Theory LList2
section‹More on llists›
theory LList2
imports Coinductive.Coinductive_List
begin
subsection‹Preliminaries›
notation
LCons (infixr "##" 65) and
lappend (infixr "@@" 65)
translations
"case p of XCONST LNil ⇒ a | x ## l ⇒ b" ⇌ "CONST case_llist a (λx l. b) p"
"case p of XCONST LNil :: 'a ⇒ a | x ## l ⇒ b" ⇀ "CONST case_llist a (λx l. b) p"
lemmas llistE = llist.exhaust
subsection‹Finite and infinite llists over an alphabet›
inductive_set
finlsts :: "'a set ⇒ 'a llist set" ("(_⇧⋆)" [1000] 999)
for A :: "'a set"
where
LNil_fin [iff]: "LNil ∈ A⇧⋆"
| LCons_fin [intro!]: "⟦ l ∈ A⇧⋆; a ∈ A ⟧ ⟹ a ## l ∈ A⇧⋆"
coinductive_set
alllsts :: "'a set ⇒ 'a llist set" ("(_⇧∞)" [1000] 999)
for A :: "'a set"
where
LNil_all [iff]: "LNil ∈ A⇧∞"
| LCons_all [intro!]: "⟦ l ∈ A⇧∞; a ∈ A ⟧ ⟹ a ## l ∈ A⇧∞"
declare alllsts.cases [case_names LNil LCons, cases set: alllsts]
definition inflsts :: "'a set ⇒ 'a llist set" ("(_⇧ω)" [1000] 999)
where "A⇧ω ≡ A⇧∞ - UNIV⇧⋆"
definition fpslsts :: "'a set ⇒ 'a llist set" ("(_⇧♣)" [1000] 999)
where "A⇧♣ ≡ A⇧⋆ - {LNil}"
definition poslsts :: "'a set ⇒ 'a llist set" ("(_⇧♠)" [1000] 999)
where "A⇧♠ ≡ A⇧∞ - {LNil}"
subsubsection‹Facts about all llists›
lemma alllsts_UNIV [iff]:
"s ∈ UNIV⇧∞"
proof -
have "s ∈ UNIV" by blast
thus ?thesis
proof coinduct
case (alllsts z)
thus ?case by(cases z) auto
qed
qed
lemma alllsts_empty [simp]: "{}⇧∞ = {LNil}"
by (auto elim: alllsts.cases)
lemma alllsts_mono:
assumes asubb: "A ⊆ B"
shows "A⇧∞ ⊆ B⇧∞"
proof
fix x assume "x ∈ A⇧∞"
thus "x ∈ B⇧∞"
proof coinduct
case (alllsts z)
thus ?case using asubb by(cases z) auto
qed
qed
lemmas alllstsp_mono [mono] = alllsts_mono [to_pred pred_subset_eq]
lemma LConsE [iff]: "x##xs ∈ A⇧∞ = (x∈A ∧ xs ∈ A⇧∞)"
by (auto elim: alllsts.cases)
subsubsection‹Facts about non-empty (positive) llists›
lemma poslsts_iff [iff]:
"(s ∈ A⇧♠) = (s ∈ A⇧∞ ∧ s ≠ LNil)"
by (simp add: poslsts_def)
lemma poslsts_UNIV [iff]:
"s ∈ UNIV⇧♠ = (s ≠ LNil)"
by auto
lemma poslsts_empty [simp]: "{}⇧♠ = {}"
by auto
lemma poslsts_mono:
"A ⊆ B ⟹ A⇧♠ ⊆ B⇧♠"
by (auto dest: alllsts_mono)
subsubsection‹Facts about finite llists›
lemma finlsts_empty [simp]: "{}⇧⋆ = {LNil}"
by (auto elim: finlsts.cases)
lemma finsubsetall: "x ∈ A⇧⋆ ⟹ x ∈ A⇧∞"
by (induct rule: finlsts.induct) auto
lemma finlsts_mono:
"A⊆B ⟹ A⇧⋆ ⊆ B⇧⋆"
by (auto, erule finlsts.induct) auto
lemmas finlstsp_mono [mono] = finlsts_mono [to_pred pred_subset_eq]
lemma finlsts_induct
[case_names LNil_fin LCons_fin, induct set: finlsts, consumes 1]:
assumes xA: "x ∈ A⇧⋆"
and lnil: "⋀l. l = LNil ⟹ P l"
and lcons: "⋀a l. ⟦l ∈ A⇧⋆; P l; a ∈ A⟧ ⟹ P (a ## l)"
shows "P x"
using xA by (induct "x") (auto intro: lnil lcons)
lemma finite_lemma:
assumes "x ∈ A⇧⋆"
shows "x ∈ B⇧∞ ⟹ x ∈ B⇧⋆"
using assms
proof (induct)
case LNil_fin thus ?case by auto
next
case (LCons_fin a l)
thus ?case using LCons_fin by (cases "a##l") auto
qed
lemma fin_finite [dest]:
assumes "r ∈ A⇧⋆" "r ∉ UNIV⇧⋆"
shows "False"
proof-
have "A ⊆ UNIV" by auto
hence "A⇧⋆ ⊆ UNIV⇧⋆" by (rule finlsts_mono)
thus ?thesis using assms by auto
qed
lemma finT_simp [simp]:
"r ∈ A⇧⋆ ⟹ r∈UNIV⇧⋆"
by auto
subsubsection‹A recursion operator for finite llists›
definition finlsts_pred :: "('a llist × 'a llist) set"
where "finlsts_pred ≡ {(r,s). r ∈ UNIV⇧⋆ ∧ (∃a. a##r = s)}"
definition finlsts_rec :: "['b, ['a, 'a llist, 'b] ⇒ 'b] ⇒ 'a llist ⇒ 'b"
where
"finlsts_rec c d r ≡ if r ∈ UNIV⇧⋆
then (wfrec finlsts_pred (%f. case_llist c (%a r. d a r (f r))) r)
else undefined"
lemma finlsts_predI: "r ∈ A⇧⋆ ⟹ (r, a##r) ∈ finlsts_pred"
by (auto simp: finlsts_pred_def)
lemma wf_finlsts_pred: "wf finlsts_pred"
proof (rule wfI [of _ "UNIV⇧⋆"])
show "finlsts_pred ⊆ UNIV⇧⋆ × UNIV⇧⋆"
by (auto simp: finlsts_pred_def elim: finlsts.cases)
next
fix x::"'a llist" and P::"'a llist ⇒ bool"
assume xfin: "x ∈ UNIV⇧⋆" and H [unfolded finlsts_pred_def]:
"(∀x. (∀y. (y, x) ∈ finlsts_pred ⟶ P y) ⟶ P x)"
