Theory PublicGA

section‹Theory of Cryptographic Keys for Security Protocols against the General Attacker›

theory PublicGA imports EventGA begin

lemma invKey_K: "K  symKeys  invKey K = K"
by (simp add: symKeys_def)

subsection‹Asymmetric Keys›

datatype keymode = Signature | Encryption

consts
  publicKey :: "[keymode,agent] => key"

abbreviation
  pubEK :: "agent => key" where
  "pubEK == publicKey Encryption"

abbreviation
  pubSK :: "agent => key" where
  "pubSK == publicKey Signature"

abbreviation
  privateKey :: "[keymode, agent] => key" where
  "privateKey b A == invKey (publicKey b A)"

abbreviation
  (*BEWARE!! priEK, priSK DON'T WORK with inj, range, image, etc.*)
  priEK :: "agent => key" where
  "priEK A == privateKey Encryption A"

abbreviation
  priSK :: "agent => key" where
  "priSK A == privateKey Signature A"


text‹These abbreviations give backward compatibility.  They represent the
simple situation where the signature and encryption keys are the same.›

abbreviation
  pubK :: "agent => key" where
  "pubK A == pubEK A"

abbreviation
  priK :: "agent => key" where
  "priK A == invKey (pubEK A)"


text‹By freeness of agents, no two agents have the same key.  Since
  @{term "TrueFalse"}, no agent has identical signing and encryption keys›
specification (publicKey)
  injective_publicKey:
    "publicKey b A = publicKey c A'  b=c  A=A'"
   apply (rule exI [of _ 
       "%b A. 2 * case_agent (λn. n + 2) A + case_keymode 0 1 b"])
   apply (auto simp add: inj_on_def split: agent.split keymode.split)
   apply presburger
   apply presburger
   done                       


axiomatization where
  (*No private key equals any public key (essential to ensure that private
    keys are private!) *)
  privateKey_neq_publicKey [iff]: "privateKey b A  publicKey c A'"

lemmas publicKey_neq_privateKey = privateKey_neq_publicKey [THEN not_sym]
declare publicKey_neq_privateKey [iff]


subsection‹Basic properties of @{term pubK} and @{term priK}

lemma publicKey_inject [iff]: "(publicKey b A = publicKey c A') = (b=c  A=A')"
by (blast dest!: injective_publicKey) 

lemma not_symKeys_pubK [iff]: "publicKey b A  symKeys"
by (simp add: symKeys_def)

lemma not_symKeys_priK [iff]: "privateKey b A  symKeys"
by (simp add: symKeys_def)

lemma symKey_neq_priEK: "K  symKeys  K  priEK A"
by auto

lemma symKeys_neq_imp_neq: "(K  symKeys)  (K'  symKeys)  K  K'"
by blast

lemma symKeys_invKey_iff [iff]: "(invKey K  symKeys) = (K  symKeys)"
by (unfold symKeys_def, auto)

lemma analz_symKeys_Decrypt:
     "[| Crypt K X  analz H;  K  symKeys;  Key K  analz H |]  
      ==> X  analz H"
by (auto simp add: symKeys_def)



subsection‹"Image" equations that hold for injective functions›

lemma invKey_image_eq [simp]: "(invKey x  invKey`A) = (x  A)"
by auto

(*holds because invKey is injective*)
lemma publicKey_image_eq [simp]:
     "(publicKey b x  publicKey c ` AA) = (b=c  x  AA)"
by auto

lemma privateKey_notin_image_publicKey [simp]: "privateKey b x  publicKey c ` AA"
by auto

lemma privateKey_image_eq [simp]:
     "(privateKey b A  invKey ` publicKey c ` AS) = (b=c  AAS)"
by auto

lemma publicKey_notin_image_privateKey [simp]: "publicKey b A  invKey ` publicKey c ` AS"
by auto


subsection‹Symmetric Keys›

text‹For some protocols, it is convenient to equip agents with symmetric as
well as asymmetric keys.  The theory Shared› assumes that all keys
are symmetric.›

consts
  shrK    :: "agent => key"    ― ‹long-term shared keys›

specification (shrK)
  inj_shrK: "inj shrK"
  ― ‹No two agents have the same long-term key›
   apply (rule exI [of _ "case_agent (λn. n + 2)"]) 
   apply (simp add: inj_on_def split: agent.split) 
   done

axiomatization where
  sym_shrK [iff]: "shrK X  symKeys" ― ‹All shared keys are symmetric›

text‹Injectiveness: Agents' long-term keys are distinct.›
lemmas shrK_injective = inj_shrK [THEN inj_eq]
declare shrK_injective [iff]

lemma invKey_shrK [simp]: "invKey (shrK A) = shrK A"
by (simp add: invKey_K) 

