Theory Diophantine_Eqs_and_Ineqs
section ‹Linear Diophantine Equations and Inequalities›
text ‹We just represent equations and inequalities as polynomials, i.e.,
‹p = 0› or ‹p ≤ 0›. There is no need for strict inequalities ‹p < 0›
since for integers this is equivalent to ‹p + 1 ≤ 0›.›
theory Diophantine_Eqs_and_Ineqs
imports Linear_Polynomial
begin
type_synonym 'v dleq = "(int,'v) lpoly"
type_synonym 'v dlineq = "(int,'v) lpoly"
definition satisfies_dleq :: "(int,'v) assign ⇒ 'v dleq ⇒ bool" where
"satisfies_dleq α p = (eval_l α p = 0)"
definition satisfies_dlineq :: "(int,'v) assign ⇒ 'v dlineq ⇒ bool" where
"satisfies_dlineq α p = (eval_l α p ≤ 0)"
abbreviation satisfies_eq_ineqs :: "(int,'v) assign ⇒ 'v dleq set ⇒ 'v dlineq set ⇒ bool" ("_ ⊨⇩d⇩i⇩o '(_,_')") where
"satisfies_eq_ineqs α eqs ineqs ≡ Ball eqs (satisfies_dleq α) ∧ Ball ineqs (satisfies_dlineq α)"
definition trivial_ineq :: "(int,'v :: linorder)lpoly ⇒ bool option" where
"trivial_ineq c = (if vars_l_list c = [] then Some (constant_l c ≤ 0) else None)"
lemma trivial_ineq_None: "trivial_ineq c = None ⟹ vars_l c ≠ {}"
unfolding trivial_ineq_def unfolding vars_l_list[symmetric] by fastforce
lemma trivial_ineq_Some: assumes "trivial_ineq c = Some b"
shows "b = satisfies_dlineq α c"
proof -
from assms[unfolded trivial_ineq_def] have vars: "vars_l c = {}" and b: "b = (constant_l c ≤ 0)"
by (auto split: if_splits simp: vars_l_list_def)
show ?thesis unfolding satisfies_dlineq_def eval_l_def vars using b by auto
qed
fun trivial_ineq_filter :: "'v :: linorder dlineq list ⇒ 'v dlineq list option"
where "trivial_ineq_filter [] = Some []"
| "trivial_ineq_filter (c # cs) = (case trivial_ineq c of Some True ⇒ trivial_ineq_filter cs
| Some False ⇒ None
| None ⇒ map_option ((#) c) (trivial_ineq_filter cs))"
lemma trivial_ineq_filter: "trivial_ineq_filter cs = None ⟹ (∄ α. α ⊨⇩d⇩i⇩o ({}, set cs))"
"trivial_ineq_filter cs = Some ds ⟹
Ball (set ds) (λ c. vars_l c ≠ {}) ∧
(α ⊨⇩d⇩i⇩o ({}, set cs) ⟷ α ⊨⇩d⇩i⇩o ({}, set ds)) ∧
length ds ≤ length cs"
proof (atomize(full), induct cs arbitrary: ds)
case IH: (Cons c cs)
let ?t = "trivial_ineq c"
consider (T) "?t = Some True" | (F) "?t = Some False" | (V) "?t = None" by (cases ?t, auto)
thus ?case
proof cases
case F
from trivial_ineq_Some[OF F] F show ?thesis by auto
next
case T
from trivial_ineq_Some[OF T] T IH show ?thesis by force
next
case V
from trivial_ineq_None[OF V] V IH show ?thesis by auto
qed
qed simp
lemma trivial_lhe: assumes "vars_l p = {}"
shows "eval_l α p = constant_l p"
"satisfies_dleq α p ⟷ p = 0"
proof -
show id: "eval_l α p = constant_l p"
by (subst eval_l_mono[of "{}"], insert assms, auto)
show "satisfies_dleq α p ⟷ p = 0"
unfolding satisfies_dleq_def id using assms
apply (transfer)
by (metis (mono_tags, lifting) Collect_empty_eq not_None_eq)
qed
end