from xfin show "P x"
proof(induct x)
case LNil_fin with H show ?case by blast
next
case (LCons_fin a l) with H show ?case by blast
qed
qed
lemma finlsts_rec_LNil: "finlsts_rec c d LNil = c"
by (auto simp: wf_finlsts_pred finlsts_rec_def wfrec)
lemma finlsts_rec_LCons:
"r ∈ A⇧⋆ ⟹ finlsts_rec c d (a ## r) = d a r (finlsts_rec c d r)"
by (auto simp: wf_finlsts_pred finlsts_rec_def wfrec cut_def intro: finlsts_predI)
lemma finlsts_rec_LNil_def:
"f ≡ finlsts_rec c d ⟹ f LNil = c"
by (auto simp: finlsts_rec_LNil)
lemma finlsts_rec_LCons_def:
"⟦ f ≡ finlsts_rec c d; r ∈ A⇧⋆ ⟧ ⟹ f (a ## r) = d a r (f r)"
by (auto simp: finlsts_rec_LCons)
subsubsection‹Facts about non-empty (positive) finite llists›
lemma fpslsts_iff [iff]:
"(s ∈ A⇧♣) = (s ∈ A⇧⋆ ∧ s ≠ LNil)"
by (auto simp: fpslsts_def)
lemma fpslsts_empty [simp]: "{}⇧♣ = {}"
by auto
lemma fpslsts_mono:
"A ⊆ B ⟹ A⇧♣ ⊆ B⇧♣"
by (auto dest: finlsts_mono)
lemma fpslsts_cases [case_names LCons, cases set: fpslsts]:
assumes rfps: "r ∈ A⇧♣"
and H: "⋀ a rs. ⟦ r = a ## rs; a∈A; rs ∈ A⇧⋆ ⟧ ⟹ R"
shows "R"
proof-
from rfps have "r ∈ A⇧⋆" and "r ≠ LNil" by auto
thus ?thesis
by (cases r, simp) (blast intro!: H)
qed
subsubsection‹Facts about infinite llists›
lemma inflstsI [intro]:
"⟦ x ∈ A⇧∞; x ∈ UNIV⇧⋆ ⟹ False ⟧ ⟹ x ∈ A⇧ω"
unfolding inflsts_def by clarsimp
lemma inflstsE [elim]:
"⟦ x ∈ A⇧ω; ⟦ x ∈ A⇧∞; x ∉ UNIV⇧⋆ ⟧ ⟹ R ⟧ ⟹ R"
by (unfold inflsts_def) auto
lemma inflsts_empty [simp]: "{}⇧ω = {}"
by auto
lemma infsubsetall: "x ∈ A⇧ω ⟹ x ∈ A⇧∞"
by (auto intro: finite_lemma finsubsetall)
lemma inflsts_mono:
"A ⊆ B ⟹ A⇧ω ⊆ B⇧ω"
by (blast dest: alllsts_mono infsubsetall)
lemma inflsts_cases [case_names LCons, cases set: inflsts, consumes 1]:
assumes sinf: "s ∈ A⇧ω"
and R: "⋀a l. ⟦ l ∈ A⇧ω; a ∈ A; s = a ## l ⟧ ⟹ R"
shows "R"
proof -
from sinf have "s ∈ A⇧∞" "s ∉ UNIV⇧⋆"
by auto
then obtain a l where "l ∈ A⇧ω" and "a∈A" and "s = a ## l"
by (cases "s") auto
thus ?thesis by (rule R)
qed
lemma inflstsI2: "⟦a ∈ A; t ∈ A⇧ω⟧ ⟹ a ## t ∈ A⇧ω"
by (auto elim: finlsts.cases)
lemma infT_simp [simp]:
"r ∈ A⇧ω ⟹ r∈UNIV⇧ω"
by auto
lemma alllstsE [consumes 1, case_names finite infinite]:
"⟦ x∈A⇧∞; x ∈ A⇧⋆ ⟹ P; x ∈ A⇧ω ⟹ P ⟧ ⟹ P"
by (auto intro: finite_lemma simp: inflsts_def)
lemma fin_inf_cases [case_names finite infinite]:
"⟦ r∈UNIV⇧⋆ ⟹ P; r ∈ UNIV⇧ω ⟹ P ⟧ ⟹ P"
by auto
lemma fin_Int_inf: "A⇧⋆ ∩ A⇧ω = {}"
and fin_Un_inf: "A⇧⋆ ∪ A⇧ω = A⇧∞"
by (auto intro: finite_lemma finsubsetall)
lemma notfin_inf [iff]: "(x ∉ UNIV⇧⋆) = (x ∈ UNIV⇧ω)"
by auto
lemma notinf_fin [iff]: "(x ∉ UNIV⇧ω) = (x ∈ UNIV⇧⋆)"
by auto
subsection‹Lappend›
subsubsection‹Simplification›
lemma lapp_inf [simp]:
assumes "s ∈ A⇧ω"
shows "s @@ t = s"
using assms
by(coinduction arbitrary: s)(auto elim: inflsts_cases)
lemma LNil_is_lappend_conv [iff]:
"(LNil = s @@ t) = (s = LNil ∧ t = LNil)"
by (cases "s") auto
lemma lappend_is_LNil_conv [iff]:
"(s @@ t = LNil) = (s = LNil ∧ t = LNil)"
by (cases "s") auto
lemma same_lappend_eq [iff]:
"r ∈ A⇧⋆ ⟹ (r @@ s = r @@ t) = (s = t)"
by (erule finlsts.induct) simp+
subsubsection‹Typing rules›
lemma lappT:
assumes sllist: "s ∈ A⇧∞"
and tllist: "t ∈ A⇧∞"
shows "s@@t ∈ A⇧∞"
proof -
from assms have "lappend s t ∈ (⋃u∈A⇧∞. ⋃v∈A⇧∞. {lappend u v})" by fast
thus ?thesis
proof coinduct
case (alllsts z)
then obtain u v where ullist: "u∈A⇧∞" and vllist: "v∈A⇧∞"
and zapp: "z=u @@ v" by auto
thus ?case by (cases "u") (auto elim: alllsts.cases)
qed
qed
lemma lappfin_finT: "⟦ s ∈ A⇧⋆; t ∈ A⇧⋆ ⟧ ⟹ s@@t ∈ A⇧⋆"
by (induct rule: finlsts.induct) auto
lemma lapp_fin_fin_lemma:
assumes rsA: "r @@ s ∈ A⇧⋆"
shows "r ∈ A⇧⋆"
using rsA
proof(induct l≡"r@@s" arbitrary: r)
case LNil_fin thus ?case by auto
next
case (LCons_fin a l')
show ?case
proof (cases "r")
case LNil thus ?thesis by auto
next
case (LCons x xs) with ‹a##l' = r @@ s›
have "a = x" and "l' = xs @@ s" by auto
with LCons_fin LCons show ?thesis by auto
qed
