Theory Lipschitz_Interval_Extension
chapter‹Lipschitz Continuity of Intervals›
text‹An extension of of Lipschitz Continuity, developed for the Lipschitz Continuity of intervals.›
theory
Lipschitz_Interval_Extension
imports
Inclusion_Isotonicity
"HOL-Analysis.Lipschitz"
Interval_Utilities
begin
section ‹Definition of Lipschitz Continuity on Intervals›
text ‹An interval extension F is said to be lipschitz in X if there is a constant L such that
@{term ‹w(F(X)) ≤ Lw(X)›} for every @{term ‹X ⊆ X›}. Hence the width of
@{term ‹F(X)›} approaches @{term ‹0›} at least linearly with the width of X.›
definition lipschitzI_on :: "'a::{zero,minus,preorder,times} ⇒ 'a interval set ⇒ ('a interval ⇒ 'a interval) ⇒ bool"
where "lipschitzI_on C U F ⟷ (0 ≤ C ∧ (∀x ∈ U. width (F x) ≤ C * width x))"
text ‹The definition @{term "lipschitzI_on"} refers to definition 6.1 in\<^cite>‹"moore.ea:introduction:2009"››
bundle lipschitzI_syntax begin
notation lipschitzI_on ("_-lipschitzI'_on" [1000])
end
bundle no_lipschitzI_syntax begin
no_notation lipschitzI_on ("_-lipschitzI'_on" [1000])
end
unbundle lipschitzI_syntax
lemma lipschitzI_onI: "C-lipschitzI_on U F"
if "⋀x . x ∈ U ⟹ width (F x) ≤ C * width x" "0 ≤ C"
using that by (auto simp: lipschitzI_on_def)
lemma lipschitzI_onD:
"width (F x) ≤ C * width x "
if "C-lipschitzI_on U F" "x ∈ U"
using that by (auto simp: lipschitzI_on_def)
lemma lipschitzI_on_nonneg:
"0 ≤ C" if "C-lipschitzI_on U F"
using that by (auto simp: lipschitzI_on_def)
lemma lipschitz_on_normD:
"norm (width (F x)) ≤ C * norm (width x)"
if "C-lipschitzI_on U F" "x ∈ U"
using lipschitzI_onD[OF that]
by (simp add: width_def dist_norm)
lemma lipschitzI_on_mono: "L-lipschitzI_on D (F:: 'a::{linordered_ring} interval ⇒ 'a interval)"
if "M-lipschitzI_on E F" "M ≤ L" "D ⊆ E"
using that diff_ge_0_iff_ge lower_le_upper
order_trans[OF _ mult_right_mono]
unfolding lipschitzI_on_def width_def
by (metis (no_types, lifting) order_trans subsetD width_def)
lemmas lipschitzI_on_subset
= lipschitzI_on_mono[OF _ _ order_refl]
and lipschitzI_on_le = lipschitzI_on_mono[OF _ order_refl]
lemma lipschitzI_on_leI:
"C-lipschitzI_on U F"
if "⋀x. x ∈ U ⟹ width (F x) ≤ C * width x"
"0 ≤ C"
for F::"'a::{minus,preorder,times,zero} interval ⇒ 'a interval"
proof (rule lipschitzI_onI)
fix x assume x: "x ∈ U"
consider "upper x ≤ lower x" | "lower x ≤ upper x"
by simp
then show "width (F x) ≤ C * width x"
proof cases
case 1
then have "width (F x) ≤ C * width x"
by (auto intro!: that x)
then show ?thesis
by (simp add: dist_commute)
qed (auto intro!: that x)
qed fact
subsection‹Lipschitz Continuity of Operations›
text ‹Let F and G be inclusion isotonic interval extensions with @{term ‹F›} Lipschitz
in @{term ‹Y›} and @{term ‹G›} Lipschitz in @{term ‹X›}
and @{term ‹G(X) ⊆ Y›}. Then the composition @{term ‹H(X) = F(G(X))›} is
Lipschitz in @{term ‹X›} and is inclusion isotonic›
lemma lipschitzI_on_compose:
fixes U :: ‹'a::{linordered_ring} interval set›
assumes f: "C-lipschitzI_on U F" and g: "D-lipschitzI_on (F`U) G"
shows "(D * C)-lipschitzI_on U (G o F)"
proof (rule lipschitzI_onI)
show "D * C ≥ 0" using lipschitzI_on_nonneg[OF f] lipschitzI_on_nonneg[OF g] by simp
fix x assume H: "x ∈ U"
have "width (G(F x)) ≤ D * C * width x"
using lipschitzI_onD[OF g] H assms
unfolding width_def lipschitzI_on_def apply simp
by (smt (verit, ccfv_SIG) mult.assoc mult_left_mono order_trans)
then show "width ((G ∘ F) x) ≤ D * C * width x"
unfolding comp_def by simp
qed
text ‹The definition @{thm "lipschitzI_on_compose"} refers to lemma 6.3 in
\<^cite>‹"moore.ea:introduction:2009"››
lemma lipschitzI_on_compose2:
fixes U :: ‹'a::{linordered_ring} interval set›
assumes F: "C-lipschitzI_on U F" and G: "D-lipschitzI_on (F`U) G"
shows "(D * C)-lipschitzI_on U (λx. G (F x))"
using lipschitzI_on_compose F G unfolding o_def by blast
lemma lipschitzI_on_cong:
"C-lipschitzI_on U G ⟷ D-lipschitzI_on V F"
if "C = D" "U = V" "⋀x. x ∈ V ⟹ G x = F x"
using that by (auto simp: lipschitzI_on_def)
lemma lipschitzI_on_transform:
"C-lipschitzI_on U G"
if "C-lipschitzI_on U F"
"⋀x. x ∈ U ⟹ G x = F x"
using that
unfolding lipschitzI_on_def width_def
by simp
lemma lipschitz_on_empty_iff: "C-lipschitzI_on {} f ⟷ C ≥ 0"
by (auto simp: lipschitzI_on_def)
lemma lipschitz_on_id: "(1::real)-lipschitzI_on U (λx. x)"
by (auto simp: lipschitzI_on_def)
lemma lipschitz_on_constant:
assumes ‹lower c = upper c›
shows "(0::real)-lipschitzI_on U (λx. c)"
using assms by (auto simp: lipschitzI_on_def width_def)
lemma lipschitzI_on_mult:
fixes X :: "'a::{linordered_idom}"
assumes "lipschitzI_on C U f"
and "1 ≤ X"
shows "lipschitzI_on (X*C) U f"
using assms interval_width_positive lower_le_upper mult_le_cancel_right1
unfolding lipschitzI_on_def width_def
by (smt (verit) diff_ge_0_iff_ge linorder_not_le mult.assoc order_trans)
subsection "Interval bounds on reals"
lemma bounded_image_real:
fixes X :: "real interval" and f :: "real ⇒ real"
assumes "∀x∈{lower X..upper X}.
