σ, v, i   = True"
| "σ, v, i   = False"
| "σ, v, i  r  ts = ((r, vts)  Γ σ i)"
| "σ, v, i  x  c = (v x = c)"
| "σ, v, i  ¬F φ = (¬ σ, v, i  φ)"
| "σ, v, i  φ F ψ = (σ, v, i  φ  σ, v, i  ψ)"
| "σ, v, i  φ F ψ = (σ, v, i  φ  σ, v, i  ψ)"
| "σ, v, i  φ F ψ = (σ, v, i  φ  σ, v, i  ψ)"
| "σ, v, i  φ F ψ = (σ, v, i  φ  σ, v, i  ψ)"
| "σ, v, i  Fx. φ = (z. σ, v(x := z), i  φ)"
| "σ, v, i  Fx. φ = (z. σ, v(x := z), i  φ)"
| "σ, v, i  Y I φ = (case i of 0  False | Suc j  mem (τ σ i - τ σ j) I  σ, v, j  φ)"
| "σ, v, i  X I φ = (mem (τ σ (Suc i) - τ σ i) I  σ, v, Suc i  φ)"
| "σ, v, i  P I φ = (ji. mem (τ σ i - τ σ j) I  σ, v, j  φ)"
| "σ, v, i  H I φ = (ji. mem (τ σ i - τ σ j) I  σ, v, j  φ)"
| "σ, v, i  F I φ = (ji. mem (τ σ j - τ σ i) I  σ, v, j  φ)"
| "σ, v, i  G I φ = (ji. mem (τ σ j - τ σ i) I  σ, v, j  φ)"
| "σ, v, i  φ S I ψ = (ji. mem (τ σ i - τ σ j) I  σ, v, j  ψ  (k{j<..i}. σ, v, k  φ))"
| "σ, v, i  φ U I ψ = (ji. mem (τ σ j - τ σ i) I  σ, v, j  ψ  (k{i..<j}. σ, v, k  φ))"

lemma sat_fv_cong: "xfv φ. v x = v' x  σ, v, i  φ = σ, v', i  φ"
proof (induct φ arbitrary: v v' i)
  case (Pred n ts)
  thus ?case
    by (simp cong: map_cong eval_trms_fv_cong[rule_format, OF Pred[simplified, rule_format]] 
        split: option.splits)
next
  case (Exists t φ)
  then show ?case unfolding sat.simps 
    by (intro iff_exI) (simp add: nth_Cons')
next
  case (Forall t φ)
  then show ?case unfolding sat.simps 
    by (intro iff_allI) (simp add: nth_Cons')
qed (auto 10 0 simp: Let_def split: nat.splits intro!: iff_exI eval_trm_fv_cong)

lemma sat_Until_rec: "σ, v, i  φ U I ψ 
  (mem 0 I  σ, v, i  ψ 
   Δ σ (i + 1)  right I  σ, v, i  φ  σ, v, i + 1  φ U (subtract (Δ σ (i + 1)) I) ψ)"
  (is "?L  ?R")
proof (rule iffI; (elim disjE conjE)?)
  assume ?L
  then obtain j where j: "i  j" "mem (τ σ j - τ σ i) I" "σ, v, j  ψ" "k  {i ..< j}. σ, v, k  φ"
    by auto
  then show ?R
  proof (cases "i = j")
    case False
    with j(1,2) have "Δ σ (i + 1)  right I"
      by (auto elim: order_trans[rotated] simp: diff_le_mono)
    moreover from False j(1,4) have "σ, v, i  φ" by auto
    moreover from False j have "σ, v, i + 1  φ U (subtract (Δ σ (i + 1)) I) ψ"
      by (cases "right I") (auto simp: le_diff_conv le_diff_conv2 intro!: exI[of _ j])
    ultimately show ?thesis by blast
  qed simp
next
  assume Δ: "Δ σ (i + 1)  right I" and now: "σ, v, i  φ" and
   "next": "σ, v, i + 1  φ U (subtract (Δ σ (i + 1)) I) ψ"
  from "next" obtain j where j: "i + 1  j" "mem (τ σ j - τ σ (i + 1)) (subtract (Δ σ (i + 1)) I)"
      "σ, v, j  ψ" "k  {i + 1 ..< j}. σ, v, k  φ"
    by auto
  from Δ j(1,2) have "mem (τ σ j - τ σ i) I"
    by (cases "right I") (auto simp: le_diff_conv2)
  with now j(1,3,4) show ?L by (auto simp: le_eq_less_or_eq[of i] intro!: exI[of _ j])
qed auto

