Theory Matrix_LinPoly
theory Matrix_LinPoly
imports
Jordan_Normal_Form.Matrix_Impl
Farkas.Simplex_for_Reals
Farkas.Matrix_Farkas
begin
text ‹ Add this to linear polynomials in Simplex ›
lemma eval_poly_with_sum: "(v ⦃ X ⦄) = (∑x∈ vars v. coeff v x * X x)"
by (auto simp: linear_poly_sum intro: sum.cong)
lemma eval_poly_with_sum_superset:
assumes "finite S"
assumes "S ⊇ vars v"
shows "(v ⦃X⦄) = (∑x∈S. coeff v x * X x)"
proof -
define D where D: "D = S - vars v"
have zeros: "∀x ∈ D. coeff v x = 0"
using D coeff_zero by auto
have fnt: "finite (vars v)"
using finite_vars by auto
have "(v ⦃X⦄) = (∑x∈ vars v. coeff v x * X x)"
by (auto simp add: linear_poly_sum intro: sum.cong)
also have "... = (∑x∈ vars v. coeff v x * X x) + (∑x∈D. coeff v x * X x)"
using zeros by auto
also have "... = (∑x∈ vars v ∪ D. coeff v x * X x)"
using assms(1) fnt Diff_partition[of "vars v" S, OF assms(2)]
sum.subset_diff[of "vars v" S, OF assms(2) assms(1)]
by (simp add: ‹⋀g. sum g S = sum g (S - vars v) + sum g (vars v)› D)
also have "... = (∑x∈S. coeff v x * X x)"
using D Diff_partition assms(2) by fastforce
finally show ?thesis .
qed
text ‹ Get rid of these synonyms ›
section ‹ Translations of Jordan Normal Forms Matrix Library to Simplex polynomials ›
subsection ‹ Vectors ›
definition list_to_lpoly where
"list_to_lpoly cs = sum_list (map2 (λ i c. lp_monom c i) [0..<length cs] cs)"
lemma empty_list_0poly:
shows "list_to_lpoly [] = 0"
unfolding list_to_lpoly_def by simp
lemma sum_list_map_upto_coeff_limit:
assumes "i ≥ length L"
shows "coeff (list_to_lpoly L) i = 0"
using assms by (induction L rule: rev_induct) (auto simp: list_to_lpoly_def)
lemma rl_lpoly_coeff_nth_non_empty:
assumes "i < length cs"
assumes "cs ≠ []"
shows "coeff (list_to_lpoly cs) i = cs!i"
using assms(2) assms(1)
proof (induction cs rule: rev_nonempty_induct)
fix x ::rat
assume "i < length [x]"
have "(list_to_lpoly [x]) = lp_monom x 0"
by (simp add: list_to_lpoly_def)
then show "coeff (list_to_lpoly [x]) i = [x] ! i"
using ‹i < length [x]› list_to_lpoly_def by auto
next
fix x :: rat
fix xs :: "rat list"
assume "xs ≠ []"
assume IH: "i < length xs ⟹ coeff (list_to_lpoly xs) i = xs ! i"
assume "i < length (xs @ [x])"
consider (le) "i < length xs" | (eq) "i = length xs"
using ‹i < length (xs @ [x])› less_Suc_eq by auto
then show "coeff (list_to_lpoly (xs @ [x])) i = (xs @ [x]) ! i"
proof (cases)
case le
have "coeff (lp_monom x (length xs)) i = 0"
using le by auto
have "coeff (sum_list (map2 (λx y. lp_monom y x)
[0..<length (xs @ [x])] (xs @ [x]))) i = (xs @ [x]) ! i"
apply(simp add: IH le nth_append)
using IH le list_to_lpoly_def by auto
then show ?thesis
unfolding list_to_lpoly_def by simp
next
case eq
then have *: "coeff (sum_list (map2 (λx y. lp_monom y x) [0..<length xs] xs)) i = 0"
using sum_list_map_upto_coeff_limit[of xs i]
by (simp add: list_to_lpoly_def)
have **: "(sum_list (map2 (λ x y. lp_monom y x) [0..<length (xs @ [x])] (xs @ [x]))) =