qed
lemma lapp_fin_fin_iff [iff]: "(r @@ s ∈ A⇧⋆) = (r ∈ A⇧⋆ ∧ s ∈ A⇧⋆)"
proof (auto intro: lappfin_finT lapp_fin_fin_lemma)
assume rsA: "r @@ s ∈ A⇧⋆"
hence "r ∈ A⇧⋆" by (rule lapp_fin_fin_lemma)
hence "r @@ s ∈ A⇧⋆ ⟶ s ∈ A⇧⋆"
by (induct "r", simp) (auto elim: finlsts.cases)
with rsA show "s ∈ A⇧⋆" by auto
qed
lemma lapp_all_invT:
assumes rs: "r@@s ∈ A⇧∞"
shows "r ∈ A⇧∞"
proof (cases "r ∈ UNIV⇧⋆")
case False
with rs show ?thesis by simp
next
case True
thus ?thesis using rs
by (induct "r") auto
qed
lemma lapp_fin_infT: "⟦s ∈ A⇧⋆; t ∈ A⇧ω⟧ ⟹ s @@ t ∈ A⇧ω"
by (induct rule: finlsts.induct)
(auto intro: inflstsI2)
lemma app_invT:
assumes "r ∈ A⇧⋆" shows "r @@ s ∈ A⇧ω ⟹ s ∈ A⇧ω"
using assms
proof (induct arbitrary: s)
case LNil_fin thus ?case by simp
next
case (LCons_fin a l)
from ‹(a ## l) @@ s ∈ A⇧ω›
have "a ## (l @@ s) ∈ A⇧ω" by simp
hence "l @@ s ∈ A⇧ω" by (auto elim: inflsts_cases)
with LCons_fin show "s ∈ A⇧ω" by blast
qed
lemma lapp_inv2T:
assumes rsinf: "r @@ s ∈ A⇧ω"
shows "r ∈ A⇧⋆ ∧ s ∈ A⇧ω ∨ r ∈ A⇧ω"
proof (rule disjCI)
assume rnotinf: "r ∉ A⇧ω"
moreover from rsinf have rsall: "r@@s ∈ A⇧∞"
by auto
hence "r ∈ A⇧∞" by (rule lapp_all_invT)
hence "r ∈ A⇧⋆" using rnotinf by (auto elim: alllstsE)
ultimately show "r ∈ A⇧⋆ ∧ s ∈ A⇧ω" using rsinf
by (auto intro: app_invT)
qed
lemma lapp_infT:
"(r @@ s ∈ A⇧ω) = (r ∈ A⇧⋆ ∧ s ∈ A⇧ω ∨ r ∈ A⇧ω)"
by (auto dest: lapp_inv2T intro: lapp_fin_infT)
lemma lapp_allT_iff:
"(r @@ s ∈ A⇧∞) = (r ∈ A⇧⋆ ∧ s ∈ A⇧∞ ∨ r ∈ A⇧ω)"
(is "?L = ?R")
proof
assume ?L thus ?R by (cases rule: alllstsE) (auto simp: lapp_infT intro: finsubsetall)
next
assume ?R thus ?L by (auto dest: finsubsetall intro: lappT)
qed
subsection‹Length, indexing, prefixes, and suffixes of llists›
primrec ll2f :: "'a llist ⇒ nat ⇒ 'a option" (infix "!!" 100)
where
"l!!0 = (case l of LNil ⇒ None | x ## xs ⇒ Some x)"
| "l!!(Suc i) = (case l of LNil ⇒ None | x ## xs ⇒ xs!!i)"
primrec ltake :: "'a llist ⇒ nat ⇒ 'a llist" (infixl "↓" 110)
where
"l ↓ 0 = LNil"
| "l ↓ Suc i = (case l of LNil ⇒ LNil | x ## xs ⇒ x ## ltake xs i)"
primrec ldrop :: "'a llist ⇒ nat ⇒ 'a llist" (infixl "↑" 110)
where
"l ↑ 0 = l"
| "l ↑ Suc i = (case l of LNil ⇒ LNil | x ## xs ⇒ ldrop xs i)"
definition lset :: "'a llist ⇒ 'a set"
where "lset l ≡ ran (ll2f l)"
definition llength :: "'a llist ⇒ nat"
where "llength ≡ finlsts_rec 0 (λ a r n. Suc n)"
definition llast :: "'a llist ⇒ 'a"
where "llast ≡ finlsts_rec undefined (λ x xs l. if xs = LNil then x else l)"
definition lbutlast :: "'a llist ⇒ 'a llist"
where "lbutlast ≡ finlsts_rec LNil (λ x xs l. if xs = LNil then LNil else x##l)"
definition lrev :: "'a llist ⇒ 'a llist"
where "lrev ≡ finlsts_rec LNil (λ x xs l. l @@ x ## LNil)"
lemmas llength_LNil = llength_def [THEN finlsts_rec_LNil_def]
and llength_LCons = llength_def [THEN finlsts_rec_LCons_def]
lemmas llength_simps [simp] = llength_LNil llength_LCons
lemmas llast_LNil = llast_def [THEN finlsts_rec_LNil_def]
and llast_LCons = llast_def [THEN finlsts_rec_LCons_def]
lemmas llast_simps [simp] = llast_LNil llast_LCons
lemmas lbutlast_LNil = lbutlast_def [THEN finlsts_rec_LNil_def]
and lbutlast_LCons = lbutlast_def [THEN finlsts_rec_LCons_def]
lemmas lbutlast_simps [simp] = lbutlast_LNil lbutlast_LCons
lemmas lrev_LNil = lrev_def [THEN finlsts_rec_LNil_def]
and lrev_LCons = lrev_def [THEN finlsts_rec_LCons_def]
lemmas lrev_simps [simp] = lrev_LNil lrev_LCons
lemma lrevT [simp, intro!]:
"xs ∈ A⇧⋆ ⟹ lrev xs ∈ A⇧⋆"
by (induct rule: finlsts.induct) auto
lemma lrev_lappend [simp]:
assumes fin: "xs ∈ UNIV⇧⋆" "ys ∈ UNIV⇧⋆"
shows "lrev (xs @@ ys) = (lrev ys) @@ (lrev xs)"
using fin
by induct (auto simp: lrev_LCons [of _ UNIV] lappend_assoc)
lemma lrev_lrev_ident [simp]:
assumes fin: "xs ∈ UNIV⇧⋆"
shows "lrev (lrev xs) = xs"
using fin
proof (induct)
case (LCons_fin a l)
have "a ## LNil ∈ UNIV⇧⋆" by auto
thus ?case using LCons_fin
by auto
qed simp
