Theory List_Power
section ‹The Power Operator ‹^^› on Lists›
theory List_Power
imports Main
begin
overloading pow_list == "compow :: nat ⇒ 'a list ⇒ 'a list"
begin
primrec pow_list :: "nat ⇒ 'a list ⇒ 'a list" where
"pow_list 0 xs = []" |
"pow_list (Suc n) xs = xs @ pow_list n xs"
end
context
begin
interpretation monoid_mult "[]" "append"
rewrites "power u n = u ^^ n"
proof-
show "class.monoid_mult [] (@)"
by (unfold_locales, simp_all)
show "power.power [] (@) u n = u ^^ n"
by(induction n) (auto simp add: power.power.simps)
qed
lemmas pow_list_zero = power.power_0 and
pow_list_one = power_Suc0_right and
pow_list_1 = power_one_right and
pow_list_Nil = power_one and
pow_list_2 = power2_eq_square and
pow_list_Suc = power_Suc and
pow_list_Suc2 = power_Suc2 and
pow_list_comm = power_commutes and
pow_list_add = power_add and
pow_list_eq_if = power_eq_if and
pow_list_mult = power_mult and
pow_list_commuting_commutes = power_commuting_commutes
end
lemma pow_list_alt: "xs^^n = concat (replicate n xs)"
by (induct n) auto
lemma pow_list_single: "[a] ^^ m = replicate m a"
by(simp add: pow_list_alt)
lemma length_pow_list_single [simp]: "length([a] ^^ n) = n"
by (simp add: pow_list_single)
lemma nth_pow_list_single: "i < m ⟹ ([a] ^^ m) ! i = a"
by (simp add: pow_list_single)
lemma pow_list_not_NilD: "xs ^^ m ≠ [] ⟹ 0 < m"
by (cases m) auto
lemma length_pow_list: "length(xs ^^ k) = k * length xs"
by (induction k) simp+
lemma pow_list_set: "set (w ^^ Suc k) = set w"
by (induction k)(simp_all)
lemma pow_list_slide: "xs @ (ys @ xs) ^^ n @ ys = (xs @ ys)^^(Suc n)"
by (induction n) simp+
lemma hd_pow_list: "0 < n ⟹ hd(xs ^^ n) = hd xs"
by(auto simp: pow_list_alt hd_append gr0_conv_Suc)
lemma rev_pow_list: "rev (xs ^^ m) = (rev xs) ^^ m"
by (induction m)(auto simp: pow_list_comm)
lemma eq_pow_list_iff_eq_exp[simp]: assumes "xs ≠ []" shows "xs ^^ k = xs ^^ m ⟷ k = m"
proof
assume "k = m" thus "xs ^^ k = xs ^^ m" by simp
next
assume "xs ^^ k = xs ^^ m"
thus "k = m" using ‹xs ≠ []›[folded length_0_conv]
by (metis length_pow_list mult_cancel2)
qed
lemma pow_list_Nil_iff_0: "xs ≠ [] ⟹ xs ^^ m = [] ⟷ m = 0"
by (simp add: pow_list_eq_if)
lemma pow_list_Nil_iff_Nil: "0 < m ⟹ xs ^^ m = [] ⟷ xs = []"
by (cases xs) (auto simp add: pow_list_Nil pow_list_Nil_iff_0)
lemma pow_eq_eq:
assumes "xs ^^ k = ys ^^ k" and "0 < k"
shows "(xs::'a list) = ys"
proof-
have "length xs = length ys"
using assms(1) length_pow_list by (metis nat_mult_eq_cancel1[OF ‹0 < k›])
thus ?thesis by (metis Suc_pred append_eq_append_conv assms(1,2) pow_list.simps(2))
qed
lemma map_pow_list[simp]: "map f (xs ^^ k) = (map f xs) ^^ k"
by (induction k) simp_all
lemma concat_pow_list: "concat (xs ^^ k) = (concat xs) ^^ k"
by (induction k) simp_all
lemma concat_pow_list_single[simp]: "concat ([a] ^^ k) = a ^^ k"
by (simp add: pow_list_alt)
lemma pow_list_single_Nil_iff: "[a] ^^ n = [] ⟷ n = 0"
by (simp add: pow_list_single)
lemma hd_pow_list_single: "k ≠ 0 ⟹ hd ([a] ^^ k) = a"
by (cases k) simp+
lemma index_pow_mod: "i < length(xs ^^ k) ⟹ (xs ^^ k)!i = xs!(i mod length xs)"
proof(induction k)
have aux: "length(xs ^^ Suc l) = length(xs ^^ l) + length xs" for l
by simp
have aux1: "length (xs ^^ l) ≤ i ⟹ i < length(xs ^^ l) + length xs ⟹ i mod length xs = i - length(xs^^l)" for l
unfolding length_pow_list[of l xs]
using less_diff_conv2[of "l * length xs" i "length xs", unfolded add.commute[of "length xs" "l * length xs"]]
le_add_diff_inverse[of "l*length xs" i]
by (simp add: mod_nat_eqI)
case (Suc k)
show ?case
unfolding aux sym[OF pow_list_Suc2[symmetric]] nth_append le_mod_geq
using aux1[ OF _ Suc.prems[unfolded aux]]
Suc.IH pow_list_Suc2[symmetric] Suc.prems[unfolded aux] leI[of i "length(xs ^^ k)"] by presburger
qed auto
lemma unique_letter_word: assumes "⋀c. c ∈ set w ⟹ c = a" shows "w = [a] ^^ length w"
using assms proof (induction w)
case (Cons b w)
have "[a] ^^ length w = w" using Cons.IH[OF Cons.prems[OF list.set_intros(2)]]..
then show "b # w = [a] ^^ length(b # w)"
unfolding Cons.prems[OF list.set_intros(1)] by auto
qed simp
lemma count_list_pow_list: "count_list (w ^^ k) a = k * (count_list w a)"
by (induction k) simp+
lemma sing_pow_lists: "a ∈ A ⟹ [a] ^^ n ∈ lists A"
by (induction n) auto
lemma one_generated_list_power: "u ∈ lists {x} ⟹ ∃k. concat u = x ^^ k"
proof(induction u rule: lists.induct)
case Nil
then show ?case by (metis concat.simps(1) pow_list.simps(1))
next
case Cons
then show ?case by (metis concat.simps(2) pow_list_Suc singletonD)
qed
lemma pow_list_in_lists: "0 < k ⟹ u ^^ k ∈ lists B ⟹ u ∈ lists B"
by (metis Suc_pred in_lists_conv_set pow_list_set)
end