lemma sat_Since_rec: "σ, v, i  φ S I ψ 
  mem 0 I  σ, v, i  ψ 
  (i > 0  Δ σ i  right I  σ, v, i  φ  σ, v, i - 1  φ S (subtract (Δ σ i) I) ψ)"
  (is "?L  ?R")
proof (rule iffI; (elim disjE conjE)?)
  assume ?L
  then obtain j where j: "j  i" "mem (τ σ i - τ σ j) I" "σ, v, j  ψ" "k  {j <.. i}. σ, v, k  φ"
    by auto
  then show ?R
  proof (cases "i = j")
    case False
    with j(1) obtain k where [simp]: "i = k + 1"
      by (cases i) auto
    with j(1,2) False have "Δ σ i  right I"
      by (auto elim: order_trans[rotated] simp: diff_le_mono2 le_Suc_eq)
    moreover from False j(1,4) have "σ, v, i  φ" by auto
    moreover from False j have "σ, v, i - 1  φ S (subtract (Δ σ i) I) ψ"
      by (cases "right I") (auto simp: le_diff_conv le_diff_conv2 intro!: exI[of _ j])
    ultimately show ?thesis by auto
  qed simp
next
  assume i: "0 < i" and Δ: "Δ σ i  right I" and now: "σ, v, i  φ" and
   "prev": "σ, v, i - 1  φ S (subtract (Δ σ i) I) ψ"
  from "prev" obtain j where j: "j  i - 1" "mem (τ σ (i - 1) - τ σ j) ((subtract (Δ σ i) I))"
      "σ, v, j  ψ" "k  {j <.. i - 1}. σ, v, k  φ"
    by auto
  from Δ i j(1,2) have "mem (τ σ i - τ σ j) I"
    by (cases "right I") (auto simp: le_diff_conv2)
  with now i j(1,3,4) show ?L by (auto simp: le_Suc_eq gr0_conv_Suc intro!: exI[of _ j])
qed auto

lemma sat_Since_0: "σ, v, 0  φ S I ψ  mem 0 I  σ, v, 0  ψ"
  by auto

lemma sat_Since_point: "σ, v, i  φ S I ψ 
    (j. j  i  mem (τ σ i - τ σ j) I  σ, v, i  φ S (point (τ σ i - τ σ j)) ψ  P)  P"
  by (auto intro: diff_le_self)

lemma sat_Since_pointD: "σ, v, i  φ S (point t) ψ  mem t I  σ, v, i  φ S I ψ"
  by auto

lemma sat_Once_Since: "σ, v, i  P I φ = σ, v, i   S I φ"
  by auto

lemma sat_Once_rec: "σ, v, i  P I φ 
  mem 0 I  σ, v, i  φ  
  (i > 0  Δ σ i  right I  σ, v, i - 1  P (subtract (Δ σ i) I) φ)"
  unfolding sat_Once_Since
  by (subst sat_Since_rec) auto

lemma sat_Historically_Once: "σ, v, i  H I φ = σ, v, i  ¬F (P I ¬F φ)"
  by auto

lemma sat_Historically_rec: "σ, v, i  H I φ 
  (mem 0 I  σ, v, i  φ)  
  (i > 0  Δ σ i  right I  σ, v, i - 1  H (subtract (Δ σ i) I) φ)"
  unfolding sat_Historically_Once sat.simps(5)
  by (subst sat_Once_rec) auto