lemma lrev_is_LNil_conv [iff]:
"xs ∈ UNIV⇧⋆ ⟹ (lrev xs = LNil) = (xs = LNil)"
by (induct rule: finlsts.induct) auto
lemma LNil_is_lrev_conv [iff]:
"xs ∈ UNIV⇧⋆ ⟹ (LNil = lrev xs) = (xs = LNil)"
by (induct rule: finlsts.induct) auto
lemma lrev_is_lrev_conv [iff]:
assumes fin: "xs ∈ UNIV⇧⋆" "ys ∈ UNIV⇧⋆"
shows "(lrev xs = lrev ys) = (xs = ys)"
(is "?L = ?R")
proof
assume L: ?L
hence "lrev (lrev xs) = lrev (lrev ys)" by simp
thus ?R using fin by simp
qed simp
lemma lrev_induct [case_names LNil snocl, consumes 1]:
assumes fin: "xs ∈ A⇧⋆"
and init: "P LNil"
and step: "⋀x xs. ⟦ xs ∈ A⇧⋆; P xs; x ∈ A ⟧ ⟹ P (xs @@ x##LNil)"
shows "P xs"
proof-
define l where "l = lrev xs"
with fin have "l ∈ A⇧⋆" by simp
hence "P (lrev l)"
proof (induct l)
case LNil_fin with init show ?case by simp
next
case (LCons_fin a l) thus ?case by (auto intro: step)
qed
thus ?thesis using fin l_def by simp
qed
lemma finlsts_rev_cases:
assumes tfin: "t ∈ A⇧⋆"
obtains (LNil) "t = LNil"
| (snocl) a l where "l ∈ A⇧⋆" "a ∈ A" "t = l @@ a ## LNil"
using assms
by (induct rule: lrev_induct) auto
lemma ll2f_LNil [simp]: "LNil!!x = None"
by (cases "x") auto
lemma None_lfinite: "t!!i = None ⟹ t ∈ UNIV⇧⋆"
proof (induct "i" arbitrary: t)
case 0 thus ?case
by(cases t) auto
next
case (Suc n)
show ?case
proof(cases t)
case LNil thus ?thesis by auto
next
case (LCons x l')
with ‹l' !! n = None ⟹ l' ∈ UNIV⇧⋆› ‹t !! Suc n = None›
show ?thesis by auto
qed
qed
lemma infinite_Some: "t ∈ A⇧ω ⟹ ∃a. t!!i = Some a"
by (rule ccontr) (auto dest: None_lfinite)
lemmas infinite_idx_SomeE = exE [OF infinite_Some]
lemma Least_True [simp]:
"(LEAST (n::nat). True) = 0"
by (auto simp: Least_def)
lemma ll2f_llength [simp]: "r ∈ A⇧⋆ ⟹ r!!(llength r) = None"
by (erule finlsts.induct) auto
lemma llength_least_None:
assumes rA: "r ∈ A⇧⋆"
shows "llength r = (LEAST i. r!!i = None)"
using rA
proof induct
case LNil_fin thus ?case by simp
next
case (LCons_fin a l)
hence "(LEAST i. (a ## l) !! i = None) = llength (a ## l)"
by (auto intro!: ll2f_llength Least_Suc2)
thus ?case by rule
qed
lemma ll2f_lem1:
"t !! (Suc i) = Some x ⟹ ∃ y. t !! i = Some y"
proof (induct i arbitrary: x t)
case 0 thus ?case by (auto split: llist.splits)
next
case (Suc k) thus ?case
by (cases t) auto
qed
lemmas ll2f_Suc_Some = ll2f_lem1 [THEN exE]
lemma ll2f_None_Suc: "t !! i = None ⟹ t !! Suc i = None"
proof (induct i arbitrary: t)
case 0 thus ?case by (auto split: llist.split)
next
case (Suc k) thus ?case by (cases t) auto
qed
lemma ll2f_None_le:
"⟦ t!!j = None; j ≤ i ⟧ ⟹ t!!i = None"
proof (induct i arbitrary: t j)
case 0 thus ?case by simp
next
case (Suc k) thus ?case by (cases j) (auto split: llist.split)
qed
lemma ll2f_Some_le:
assumes jlei: "j ≤ i"
and tisome: "t !! i = Some x"
and H: "⋀ y. t !! j = Some y ⟹ Q"
shows "Q"
proof -
have "∃ y. t !! j = Some y" (is "?R")
proof (rule ccontr)
assume "¬ ?R"
hence "t !! j = None" by auto
with tisome jlei show False
by (auto dest: ll2f_None_le)
qed
thus ?thesis using H by auto
qed
lemma ltake_LNil [simp]: "LNil ↓ i = LNil"
by (cases "i") auto
lemma ltake_LCons_Suc: "(a ## l) ↓ (Suc i) = a ## l ↓ i"
by simp
lemma take_fin [iff]: "t ∈ A⇧∞ ⟹ t↓i ∈ A⇧⋆"
proof (induct i arbitrary: t)
case 0 show ?case by auto
next
case (Suc j) thus ?case
by (cases "t") auto
qed
lemma ltake_fin [iff]:
"r ↓ i ∈ UNIV⇧⋆"
by simp
lemma llength_take [simp]: "t ∈ A⇧ω ⟹ llength (t↓i) = i"
proof (induct "i" arbitrary: t)
case 0 thus ?case by simp
next
case (Suc j)
from ‹t ∈ A⇧ω› ‹⋀t. t ∈ A⇧ω ⟹ llength (t ↓ j) = j› show ?case
by(cases) (auto simp: llength_LCons [of _ UNIV])
qed
lemma ltake_ldrop_id: "(x ↓ i) @@ (x ↑ i) = x"
proof (induct "i" arbitrary: x)
case 0 thus ?case by simp
next
case (Suc j) thus ?case
by (cases x) auto
qed
lemma ltake_ldrop:
"(xs ↑ m) ↓ n =(xs ↓ (n + m)) ↑ m"
proof (induct "m" arbitrary: xs)
case 0 show ?case by simp
next
case (Suc l) thus ?case
by (cases "xs") auto
qed