sum_list (map (λ(x,y). lp_monom y x) (zip [0..<length xs] xs)) + lp_monom x (length xs)"
by simp
have "coeff ((list_to_lpoly xs) + lp_monom x (length xs)) i = x"
unfolding list_to_lpoly_def using * ** by (simp add: eq)
then show ?thesis
by (simp add: eq list_to_lpoly_def)
qed
qed
lemma list_to_lpoly_coeff_nth:
assumes "i < length cs "
shows "coeff (list_to_lpoly cs) i = cs ! i"
using gr_implies_not0 rl_lpoly_coeff_nth_non_empty assms by fastforce
lemma rat_list_outside_zero:
assumes "length cs ≤ i"
shows "coeff (list_to_lpoly cs) i = 0"
using sum_list_map_upto_coeff_limit[of cs i, OF assms] by simp
text ‹ Transform linear polynomials to rational vectors ›
fun dim_poly where
"dim_poly p = (if (vars p) = {} then 0 else Max (vars p)+1)"
definition max_dim_poly_list where
"max_dim_poly_list lst = Max {Max (vars p) |p. p ∈ set lst}"
fun lpoly_to_vec where
"lpoly_to_vec p = vec (dim_poly p) (coeff p)"
lemma all_greater_dim_poly_zero[simp]:
assumes "x ≥ dim_poly p"
shows "coeff p x = 0"
using Max_ge[of "vars p" x, OF finite_vars[of p]] coeff_zero[of p x]
by (metis add_cancel_left_right assms dim_poly.elims empty_iff leD le_eq_less_or_eq
trans_less_add1 zero_neq_one_class.zero_neq_one)
lemma lpoly_to_vec_0_iff_zero_poly [iff]:
shows "(lpoly_to_vec p) = 0⇩v 0 ⟷ p = 0"
proof(standard)
show "lpoly_to_vec p = 0⇩v 0 ⟹ p = 0"
proof (rule contrapos_pp)
assume "p ≠ 0"
then have "vars p ≠ {}"
by (simp add: vars_empty_zero)
then have "dim_poly p > 0"
by (simp)
then show "lpoly_to_vec p ≠ 0⇩v 0"
using vec_of_dim_0[of "lpoly_to_vec p"] by simp
qed
next
qed (auto simp: vars_empty_zero)
lemma dim_poly_dim_vec_equiv:
"dim_vec (lpoly_to_vec p) = dim_poly p"
using lpoly_to_vec.simps by auto
lemma dim_poly_greater_ex_coeff: "dim_poly x > d ⟹ ∃i≥d. coeff x i ≠ 0"
by (simp split: if_splits) (meson Max_in coeff_zero finite_vars less_Suc_eq_le)
lemma dimpoly_all_zero_limit:
assumes "⋀i. i ≥ d ⟹ coeff x i = 0"
shows "dim_poly x ≤ d"
proof -
have "(∀i≥ d. coeff x i = 0) ⟹ dim_poly x ≤ d "
proof (rule contrapos_pp)
assume "¬ dim_poly x ≤ d"
then have "dim_poly x > d" by linarith
then have "∃i ≥ d. coeff x i ≠ 0"
using dim_poly_greater_ex_coeff[of d x] by blast
then show "¬ (∀i≥d. coeff x i = 0)"
by blast
qed
then show ?thesis
using assms by blast
qed
lemma construct_poly_from_lower_dim_poly:
assumes "dim_poly x = d+1"
obtains p c where "dim_poly p ≤ d" "x = p + lp_monom c d"
proof -
define c' where c': "c' = coeff x d"
have f: "∀i>d. coeff x i = 0"
using assms by auto
have *: "x = x - (lp_monom c' d) + (lp_monom c' d)"
by simp
have "coeff (x - (lp_monom c' d)) d = 0"
using c' by simp
then have "∀i≥d. coeff (x - (lp_monom c' d)) i = 0"
using f by auto
then have **: "dim_poly (x - (lp_monom c' d)) ≤ d"
using dimpoly_all_zero_limit[of d "(x - (lp_monom c' d))"] by auto
define p' where p': "p' = x - (lp_monom c' d)"
have "∃p c. dim_poly p ≤ d ∧ x = p + lp_monom c d"
using "*" "**" by blast