lemma analz_shrK_Decrypt:
     "[| Crypt (shrK A) X  analz H; Key(shrK A)  analz H |] ==> X  analz H"
by auto

lemma analz_Decrypt':
     "[| Crypt K X  analz H; K  symKeys; Key K  analz H |] ==> X  analz H"
by (auto simp add: invKey_K)

lemma priK_neq_shrK [iff]: "shrK A  privateKey b C"
by (simp add: symKeys_neq_imp_neq)

lemmas shrK_neq_priK = priK_neq_shrK [THEN not_sym]
declare shrK_neq_priK [simp]

lemma pubK_neq_shrK [iff]: "shrK A  publicKey b C"
by (simp add: symKeys_neq_imp_neq)

lemmas shrK_neq_pubK = pubK_neq_shrK [THEN not_sym]
declare shrK_neq_pubK [simp]

lemma priEK_noteq_shrK [simp]: "priEK A  shrK B" 
by auto

lemma publicKey_notin_image_shrK [simp]: "publicKey b x  shrK ` AA"
by auto

lemma privateKey_notin_image_shrK [simp]: "privateKey b x  shrK ` AA"
by auto

lemma shrK_notin_image_publicKey [simp]: "shrK x  publicKey b ` AA"
by auto

lemma shrK_notin_image_privateKey [simp]: "shrK x  invKey ` publicKey b ` AA" 
by auto

lemma shrK_image_eq [simp]: "(shrK x  shrK ` AA) = (x  AA)"
by auto

text‹For some reason, moving this up can make some proofs loop!›
declare invKey_K [simp]


subsection‹Initial States of Agents›

overloading
  initState  initState
begin

primrec initState where

  initState_Friend:
    "initState (Friend i) =    
       {Key (priEK (Friend i)), Key (priSK (Friend i)), Key (shrK (Friend i))}  
       (Key ` range pubEK)  (Key ` range pubSK)"
end


lemma used_parts_subset_parts [rule_format]:
     "X  used evs. parts {X}  used evs"
apply (induct evs) 
 prefer 2
 apply (simp add: used_Cons split: event.split)
 apply (metis Un_iff empty_subsetI insert_subset le_supI1 le_supI2 parts_subset_iff)
txt‹Base case›
apply (auto dest!: parts_cut simp add: used_Nil) 
done

lemma MPair_used_D: "X,Y  used H  X  used H  Y  used H"
by (drule used_parts_subset_parts, simp, blast)

text‹There was a similar theorem in Event.thy, so perhaps this one can
  be moved up if proved directly by induction.›
lemma MPair_used [elim!]:
     "[| X,Y  used H;
         [| X  used H; Y  used H |] ==> P |] 
      ==> P"
by (blast dest: MPair_used_D) 


text‹Rewrites should not refer to  @{term "initState(Friend i)"} because
  that expression is not in normal form.›

lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
apply (unfold keysFor_def)
apply (induct_tac "C")
apply (auto intro: range_eqI)
done

lemma Crypt_notin_initState: "Crypt K X  parts (initState B)"
by (induct B, auto)

lemma Crypt_notin_used_empty [simp]: "Crypt K X  used []"
by (simp add: Crypt_notin_initState used_Nil)

(*** Basic properties of shrK ***)

(*Agents see their own shared keys!*)
lemma shrK_in_initState [iff]: "Key (shrK A)  initState A"
by (induct_tac "A", auto)

lemma shrK_in_knows [iff]: "Key (shrK A)  knows A evs"
by (simp add: initState_subset_knows [THEN subsetD])

lemma shrK_in_used [iff]: "Key (shrK A)  used evs"
by (rule initState_into_used, blast)


(** Fresh keys never clash with long-term shared keys **)

(*Used in parts_induct_tac and analz_Fake_tac to distinguish session keys
  from long-term shared keys*)
lemma Key_not_used [simp]: "Key K  used evs  K  range shrK"
by blast

lemma shrK_neq: "Key K  used evs  shrK B  K"
by blast

lemmas neq_shrK = shrK_neq [THEN not_sym]
declare neq_shrK [simp]


subsection‹Function @{term "knows Spy"}

lemma not_SignatureE [elim!]: "b  Signature  b = Encryption"
  by (cases b, auto) 

text‹Agents see their own private keys!›
lemma priK_in_initState [iff]: "Key (privateKey b A)  initState A"
  by (cases A, auto)

text‹Agents see all public keys!›
lemma publicKey_in_initState [iff]: "Key (publicKey b A)  initState B"
  by (cases B, auto) 

text‹All public keys are visible›
lemma spies_pubK [iff]: "Key (publicKey b A)  knows B evs"
apply (induct_tac "evs")
apply (auto simp add: imageI knows_Cons split: event.split)
done


lemmas analz_spies_pubK = spies_pubK [THEN analz.Inj]
declare analz_spies_pubK [iff]