lemma ldrop_LNil [simp]: "LNil ↑ i = LNil"
by (cases "i") auto
lemma ldrop_add: "t ↑ (i + k) = t ↑ i ↑ k"
proof (induct "i" arbitrary: t)
case (Suc j) thus ?case
by (cases "t") auto
qed simp
lemma ldrop_fun: "t ↑ i !! j = t!!(i + j)"
proof (induct i arbitrary: t)
case 0 thus ?case by simp
next
case (Suc k) then show ?case
by (cases "t") auto
qed
lemma ldropT[simp]: "t ∈ A⇧∞ ⟹ t ↑ i ∈ A⇧∞"
proof (induct i arbitrary: t)
case 0 thus ?case by simp
next case (Suc j)
thus ?case by (cases "t") auto
qed
lemma ldrop_finT[simp]: "t ∈ A⇧⋆ ⟹ t ↑ i ∈ A⇧⋆"
proof (induct i arbitrary: t)
case 0 thus ?case by simp
next
fix n t assume "t ∈ A⇧⋆" and
"⋀t::'a llist. t ∈ A⇧⋆ ⟹ t ↑ n ∈ A⇧⋆"
thus "t ↑ Suc n ∈ A⇧⋆"
by (cases "t") auto
qed
lemma ldrop_infT[simp]: "t ∈ A⇧ω ⟹ t ↑ i ∈ A⇧ω"
proof (induct i arbitrary: t)
case 0 thus ?case by simp
next
case (Suc n)
from ‹t ∈ A⇧ω› ‹⋀t. t ∈ A⇧ω ⟹ t ↑ n ∈ A⇧ω› show ?case
by (cases "t") auto
qed
lemma lapp_suff_llength: "r ∈ A⇧⋆ ⟹ (r@@s) ↑ llength r = s"
by (induct rule: finlsts.induct) auto
lemma ltake_lappend_llength [simp]:
"r ∈ A⇧⋆ ⟹ (r @@ s) ↓ llength r = r"
by (induct rule: finlsts.induct) auto
lemma ldrop_LNil_less:
"⟦j ≤ i; t ↑ j = LNil⟧ ⟹ t ↑ i = LNil"
proof (induct i arbitrary: j t)
case 0 thus ?case by auto
next case (Suc n) thus ?case
by (cases j, simp) (cases t, simp_all)
qed
lemma ldrop_inf_iffT [iff]: "(t ↑ i ∈ UNIV⇧ω) = (t ∈ UNIV⇧ω)"
proof
show "t↑i ∈ UNIV⇧ω ⟹ t ∈ UNIV⇧ω"
by (rule ccontr) (auto dest: ldrop_finT)
qed auto
lemma ldrop_fin_iffT [iff]: "(t ↑ i ∈ UNIV⇧⋆) = (t ∈ UNIV⇧⋆)"
by auto
lemma drop_nonLNil: "t↑i ≠ LNil ⟹ t ≠ LNil"
by (auto)
lemma llength_drop_take:
"t↑i ≠ LNil ⟹ llength (t↓i) = i"
proof (induct i arbitrary: t)
case 0 show ?case by simp
next
case (Suc j) thus ?case by (cases t) (auto simp: llength_LCons [of _ UNIV])
qed
lemma fps_induct [case_names LNil LCons, induct set: fpslsts, consumes 1]:
assumes fps: "l ∈ A⇧♣"
and init: "⋀a. a ∈ A ⟹ P (a##LNil)"
and step: "⋀a l. ⟦ l ∈ A⇧♣; P l; a ∈ A ⟧ ⟹ P (a ## l)"
shows "P l"
proof-
from fps have "l ∈ A⇧⋆" and "l ≠ LNil" by auto
thus ?thesis
by (induct, simp) (cases, auto intro: init step)
qed
lemma lbutlast_lapp_llast:
assumes "l ∈ A⇧♣"
shows "l = lbutlast l @@ (llast l ## LNil)"
using assms by induct auto
lemma llast_snoc [simp]:
assumes fin: "xs ∈ A⇧⋆"
shows "llast (xs @@ x ## LNil) = x"
using fin
proof induct
case LNil_fin thus ?case by simp
next
case (LCons_fin a l)
have "x ## LNil ∈ UNIV⇧⋆" by auto
with LCons_fin show ?case
by (auto simp: llast_LCons [of _ UNIV])
qed
lemma lbutlast_snoc [simp]:
assumes fin: "xs ∈ A⇧⋆"
shows "lbutlast (xs @@ x ## LNil) = xs"
using fin
proof induct
case LNil_fin thus ?case by simp
next
case (LCons_fin a l)
have "x ## LNil ∈ UNIV⇧⋆" by auto
with LCons_fin show ?case
by (auto simp: lbutlast_LCons [of _ UNIV])
qed
lemma llast_lappend [simp]:
"⟦ x ∈ UNIV⇧⋆; y ∈ UNIV⇧⋆ ⟧ ⟹ llast (x @@ a ## y) = llast (a ## y)"
proof (induct rule: finlsts.induct)
case LNil_fin thus ?case by simp
next case (LCons_fin l b)
hence "l @@ a ## y ∈ UNIV⇧⋆" by auto
thus ?case using LCons_fin
by (auto simp: llast_LCons [of _ UNIV])
qed
lemma llast_llength:
assumes tfin: "t ∈ UNIV⇧⋆"
shows "t ≠ LNil ⟹ t !! (llength t - (Suc 0)) = Some (llast t)"
using tfin
proof induct
case (LNil_fin l) thus ?case by auto
next
case (LCons_fin a l) note consal = this thus ?case
proof (cases l)
case LNil_fin thus ?thesis using consal by simp
next
case (LCons_fin aa la)
thus ?thesis using consal by simp
qed
qed
subsection‹The constant llist›
definition lconst :: "'a ⇒ 'a llist" where
"lconst a ≡ iterates (λx. x) a"
lemma lconst_unfold: "lconst a = a ## lconst a"
by (auto simp: lconst_def intro: iterates)
lemma lconst_LNil [iff]: "lconst a ≠ LNil"
by (clarify,frule subst [OF lconst_unfold]) simp
lemma lconstT:
assumes aA: "a ∈ A"
shows "lconst a ∈ A⇧ω"
proof (rule inflstsI)
show "lconst a ∈ A⇧∞"
proof (rule alllsts.coinduct [of "λx. x = lconst a"], simp_all)