lemma sat_Eventually_Until: "σ, v, i  F I φ = σ, v, i   U I φ"
  by auto

lemma sat_Eventually_rec: "σ, v, i  F I φ 
  mem 0 I  σ, v, i  φ  
  (Δ σ (i + 1)  right I  σ, v, i + 1  F (subtract (Δ σ (i + 1)) I) φ)"
  unfolding sat_Eventually_Until
  by (subst sat_Until_rec) auto

lemma sat_Always_Eventually: "σ, v, i  G I φ = σ, v, i  ¬F (F I ¬F φ)"
  by auto

lemma sat_Always_rec: "σ, v, i  G I φ 
  (mem 0 I  σ, v, i  φ)  
  (Δ σ (i + 1)  right I  σ, v, i + 1  G (subtract (Δ σ (i + 1)) I) φ)"
  unfolding sat_Always_Eventually sat.simps(5)
  by (subst sat_Eventually_rec) auto

bundle MFOTL_no_notation begin

text ‹ For bold font, type ``backslash'' followed by the word ``bold''  ›
no_notation Var ("v")
     and Const ("c")

text ‹ For subscripts type ``backslash'' followed by ``sub''  ›
no_notation TT ("")
     and FF ("")
     and Pred ("_  _" [85, 85] 85)
     and Eq_Const ("_  _" [85, 85] 85)
     and Neg ("¬F _" [82] 82)
     and And (infixr "F" 80)
     and Or (infixr "F" 80)
     and Imp (infixr "F" 79)
     and Iff (infixr "F" 79)
     and Exists ("F_. _" [70,70] 70)
     and Forall ("F_. _" [70,70] 70)
     and Prev ("Y _ _" [1000, 65] 65)
     and Next ("X _ _" [1000, 65] 65)
     and Once ("P _ _" [1000, 65] 65)
     and Eventually ("F _ _" [1000, 65] 65)
     and Historically ("H _ _" [1000, 65] 65)
     and Always ("G _ _" [1000, 65] 65)
     and Since ("_ S _ _" [60,1000,60] 60)
     and Until ("_ U _ _" [60,1000,60] 60)

no_notation eval_trm ("__" [70,89] 89)
     and eval_trms ("__" [70,89] 89)
     and eval_trm_set ("__" [70,89] 89)
     and eval_trms_set ("__" [70,89] 89)
     and sat ("_, _, _  _" [56, 56, 56, 56] 55)
     and Interval.interval ("[_,_]")

end

bundle MFOTL_notation begin

notation Var ("v")
     and Const ("c")

notation TT ("")
     and FF ("")
     and Pred ("_  _" [85, 85] 85)
     and Eq_Const ("_  _" [85, 85] 85)
     and Neg ("¬F _" [82] 82)
     and And (infixr "F" 80)
     and Or (infixr "F" 80)
     and Imp (infixr "F" 79)
     and Iff (infixr "F" 79)
     and Exists ("F_. _" [70,70] 70)
     and Forall ("F_. _" [70,70] 70)
     and Prev ("Y _ _" [1000, 65] 65)
     and Next ("X _ _" [1000, 65] 65)
     and Once ("P _ _" [1000, 65] 65)
     and Eventually ("F _ _" [1000, 65] 65)
     and Historically ("H _ _" [1000, 65] 65)
     and Always ("G _ _" [1000, 65] 65)
     and Since ("_ S _ _" [60,1000,60] 60)
     and Until ("_ U _ _" [60,1000,60] 60)

notation eval_trm ("__" [70,89] 89)
     and eval_trms ("__" [70,89] 89)
     and eval_trm_set ("__" [70,89] 89)
     and eval_trms_set ("__" [70,89] 89)
     and sat ("_, _, _  _" [56, 56, 56, 56] 55)
     and Interval.interval ("[_,_]")

end

unbundle MFOTL_no_notation

(*<*)
end
(*>*)