then show ?thesis
using * p' c' that by blast
qed
lemma vars_subset_0_dim_poly:
"vars z ⊆ {0..<dim_poly z}"
by (simp add: finite_vars less_Suc_eq_le subsetI)
lemma in_dim_and_not_var_zero: "x ∈ {0..<dim_poly z} - vars z ⟹ coeff z x = 0"
using coeff_zero by auto
lemma valuate_with_dim_poly: "z ⦃ X ⦄ = (∑i∈{0..<dim_poly z}. coeff z i * X i)"
using eval_poly_with_sum_superset[of "{0..<dim_poly z}" z X] using vars_subset_0_dim_poly by blast
lemma lin_poly_to_vec_coeff_access:
assumes "x < dim_poly y"
shows "(lpoly_to_vec y) $ x = coeff y x"
proof -
have "x < dim_vec (lpoly_to_vec y)"
using dim_poly_dim_vec_equiv[of y] assms by auto
then show ?thesis
by (simp add: coeff_def)
qed
lemma addition_over_lin_poly_to_vec:
fixes x y
assumes "a < dim_poly x"
assumes "dim_poly x = dim_poly y"
shows "(lpoly_to_vec x + lpoly_to_vec y) $ a = coeff (x + y) a"
using assms(1) assms(2) lin_poly_to_vec_coeff_access by (simp add: dim_poly_dim_vec_equiv)
lemma list_to_lpoly_dim_less: "length cs ≥ dim_poly (list_to_lpoly cs)"
using dimpoly_all_zero_limit sum_list_map_upto_coeff_limit by blast
text ‹ Transform rational vectors to linear polynomials ›
fun vec_to_lpoly where
"vec_to_lpoly rv = list_to_lpoly (list_of_vec rv)"
lemma vec_to_lin_poly_coeff_access:
assumes "x < dim_vec y"
shows "y $ x = coeff (vec_to_lpoly y) x"
by (simp add: assms list_to_lpoly_coeff_nth)
lemma addition_over_vec_to_lin_poly:
fixes x y
assumes "a < dim_vec x"
assumes "dim_vec x = dim_vec y"
shows "(x + y) $ a = coeff (vec_to_lpoly x + vec_to_lpoly y) a"
using assms(1) assms(2) coeff_plus index_add_vec(1)
by (metis vec_to_lin_poly_coeff_access)
lemma outside_list_coeff0:
assumes "i ≥ dim_vec xs"
shows "coeff (vec_to_lpoly xs) i = 0"
by (simp add: assms sum_list_map_upto_coeff_limit)
lemma vec_to_poly_dim_less:
"dim_poly (vec_to_lpoly x) ≤ dim_vec x"
using list_to_lpoly_dim_less[of "list_of_vec x"] by simp
lemma vec_to_lpoly_from_lpoly_coeff_dual1:
"coeff (vec_to_lpoly (lpoly_to_vec p)) i = coeff p i"
by (metis all_greater_dim_poly_zero dim_poly_dim_vec_equiv lin_poly_to_vec_coeff_access
not_less outside_list_coeff0 vec_to_lin_poly_coeff_access)
lemma vec_to_lpoly_from_lpoly_coeff_dual2:
assumes "i < dim_vec (lpoly_to_vec (vec_to_lpoly v))"
shows "(lpoly_to_vec (vec_to_lpoly v)) $ i = v $ i"
by (metis assms dim_poly_dim_vec_equiv less_le_trans lin_poly_to_vec_coeff_access
vec_to_lin_poly_coeff_access vec_to_poly_dim_less)
lemma vars_subset_dim_vec_to_lpoly_dim: "vars (vec_to_lpoly v) ⊆ {0..<dim_vec v}"
by (meson ivl_subset le_numeral_extra(3) order.trans vec_to_poly_dim_less
vars_subset_0_dim_poly)
lemma sum_dim_vec_equals_sum_dim_poly:
shows "(∑a = 0..<dim_vec A. coeff (vec_to_lpoly A) a * X a) =
(∑a = 0..<dim_poly (vec_to_lpoly A). coeff (vec_to_lpoly A) a * X a)"
proof -
consider (eq) "dim_vec A = dim_poly (vec_to_lpoly A)" |
(le) "dim_vec A > dim_poly (vec_to_lpoly A)"
using vec_to_poly_dim_less[of "A"] by fastforce