have "lconst a = a ## lconst a"
by (rule lconst_unfold)
with aA
show "∃l aa. lconst a = aa ## l ∧ (l = lconst a ∨ l ∈ A⇧∞) ∧ aa ∈ A"
by blast
qed
next assume lconst: "lconst a ∈ UNIV⇧⋆"
moreover have "⋀l. l ∈ UNIV⇧⋆ ⟹ lconst a ≠ l"
proof-
fix l::"'a llist" assume "l∈UNIV⇧⋆"
thus "lconst a ≠ l"
proof (rule finlsts_induct, simp_all)
fix a' l' assume
al': "lconst a ≠ l'" and
l'A: "l' ∈ UNIV⇧⋆"
from al' show "lconst a ≠ a' ## l'"
proof (rule contrapos_np)
assume notal: "¬ lconst a ≠ a' ## l'"
hence "lconst a = a' ## l'" by simp
hence "a ## lconst a = a' ## l'"
by (rule subst [OF lconst_unfold])
thus "lconst a = l'" by auto
qed
qed
qed
ultimately show "False" using aA by auto
qed
subsection‹The prefix order of llists›
instantiation llist :: (type) order
begin
definition
llist_le_def: "(s :: 'a llist) ≤ t ⟷ (∃d. t = s @@ d)"
definition
llist_less_def: "(s :: 'a llist) < t ⟷ (s ≤ t ∧ s ≠ t)"
lemma not_LCons_le_LNil [iff]:
"¬ (a##l) ≤ LNil"
by (unfold llist_le_def) auto
lemma LNil_le [iff]:"LNil ≤ s"
by (auto simp: llist_le_def)
lemma le_LNil [iff]: "(s ≤ LNil) = (s = LNil)"
by (auto simp: llist_le_def)
lemma llist_inf_le:
"s ∈ A⇧ω ⟹ (s≤t) = (s=t)"
by (unfold llist_le_def) auto
lemma le_LCons [iff]: "(x ## xs ≤ y ## ys) = (x = y ∧ xs ≤ ys)"
by (unfold llist_le_def) auto
lemma llist_le_refl [iff]:
"(s:: 'a llist) ≤ s"
by (unfold llist_le_def) (rule exI [of _ "LNil"], simp)
lemma llist_le_trans [trans]:
fixes r:: "'a llist"
shows "r ≤ s ⟹ s ≤ t ⟹ r ≤ t"
by (auto simp: llist_le_def lappend_assoc)
lemma llist_le_anti_sym:
fixes s:: "'a llist"
assumes st: "s ≤ t"
and ts: "t ≤ s"
shows "s = t"
proof-
have "s ∈ UNIV⇧∞" by auto
thus ?thesis
proof (cases rule: alllstsE)
case finite
hence "∀ t. s ≤ t ∧ t ≤ s ⟶ s = t"
proof (induct rule: finlsts.induct)
case LNil_fin thus ?case by auto
next
case (LCons_fin l a) show ?case
proof
fix t from LCons_fin show "a ## l ≤ t ∧ t ≤ a ## l ⟶ a ## l = t"
by (cases "t") blast+
qed
qed
thus ?thesis using st ts by blast
next case infinite thus ?thesis using st by (simp add: llist_inf_le)
qed
qed
lemma llist_less_le_not_le:
fixes s :: "'a llist"
shows "(s < t) = (s ≤ t ∧ ¬ t ≤ s)"
by (auto simp add: llist_less_def dest: llist_le_anti_sym)
instance
by standard
(assumption | rule llist_le_refl
llist_le_trans llist_le_anti_sym llist_less_le_not_le)+
end
subsubsection‹Typing rules›
lemma llist_le_finT [simp]:
"r≤s ⟹ s ∈ A⇧⋆ ⟹ r ∈ A⇧⋆"
proof-
assume rs: "r≤s" and sfin: "s ∈ A⇧⋆"
from sfin have "∀r. r≤s ⟶ r∈A⇧⋆"
proof (induct "s")
case LNil_fin thus ?case by auto
next
case (LCons_fin a l) show ?case
proof (clarify)
fix r assume ral: "r ≤ a ## l"
thus "r ∈ A⇧⋆" using LCons_fin
by (cases r) auto
qed
qed
with rs show ?thesis by auto
qed
lemma llist_less_finT [iff]:
"r<s ⟹ s ∈ A⇧⋆ ⟹ r ∈ A⇧⋆"
by (auto simp: less_le)
subsubsection‹More simplification rules›
lemma LNil_less_LCons [iff]: "LNil < a ## t"
by (simp add: less_le)
lemma not_less_LNil [iff]:
"¬ r < LNil"
by (auto simp: less_le)
lemma less_LCons [iff]:
" (a ## r < b ## t) = (a = b ∧ r < t)"
by (auto simp: less_le)
lemma llength_mono [iff]:
assumes"r ∈ A⇧⋆"
shows "s<r ⟹ llength s < llength r"
using assms
proof(induct "r" arbitrary: s)
case LNil_fin thus ?case by simp
next
case (LCons_fin a l)
thus ?case
by (cases s) (auto simp: llength_LCons [of _ UNIV])
qed
lemma le_lappend [iff]: "r ≤ r @@ s"
by (auto simp: llist_le_def)
lemma take_inf_less:
"t ∈ UNIV⇧ω ⟹ t ↓ i < t"
proof (induct i arbitrary: t)
case 0 thus ?case by (auto elim: inflsts_cases)
next
case (Suc i)
from ‹t ∈ UNIV⇧ω› show ?case
proof (cases "t")
case (LCons a l) with Suc show ?thesis
by auto
qed
qed
lemma lapp_take_less:
assumes iless: "i < llength r"
shows "(r @@ s) ↓ i < r"
proof (cases "r ∈ UNIV⇧⋆")
case True
thus ?thesis using iless
proof(induct i arbitrary: r)
case 0 thus ?case by (cases "r") auto
next
case (Suc j)