(*Note: there never is at this stage a lemma about what an agent cannot know*)

lemma publicKey_into_used [iff] :"Key (publicKey b A)  used evs"
apply (rule initState_into_used)
apply (rule publicKey_in_initState [THEN parts.Inj])
done

lemma privateKey_into_used [iff]: "Key (privateKey b A)  used evs"
apply(rule initState_into_used)
apply(rule priK_in_initState [THEN parts.Inj])
done

lemma Crypt_analz_bad:
     "[| Crypt (shrK A) X  analz (knows A evs) |]  
      ==> X  analz (knows A evs)"
by force


subsection‹Fresh Nonces›

lemma Nonce_notin_initState [iff]: "Nonce N  parts (initState B)"
by (induct_tac "B", auto)

lemma Nonce_notin_used_empty [simp]: "Nonce N  used []"
by (simp add: used_Nil)


subsection‹Supply fresh nonces for possibility theorems›

text‹In any trace, there is an upper bound N on the greatest nonce in use›
lemma Nonce_supply_lemma: "N. n. Nn  Nonce n  used evs"
apply (induct_tac "evs")
apply (rule_tac x = 0 in exI)
apply (simp_all (no_asm_simp) add: used_Cons split: event.split)
apply safe
apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+
done

lemma Nonce_supply1: "N. Nonce N  used evs"
by (rule Nonce_supply_lemma [THEN exE], blast)

lemma Nonce_supply: "Nonce (SOME N. Nonce N  used evs)  used evs"
apply (rule Nonce_supply_lemma [THEN exE])
apply (rule someI, fast)
done

subsection‹Specialized Rewriting for Theorems About @{term analz} and Image›

lemma insert_Key_singleton: "insert (Key K) H = Key ` {K}  H"
by blast

lemma insert_Key_image: "insert (Key K) (Key`KK  C) = Key ` (insert K KK)  C"
by blast


lemma Crypt_imp_keysFor :"[|Crypt K X  H; K  symKeys|] ==> K  keysFor H"
by (drule Crypt_imp_invKey_keysFor, simp)

text‹Lemma for the trivial direction of the if-and-only-if of the 
Session Key Compromise Theorem›
lemma analz_image_freshK_lemma:
     "(Key K  analz (Key`nE  H))  (K  nE | Key K  analz H)    
         (Key K  analz (Key`nE  H)) = (K  nE | Key K  analz H)"
by (blast intro: analz_mono [THEN [2] rev_subsetD])

lemmas analz_image_freshK_simps =
       simp_thms mem_simps ― ‹these two allow its use with @{text "only:"}
       disj_comms 
       image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
       analz_insert_eq Un_upper2 [THEN analz_mono, THEN subsetD]
       insert_Key_singleton 
       Key_not_used insert_Key_image Un_assoc [THEN sym]

ML structure Public =
struct

val analz_image_freshK_ss =
  simpset_of (@{context}
    delsimps [image_insert, image_Un]
    delsimps [@{thm imp_disjL}]    (*reduces blow-up*)
    addsimps @{thms analz_image_freshK_simps})

(*Tactic for possibility theorems*)
fun possibility_tac ctxt =
    REPEAT (*omit used_Says so that Nonces start from different traces!*)
    (ALLGOALS (simp_tac (ctxt delsimps [@{thm used_Says}]))
     THEN
     REPEAT_FIRST (eq_assume_tac ORELSE' 
                   resolve_tac ctxt [refl, conjI, @{thm Nonce_supply}]))

(*For harder protocols (such as Recur) where we have to set up some
  nonces and keys initially*)
fun basic_possibility_tac ctxt =
    REPEAT 
    (ALLGOALS (asm_simp_tac (ctxt setSolver safe_solver))
     THEN
     REPEAT_FIRST (resolve_tac ctxt [refl, conjI]))

end

method_setup analz_freshK = Scan.succeed (fn ctxt =>
     (SIMPLE_METHOD
      (EVERY [REPEAT_FIRST (resolve_tac ctxt [allI, ballI, impI]),
          REPEAT_FIRST (resolve_tac ctxt @{thms analz_image_freshK_lemma}),
          ALLGOALS (asm_simp_tac (put_simpset Public.analz_image_freshK_ss ctxt))])))
    "for proving the Session Key Compromise theorem"


subsection‹Specialized Methods for Possibility Theorems›

method_setup possibility = Scan.succeed (SIMPLE_METHOD o Public.possibility_tac)
    "for proving possibility theorems"

method_setup basic_possibility = Scan.succeed (SIMPLE_METHOD o Public.basic_possibility_tac)
    "for proving possibility theorems"

end