then show ?thesis
proof (cases)
case le
define dp where dp: "dp = dim_poly (vec_to_lpoly A)"
have "(∑a = 0..<dim_vec A. coeff (vec_to_lpoly A) a * X a) =
(∑a = 0..<dp. coeff (vec_to_lpoly A) a * X a) +
(∑a = dp..<dim_vec A. coeff (vec_to_lpoly A) a * X a)"
by (metis (no_types, lifting) dp vec_to_poly_dim_less sum.atLeastLessThan_concat zero_le)
also have "... = (∑a = 0..<dp. coeff (vec_to_lpoly A) a * X a)"
using all_greater_dim_poly_zero by (simp add: dp)
also have "... = (∑a = 0..<dim_poly (vec_to_lpoly A).coeff (vec_to_lpoly A) a * X a)"
using dp by auto
finally show ?thesis
by blast
qed (auto)
qed
lemma vec_to_lpoly_vNil [simp]: "vec_to_lpoly vNil = 0"
by (simp add: empty_list_0poly)
lemma zero_vector_is_zero_poly: "coeff (vec_to_lpoly (0⇩v n)) i = 0"
by (metis index_zero_vec(1) index_zero_vec(2) not_less
outside_list_coeff0 vec_to_lin_poly_coeff_access)
lemma coeff_nonzero_dim_vec_non_zero:
assumes "coeff (vec_to_lpoly v) i ≠ 0"
shows "v $ i ≠ 0" "i < dim_vec v"
apply (metis assms leI outside_list_coeff0 vec_to_lin_poly_coeff_access)
using assms leI outside_list_coeff0 by blast
lemma lpoly_of_v_equals_v_append0:
"vec_to_lpoly v = vec_to_lpoly (v @⇩v 0⇩v a)" (is "?lhs = ?rhs")
proof -
have "∀i. coeff ?lhs i = coeff ?rhs i"
proof
fix i
consider (le) "i < dim_vec v" | (ge) "i ≥ dim_vec v"
using leI by blast
then show "coeff (vec_to_lpoly v) i = coeff (vec_to_lpoly (v @⇩v 0⇩v a)) i"
proof (cases)
case le
then show ?thesis using vec_to_lin_poly_coeff_access[of i v] index_append_vec(1)
by (metis index_append_vec(2) vec_to_lin_poly_coeff_access trans_less_add1)
next
case ge
then have "coeff (vec_to_lpoly v) i = 0"
using outside_list_coeff0 by blast
moreover have "coeff (vec_to_lpoly (v @⇩v 0⇩v a)) i = 0"
proof (rule ccontr)
assume na: "¬ coeff (vec_to_lpoly (v @⇩v 0⇩v a)) i = 0"
define va where v: "va = coeff (vec_to_lpoly (v @⇩v 0⇩v a)) i"
have "i < dim_vec (v @⇩v 0⇩v a)"
using coeff_nonzero_dim_vec_non_zero[of "(v @⇩v 0⇩v a)" i] na by blast
moreover have "(0⇩v a) $ (i - dim_vec v) = va"
by (metis ge diff_is_0_eq' index_append_vec(1) index_append_vec(2)
not_less_zero vec_to_lin_poly_coeff_access v zero_less_diff calculation)
moreover have "va ≠ 0" using v na by linarith
ultimately show False
using ge by auto
qed
then show "coeff (vec_to_lpoly v) i = coeff (vec_to_lpoly (v @⇩v 0⇩v a)) i"
using not_less using calculation by linarith
qed
qed
then show ?thesis
using Abstract_Linear_Poly.poly_eqI by blast
qed
lemma vec_to_lpoly_eval_dot_prod:
"(vec_to_lpoly v) ⦃ x ⦄ = v ∙ (vec (dim_vec v) x)"
proof -
have "(vec_to_lpoly v) ⦃ x ⦄ = (∑i∈{0..<dim_vec v}. coeff (vec_to_lpoly v) i * x i)"
using eval_poly_with_sum_superset[of "{0..<dim_vec v}" "vec_to_lpoly v" x]
vars_subset_dim_vec_to_lpoly_dim by blast
also have "... = (∑i∈{0..<dim_vec v}. v$i * x i)"
using list_to_lpoly_coeff_nth by auto
also have "... = v ∙ (vec (dim_vec v) x)"
unfolding scalar_prod_def by auto
finally show ?thesis .