from ‹r ∈ UNIV⇧⋆› ‹Suc j < llength r› ‹⋀r. ⟦r ∈ UNIV⇧⋆; j < llength r⟧ ⟹ lappend r s ↓ j < r›
show ?case by (cases) auto
qed
next
case False thus ?thesis by (simp add: take_inf_less)
qed
subsubsection‹Finite prefixes and infinite suffixes›
definition finpref :: "'a set ⇒ 'a llist ⇒ 'a llist set"
where "finpref A s ≡ {r. r ∈ A⇧⋆ ∧ r ≤ s}"
definition suff :: "'a set ⇒ 'a llist ⇒ 'a llist set"
where "suff A s ≡ {r. r ∈ A⇧∞ ∧ s ≤ r}"
definition infsuff :: "'a set ⇒ 'a llist ⇒ 'a llist set"
where "infsuff A s ≡ {r. r ∈ A⇧ω ∧ s ≤ r}"
definition prefix_closed :: "'a llist set ⇒ bool"
where "prefix_closed A ≡ ∀ t ∈ A. ∀ s ≤ t. s ∈ A"
definition pprefix_closed :: "'a llist set ⇒ bool"
where "pprefix_closed A ≡ ∀ t ∈ A. ∀ s. s ≤ t ∧ s ≠ LNil ⟶ s ∈ A"
definition suffix_closed :: "'a llist set ⇒ bool"
where "suffix_closed A ≡ ∀ t ∈ A. ∀ s. t ≤ s ⟶ s ∈ A"
lemma finpref_LNil [simp]:
"finpref A LNil = {LNil}"
by (auto simp: finpref_def)
lemma finpref_fin: "x ∈ finpref A s ⟹ x ∈ A⇧⋆"
by (auto simp: finpref_def)
lemma finpref_mono2: "s ≤ t ⟹ finpref A s ⊆ finpref A t"
by (unfold finpref_def) (auto dest: llist_le_trans)
lemma suff_LNil [simp]:
"suff A LNil = A⇧∞"
by (simp add: suff_def)
lemma suff_all: "x ∈ suff A s ⟹ x ∈ A⇧∞"
by (auto simp: suff_def)
lemma suff_mono2: "s ≤ t ⟹ suff A t ⊆ suff A s"
by (unfold suff_def) (auto dest: llist_le_trans)
lemma suff_appE:
assumes rA: "r ∈ A⇧⋆"
and tsuff: "t ∈ suff A r"
obtains s where "s ∈ A⇧∞" "t = r@@s"
proof-
from tsuff obtain s where
tA: "t ∈ A⇧∞" and trs: "t = r @@ s"
by (auto simp: suff_def llist_le_def)
from rA trs tA have "s ∈ A⇧∞"
by (auto simp: lapp_allT_iff)
thus ?thesis using trs
by (rule that)
qed
lemma LNil_suff [iff]: "(LNil ∈ suff A s) = (s = LNil)"
by (auto simp: suff_def)
lemma finpref_suff [dest]:
"⟦ r ∈ finpref A t; t∈A⇧∞ ⟧ ⟹ t ∈ suff A r"
by (auto simp: finpref_def suff_def)
lemma suff_finpref:
"⟦ t ∈ suff A r; r∈A⇧⋆ ⟧ ⟹ r ∈ finpref A t"
by (auto simp: finpref_def suff_def)
lemma suff_finpref_iff:
"⟦ r∈A⇧⋆; t∈A⇧∞ ⟧ ⟹ (r ∈ finpref A t) = (t ∈ suff A r)"
by (auto simp: finpref_def suff_def)
lemma infsuff_LNil [simp]:
"infsuff A LNil = A⇧ω"
by (simp add: infsuff_def)
lemma infsuff_inf: "x ∈ infsuff A s ⟹ x ∈ A⇧ω"
by (auto simp: infsuff_def)
lemma infsuff_mono2: "s ≤ t ⟹ infsuff A t ⊆ infsuff A s"
by (unfold infsuff_def) (auto dest: llist_le_trans)
lemma infsuff_appE:
assumes rA: "r ∈ A⇧⋆"
and tinfsuff: "t ∈ infsuff A r"
obtains s where "s ∈ A⇧ω" "t = r@@s"
proof-
from tinfsuff obtain s where
tA: "t ∈ A⇧ω" and trs: "t = r @@ s"
by (auto simp: infsuff_def llist_le_def)
from rA trs tA have "s ∈ A⇧ω"
by (auto dest: app_invT)
thus ?thesis using trs
by (rule that)
qed
lemma finpref_infsuff [dest]:
"⟦ r ∈ finpref A t; t∈A⇧ω ⟧ ⟹ t ∈ infsuff A r"
by (auto simp: finpref_def infsuff_def)
lemma infsuff_finpref:
"⟦ t ∈ infsuff A r; r∈A⇧⋆ ⟧ ⟹ r ∈ finpref A t"
by (auto simp: finpref_def infsuff_def)
lemma infsuff_finpref_iff [iff]:
"⟦ r∈A⇧⋆; t∈A⇧ω ⟧ ⟹ (t ∈ finpref A r) = (r ∈ infsuff A t)"
by (auto simp: finpref_def infsuff_def)
lemma prefix_lemma:
assumes xinf: "x ∈ A⇧ω"
and yinf: "y ∈ A⇧ω"
and R: "⋀ s. ⟦ s ∈ A⇧⋆; s ≤ x⟧ ⟹ s ≤ y"
shows "x = y"
proof-
let ?r = "λx y. x∈A⇧ω ∧ y∈A⇧ω ∧ finpref A x ⊆ finpref A y"
have "?r x y" using xinf yinf
by (auto simp: finpref_def intro: R)
thus ?thesis
proof (coinduct rule: llist.coinduct_strong)
case (Eq_llist a b)
hence ainf: "a ∈ A⇧ω"
and binf: "b ∈ A⇧ω" and pref: "finpref A a ⊆ finpref A b" by auto
from ainf show ?case
proof cases
case (LCons a' l')
note acons = this with binf show ?thesis
proof (cases b)
case (LCons b' l'')
with acons pref have "a' = b'" "finpref A l' ⊆ finpref A l''"
by (auto simp: finpref_def)
thus ?thesis using acons LCons by auto
qed
qed
qed
qed
lemma inf_neqE:
"⟦ x ∈ A⇧ω; y ∈ A⇧ω; x ≠ y;
⋀s. ⟦ s∈A⇧⋆; s ≤ x; ¬ s ≤ y⟧ ⟹ R ⟧ ⟹ R"
by (auto intro!: prefix_lemma)
lemma pref_locally_linear:
fixes s::"'a llist"
assumes sx: "s ≤ x"
and tx: "t ≤ x"
