Theory Lambda_Free_RPOs.Lambda_Encoding
section ‹An Encoding of Lambdas in Lambda-Free Higher-Order Logic›
theory Lambda_Encoding
imports Lambda_Free_Term
begin
text ‹
This theory defines an encoding of ‹λ›-expressions as ‹λ›-free higher-order terms.
›
locale lambda_encoding =
fixes
lam :: 's and
db :: "nat ⇒ 's"
begin
definition is_db :: "'s ⇒ bool" where
"is_db f ⟷ (∃i. f = db i)"
fun subst_db :: "nat ⇒ 'v ⇒ ('s, 'v) tm ⇒ ('s, 'v) tm" where
"subst_db i x (Hd ζ) = Hd (if ζ = Var x then Sym (db i) else ζ)"
| "subst_db i x (App s t) =
App (subst_db i x s) (subst_db (if head s = Sym lam then i + 1 else i) x t)"
definition raw_db_subst :: "nat ⇒ 'v ⇒ 'v ⇒ ('s, 'v) tm" where
"raw_db_subst i x = (λy. Hd (if y = x then Sym (db i) else Var y))"
lemma vars_mset_subst_db: "vars_mset (subst_db i x s) = {#y ∈# vars_mset s. y ≠ x#}"
by (induct s arbitrary: i) (auto elim: hd.set_cases)
lemma head_subst_db: "head (subst_db i x s) = head (subst (raw_db_subst i x) s)"
by (induct s arbitrary: i) (auto simp: raw_db_subst_def split: hd.split)
lemma args_subst_db:
"args (subst_db i x s) = map (subst_db (if head s = Sym lam then i + 1 else i) x) (args s)"
by (induct s arbitrary: i) auto
lemma var_mset_subst_db_subseteq:
"vars_mset s ⊆# vars_mset t ⟹ vars_mset (subst_db i x s) ⊆# vars_mset (subst_db i x t)"
by (simp add: vars_mset_subst_db multiset_filter_mono)
end
end