qed
lemma dim_poly_of_append_vec:
"dim_poly (vec_to_lpoly (a@⇩vb)) ≤ dim_vec a + dim_vec b"
using vec_to_poly_dim_less[of "a@⇩vb"] index_append_vec(2)[of a b] by auto
lemma vec_coeff_append1: "i ∈ {0..<dim_vec a} ⟹ coeff (vec_to_lpoly (a@⇩vb)) i = a$i"
by (metis atLeastLessThan_iff index_append_vec(1) index_append_vec(2) vec_to_lin_poly_coeff_access trans_less_add1)
lemma vec_coeff_append2:
"i ∈ {dim_vec a..<dim_vec (a@⇩vb)} ⟹ coeff (vec_to_lpoly (a@⇩vb)) i = b$(i-dim_vec a)"
by (metis atLeastLessThan_iff index_append_vec(1) index_append_vec(2) leD vec_to_lin_poly_coeff_access)
text ‹ Maybe Code Equation ›
lemma vec_to_lpoly_poly_of_vec_eq: "vec_to_lpoly v = poly_of_vec v"
proof -
have "⋀i. i < dim_vec v ⟹ coeff (poly_of_vec v) i = v $ i"
by (simp add: coeff.rep_eq poly_of_vec.rep_eq)
moreover have "⋀i. i < dim_vec v ⟹ coeff (vec_to_lpoly v) i = v $ i"
by (simp add: vec_to_lin_poly_coeff_access)
moreover have "⋀i. i ≥ dim_vec v ⟹ coeff (poly_of_vec v) i = 0"
by (simp add: coeff.rep_eq poly_of_vec.rep_eq)
moreover have "⋀i. i ≥ dim_vec v ⟹ coeff (vec_to_lpoly v) i = 0"
using outside_list_coeff0 by blast
ultimately show ?thesis
by (metis Abstract_Linear_Poly.poly_eq_iff le_less_linear)
qed
lemma vars_vec_append_subset: "vars (vec_to_lpoly (0⇩v n @⇩v v)) ⊆ {n..<n+dim_vec v}"
proof -
let ?p = "(vec_to_lpoly (0⇩v n @⇩v v))"
have "dim_poly ?p ≤ n+dim_vec v"
using dim_poly_of_append_vec[of "0⇩v n" "v"] by auto
have "vars (vec_to_lpoly (0⇩v n @⇩v v)) ⊆ {0..<n+dim_vec v}"
using vars_subset_dim_vec_to_lpoly_dim[of "(0⇩v n @⇩v v)"] by auto
moreover have "∀i < n. coeff ?p i = 0"
using vec_coeff_append1[of _ "0⇩v n" v] by auto
ultimately show "vars (vec_to_lpoly (0⇩v n @⇩v v)) ⊆ {n..<n+dim_vec v}"
by (meson atLeastLessThan_iff coeff_zero not_le subsetCE subsetI)
qed
section ‹ Matrices ›
fun matrix_to_lpolies where
"matrix_to_lpolies A = map vec_to_lpoly (rows A)"
lemma matrix_to_lpolies_vec_of_row:
"i <dim_row A ⟹ matrix_to_lpolies A ! i = vec_to_lpoly (row A i)"
using matrix_to_lpolies.simps[of A] by simp
lemma outside_of_col_range_is_0:
assumes "i < dim_row A" and "j ≥ dim_col A"
shows "coeff ((matrix_to_lpolies A)!i) j = 0"
using outside_list_coeff0[of "col A i" j]
by (metis assms(1) assms(2) index_row(2) length_rows matrix_to_lpolies.simps nth_map nth_rows outside_list_coeff0)
lemma polys_greater_col_zero:
assumes "x ∈ set (matrix_to_lpolies A)"
assumes "j ≥ dim_col A"
shows "coeff x j = 0"
using assms(1) assms(2) outside_of_col_range_is_0[of _ A j]
assms(2) matrix_to_lpolies.simps by (metis in_set_conv_nth length_map length_rows)
lemma matrix_to_lp_vec_to_lpoly_row [simp]:
assumes "i < dim_row A"
shows "(matrix_to_lpolies A)!i = vec_to_lpoly (row A i)"
by (simp add: assms)
lemma matrix_to_lpolies_coeff_access:
assumes "i < dim_row A" and "j < dim_col A"
shows "coeff (matrix_to_lpolies A ! i) j = A $$ (i,j)"
using matrix_to_lp_vec_to_lpoly_row[of i A, OF assms(1)]
by (metis assms(1) assms(2) index_row(1) index_row(2) vec_to_lin_poly_coeff_access)