f (lower X) - L * (upper X - lower X) ≤ f x ∧ f x ≤ f (lower X) + L * (upper X - lower X)"
shows "∃x e. ∀y∈f ` {lower X..upper X}. dist x y ≤ e"
proof -
let ?x = "f (lower X)"
let ?e = "L * (upper X - lower X)"
have "∀y∈f ` {lower X..upper X}. dist ?x y ≤ ?e"
proof
fix y assume "y ∈ f ` {lower X..upper X}"
then obtain x where "x ∈ {lower X..upper X}" and "y = f x" by auto
then have "?x - ?e ≤ y ∧ y ≤ ?x + ?e" using assms by auto
then show "dist ?x y ≤ ?e"
unfolding dist_real_def by force
qed
then show ?thesis by auto
qed
lemma lipschitz_bounded_image_real:
fixes X :: "real set" and f :: "real ⇒ real"
assumes "bounded X" and "L-lipschitz_on X f"
shows "bounded (f ` X)"
using assms(1) assms(2) bounded_uniformly_continuous_image lipschitz_on_uniformly_continuous by blast
lemma inf_le_sup_image_real:
fixes X :: "real interval" and f :: "real ⇒ real"
assumes "L-lipschitz_on (set_of X) f"
shows "Inf (f ` set_of X) ≤ Sup (f ` set_of X)"
proof -
have "bounded (f ` set_of X)"
using assms bounded_set_of lipschitz_bounded_image_real by blast
then have "bdd_below (f ` set_of X)" and "bdd_above (f ` set_of X)"
using bounded_imp_bdd_below bounded_imp_bdd_above by auto
then have "Inf (f ` set_of X) ≤ Sup (f ` set_of X)"
by (metis set_of_nonempty cInf_le_cSup empty_is_image)
then show ?thesis by simp
qed
lemma sup_image_le_real:
fixes f :: "real ⇒ real" and F :: "real interval ⇒ real interval" and X :: "real interval"
assumes "f ` set_of X ⊆ set_of (F X)"
and "L-lipschitz_on (set_of X) f"
shows "Sup (f ` set_of X) ≤ Sup (set_of (F X))"
proof -
have a0: "bounded (f ` set_of X)"
using lipschitz_bounded_image_real[of "set_of X"] assms bounded_set_of[of "X"] by simp
have a1: "bdd_above (f ` set_of X)"
using assms
using a0 bounded_imp_bdd_above by presburger
then have a2: "∀y∈f ` set_of X. y ≤ Sup (f ` set_of X)" using bounded_has_Sup(1) a0
by blast
then have a3: "Sup (f ` set_of X) ≤ Sup (set_of (F X))"
using set_of_nonempty assms a0 a1 a2 atLeastAtMost_iff closed_real_atLeastAtMost closed_subset_contains_Sup empty_is_image set_of_eq sup_set_of
by metis
then show ?thesis by simp
qed
lemma inf_image_le_real:
fixes f :: "real ⇒ real" and F :: "real interval ⇒ real interval" and X :: "real interval"
assumes "f ` set_of X ⊆ set_of (F X)"
and "L-lipschitz_on (set_of X) f"
shows "Inf (set_of (F X)) ≤ Inf (f ` (set_of X))"
proof -
have a0: "bounded (f ` set_of X)"
using lipschitz_bounded_image_real[of "set_of X"] assms bounded_set_of[of "X"] by simp
have a1: "bdd_above (f ` set_of X)"
using assms
by (metis atLeastAtMost_iff bdd_above.unfold set_of_eq subset_eq)
then have a2: "∀y∈f ` set_of X. y ≥ Inf (f ` set_of X)"
using bounded_has_Inf(1) a0
by blast
then have a3: "Inf (set_of (F X)) ≤ Inf (f ` (set_of X))" using assms
by (metis set_of_nonempty a0 bounded_imp_bdd_below closed_real_atLeastAtMost closed_subset_contains_Inf empty_is_image in_bounds inf_set_of set_of_eq)
then show ?thesis by simp
qed
end