shows "s ≤ t ∨ t ≤ s"
proof-
have "s ∈ UNIV⇧∞" by auto
thus ?thesis
proof (cases rule: alllstsE)
case infinite with sx tx show ?thesis
by (auto simp: llist_inf_le)
next
case finite
thus ?thesis using sx tx
proof (induct "s" arbitrary: x t)
case LNil_fin thus ?case by simp
next
case (LCons_fin a l)
note alx = ‹a ## l ≤ x›
note tx = ‹t ≤ x›
show ?case
proof(rule disjCI)
assume tal: "¬ t ≤ a ## l"
show "LCons a l ≤ t"
proof (cases t)
case LNil thus ?thesis using tal by auto
next case (LCons b ts) note tcons = this show ?thesis
proof (cases x)
case LNil thus ?thesis using alx by auto
next
case (LCons c xs)
from alx LCons have ac: "a = c" and lxs: "l ≤ xs"
by auto
from tx tcons LCons have bc: "b = c" and tsxs: "ts ≤ xs"
by auto
from tcons tal ac bc have tsl: "¬ ts ≤ l"
by auto
from LCons_fin lxs tsxs tsl have "l ≤ ts"
by auto
with tcons ac bc show ?thesis
by auto
qed
qed
qed
qed
qed
qed
definition pfinpref :: "'a set ⇒ 'a llist ⇒ 'a llist set"
where "pfinpref A s ≡ finpref A s - {LNil}"
lemma pfinpref_iff [iff]:
"(x ∈ pfinpref A s) = (x ∈ finpref A s ∧ x ≠ LNil)"
by (auto simp: pfinpref_def)
subsection‹Safety and Liveness›
definition infsafety :: "'a set ⇒ 'a llist set ⇒ bool"
where "infsafety A P ≡ ∀ t ∈ A⇧ω. (∀ r ∈ finpref A t. ∃ s ∈ A⇧ω. r @@ s ∈ P) ⟶ t ∈ P"
definition infliveness :: "'a set ⇒ 'a llist set ⇒ bool"
where "infliveness A P ≡ ∀ t ∈ A⇧⋆. ∃ s ∈ A⇧ω. t @@ s ∈ P"
definition possafety :: "'a set ⇒ 'a llist set ⇒ bool"
where "possafety A P ≡ ∀ t ∈ A⇧♠. (∀ r ∈ pfinpref A t. ∃ s ∈ A⇧∞. r @@ s ∈ P) ⟶ t ∈ P"
definition posliveness :: "'a set ⇒ 'a llist set ⇒ bool"
where "posliveness A P ≡ ∀ t ∈ A⇧♣. ∃ s ∈ A⇧∞. t @@ s ∈ P"
definition safety :: "'a set ⇒ 'a llist set ⇒ bool"
where "safety A P ≡ ∀ t ∈ A⇧∞. (∀ r ∈ finpref A t. ∃ s ∈ A⇧∞. r @@ s ∈ P) ⟶ t ∈ P"
definition liveness :: "'a set ⇒ 'a llist set ⇒ bool"
where "liveness A P ≡ ∀ t ∈ A⇧⋆. ∃ s ∈ A⇧∞. t @@ s ∈ P"
lemma safetyI:
"(⋀t. ⟦t ∈ A⇧∞; ∀ r ∈ finpref A t. ∃ s ∈ A⇧∞. r @@ s ∈ P⟧ ⟹ t ∈ P)
⟹ safety A P"
by (unfold safety_def) blast
lemma safetyD:
"⟦ safety A P; t ∈ A⇧∞;
⋀r. r ∈ finpref A t ⟹ ∃ s ∈ A⇧∞. r @@ s ∈ P
⟧ ⟹ t ∈ P"
by (unfold safety_def) blast
lemma safetyE:
"⟦ safety A P;
∀ t ∈ A⇧∞. (∀ r ∈ finpref A t. ∃ s ∈ A⇧∞. r @@ s ∈ P) ⟶ t ∈ P ⟹ R
⟧ ⟹ R"
by (unfold safety_def) blast
lemma safety_prefix_closed:
"safety UNIV P ⟹ prefix_closed P"
by (auto dest!: safetyD
simp: prefix_closed_def finpref_def llist_le_def lappend_assoc)
blast
lemma livenessI:
"(⋀s. s∈ A⇧⋆ ⟹ ∃ t ∈ A⇧∞. s @@ t ∈ P) ⟹ liveness A P"
by (auto simp: liveness_def)
lemma livenessE:
"⟦ liveness A P; ⋀t. ⟦ t ∈ A⇧∞; s @@ t ∈ P⟧ ⟹ R; s ∉ A⇧⋆ ⟹ R⟧ ⟹ R"
by (auto simp: liveness_def)
lemma possafetyI:
"(⋀t. ⟦t ∈ A⇧♠; ∀ r ∈ pfinpref A t. ∃ s ∈ A⇧∞. r @@ s ∈ P⟧ ⟹ t ∈ P)
⟹ possafety A P"
by (unfold possafety_def) blast
lemma possafetyD:
"⟦ possafety A P; t ∈ A⇧♠;
⋀r. r ∈ pfinpref A t ⟹ ∃ s ∈ A⇧∞. r @@ s ∈ P
⟧ ⟹ t ∈ P"
by (unfold possafety_def) blast
lemma possafetyE:
"⟦ possafety A P;
∀ t ∈ A⇧♠. (∀ r ∈ pfinpref A t. ∃ s ∈ A⇧∞. r @@ s ∈ P) ⟶ t ∈ P ⟹ R
⟧ ⟹ R"
by (unfold possafety_def) blast
lemma possafety_pprefix_closed:
assumes psafety: "possafety UNIV P"
shows "pprefix_closed P"
unfolding pprefix_closed_def
proof(intro ballI allI impI, erule conjE)
fix t s assume tP: "t ∈ P" and st: "s ≤ t" and spos: "s ≠ LNil"
from psafety show "s ∈ P"
proof (rule possafetyD)
from spos show "s ∈ UNIV⇧♠" by auto
next fix r assume "r ∈ pfinpref UNIV s"
then obtain u where scons: "s = r @@ u"
by (auto simp: pfinpref_def finpref_def llist_le_def)
with st obtain v where "t = r @@ u @@ v"
by (auto simp: lappend_assoc llist_le_def)
with tP show "∃s∈UNIV⇧∞. r @@ s ∈ P" by auto
qed
qed
lemma poslivenessI:
"(⋀s. s∈ A⇧♣ ⟹ ∃ t ∈ A⇧∞. s @@ t ∈ P) ⟹ posliveness A P"
by (auto simp: posliveness_def)
lemma poslivenessE:
"⟦ posliveness A P; ⋀t. ⟦ t ∈ A⇧∞; s @@ t ∈ P⟧ ⟹ R; s ∉ A⇧♣ ⟹ R⟧ ⟹ R"
by (auto simp: posliveness_def)
end