text ‹ From linear polynomial list to matrix ›
definition lin_polies_to_mat where
"lin_polies_to_mat lst = mat (length lst) (max_dim_poly_list lst) (λ(x,y).coeff (lst!x) y)"
lemma lin_polies_to_rat_mat_coeff_index:
assumes "i < length L" and "j < (max_dim_poly_list L)"
shows "coeff (L ! i) j = (lin_polies_to_mat L) $$ (i,j)"
unfolding lin_polies_to_mat_def by (simp add: assms(1) assms(2))
lemma vec_to_lpoly_valuate_equiv_dot_prod:
assumes "dim_vec y = dim_vec x"
shows "(vec_to_lpoly y) ⦃ ($)x ⦄ = y ∙ x"
proof -
let ?p = "vec_to_lpoly y"
have 2: "?p⦃ ($)x ⦄ = (∑j∈vars?p. coeff ?p j * x$j)"
using eval_poly_with_sum[of ?p "($)x"] by blast
have "vars ?p ⊆ {0..<dim_vec y}"
using vars_subset_dim_vec_to_lpoly_dim by blast
have 2: "?p⦃ ($)x ⦄ = (∑j∈vars?p. coeff ?p j * x$j)"
using eval_poly_with_sum[of ?p "($)x"] by blast
also have *: "... = (∑i∈{0..<dim_poly ?p}. coeff ?p i * x$i)"
using valuate_with_dim_poly by (metis (no_types, lifting) calculation sum.cong)
also have "... = y ∙ x"
proof -
have "⋀j. j < dim_vec x ⟹ coeff (vec_to_lpoly y) j = y $ j"
using assms vec_to_lin_poly_coeff_access by auto
then show ?thesis
using vec_to_lpoly_eval_dot_prod[of "y" "($)x"]
by (metis assms calculation dim_vec index_vec vec_eq_iff)
qed
finally show ?thesis unfolding scalar_prod_def .
qed
lemma matrix_to_lpolies_valuate_scalarP:
assumes "i < dim_row A"
assumes "dim_col A = dim_vec x"
shows "(matrix_to_lpolies A!i) ⦃ ($)x ⦄ = (row A i) ∙ x"
using vec_to_lpoly_valuate_equiv_dot_prod[of "row A i" x]
by (simp add: assms(1) assms(2))
lemma matrix_to_lpolies_lambda_valuate_scalarP:
assumes "i < dim_row A"
assumes "dim_col A = dim_vec x"
shows "(matrix_to_lpolies A!i) ⦃ (λi. (if i < dim_vec x then x$i else 0)) ⦄ = (row A i) ∙ x"
proof -
have "⋀j. j < dim_vec x ⟹ x$j = (λi. (if i < dim_vec x then x$i else 0)) j"
by simp
let ?p = "(matrix_to_lpolies A!i)"
have "⋀j. coeff (matrix_to_lpolies A!i) j ≠ 0 ⟹ j < dim_vec x"
using outside_of_col_range_is_0[of i A] assms(1) assms(2) leI by auto
then have subs: "vars ?p ⊆ {0..<dim_vec x}"
using ‹⋀j. Abstract_Linear_Poly.coeff (matrix_to_lpolies A ! i) j ≠ 0 ⟹ j < dim_vec x› atLeastLessThan_iff coeff_zero by blast
then have *: "⋀j. j ∈ vars ?p ⟹ x$j = (λi. (if i < dim_vec x then x$i else 0)) j"
by (simp add: ‹⋀j. Abstract_Linear_Poly.coeff (matrix_to_lpolies A ! i) j ≠ 0 ⟹ j < dim_vec x› coeff_zero)
have "row A i ∙ x = (?p ⦃ ($) x ⦄)"
using assms(1) assms(2) matrix_to_lpolies_valuate_scalarP[of i A x] by linarith
also have "... = (∑j∈ vars ?p. coeff ?p j * x$j)"
using eval_poly_with_sum by blast
also have "... = (∑j∈ vars ?p. coeff ?p j * (λi. (if i < dim_vec x then x$i else 0)) j)"
by (metis (full_types, opaque_lifting) ‹⋀j. Abstract_Linear_Poly.coeff (matrix_to_lpolies A ! i) j ≠ 0 ⟹ j < dim_vec x› mult.commute mult_zero_right)
also have "... = (?p ⦃ (λi. (if i < dim_vec x then x$i else 0)) ⦄)"
using eval_poly_with_sum by presburger
finally show ?thesis
by linarith
qed
end