Theory PublicGA
section‹Theory of Cryptographic Keys for Security Protocols against the General Attacker›
theory PublicGA imports EventGA begin
lemma invKey_K: "K ∈ symKeys ⟹ invKey K = K"
by (simp add: symKeys_def)
subsection‹Asymmetric Keys›
datatype keymode = Signature | Encryption
consts
publicKey :: "[keymode,agent] => key"
abbreviation
pubEK :: "agent => key" where
"pubEK == publicKey Encryption"
abbreviation
pubSK :: "agent => key" where
"pubSK == publicKey Signature"
abbreviation
privateKey :: "[keymode, agent] => key" where
"privateKey b A == invKey (publicKey b A)"
abbreviation
priEK :: "agent => key" where
"priEK A == privateKey Encryption A"
abbreviation
priSK :: "agent => key" where
"priSK A == privateKey Signature A"
text‹These abbreviations give backward compatibility. They represent the
simple situation where the signature and encryption keys are the same.›
abbreviation
pubK :: "agent => key" where
"pubK A == pubEK A"
abbreviation
priK :: "agent => key" where
"priK A == invKey (pubEK A)"
text‹By freeness of agents, no two agents have the same key. Since
@{term "True≠False"}, no agent has identical signing and encryption keys›
specification (publicKey)
injective_publicKey:
"publicKey b A = publicKey c A' ⟹ b=c ∧ A=A'"
apply (rule exI [of _
"%b A. 2 * case_agent (λn. n + 2) A + case_keymode 0 1 b"])
apply (auto simp add: inj_on_def split: agent.split keymode.split)
apply presburger
apply presburger
done
axiomatization where
privateKey_neq_publicKey [iff]: "privateKey b A ≠ publicKey c A'"
lemmas publicKey_neq_privateKey = privateKey_neq_publicKey [THEN not_sym]
declare publicKey_neq_privateKey [iff]
subsection‹Basic properties of @{term pubK} and @{term priK}›
lemma publicKey_inject [iff]: "(publicKey b A = publicKey c A') = (b=c ∧ A=A')"
by (blast dest!: injective_publicKey)
lemma not_symKeys_pubK [iff]: "publicKey b A ∉ symKeys"
by (simp add: symKeys_def)
lemma not_symKeys_priK [iff]: "privateKey b A ∉ symKeys"
by (simp add: symKeys_def)
lemma symKey_neq_priEK: "K ∈ symKeys ⟹ K ≠ priEK A"
by auto
lemma symKeys_neq_imp_neq: "(K ∈ symKeys) ≠ (K' ∈ symKeys) ⟹ K ≠ K'"
by blast
lemma symKeys_invKey_iff [iff]: "(invKey K ∈ symKeys) = (K ∈ symKeys)"
by (unfold symKeys_def, auto)
lemma analz_symKeys_Decrypt:
"[| Crypt K X ∈ analz H; K ∈ symKeys; Key K ∈ analz H |]
==> X ∈ analz H"
by (auto simp add: symKeys_def)
subsection‹"Image" equations that hold for injective functions›
lemma invKey_image_eq [simp]: "(invKey x ∈ invKey`A) = (x ∈ A)"
by auto
lemma publicKey_image_eq [simp]:
"(publicKey b x ∈ publicKey c ` AA) = (b=c ∧ x ∈ AA)"
by auto
lemma privateKey_notin_image_publicKey [simp]: "privateKey b x ∉ publicKey c ` AA"
by auto
lemma privateKey_image_eq [simp]:
"(privateKey b A ∈ invKey ` publicKey c ` AS) = (b=c ∧ A∈AS)"
by auto
lemma publicKey_notin_image_privateKey [simp]: "publicKey b A ∉ invKey ` publicKey c ` AS"
by auto
subsection‹Symmetric Keys›
text‹For some protocols, it is convenient to equip agents with symmetric as
well as asymmetric keys. The theory ‹Shared› assumes that all keys
are symmetric.›
consts
shrK :: "agent => key"
specification (shrK)
inj_shrK: "inj shrK"
apply (rule exI [of _ "case_agent (λn. n + 2)"])
apply (simp add: inj_on_def split: agent.split)
done
axiomatization where
sym_shrK [iff]: "shrK X ∈ symKeys"
text‹Injectiveness: Agents' long-term keys are distinct.›
lemmas shrK_injective = inj_shrK [THEN inj_eq]
declare shrK_injective [iff]
lemma invKey_shrK [simp]: "invKey (shrK A) = shrK A"
by (simp add: invKey_K)
lemma analz_shrK_Decrypt:
"[| Crypt (shrK A) X ∈ analz H; Key(shrK A) ∈ analz H |] ==> X ∈ analz H"
by auto
lemma analz_Decrypt':
"[| Crypt K X ∈ analz H; K ∈ symKeys; Key K ∈ analz H |] ==> X ∈ analz H"
by (auto simp add: invKey_K)
lemma priK_neq_shrK [iff]: "shrK A ≠ privateKey b C"
by (simp add: symKeys_neq_imp_neq)
lemmas shrK_neq_priK = priK_neq_shrK [THEN not_sym]
declare shrK_neq_priK [simp]
lemma pubK_neq_shrK [iff]: "shrK A ≠ publicKey b C"
by (simp add: symKeys_neq_imp_neq)
lemmas shrK_neq_pubK = pubK_neq_shrK [THEN not_sym]
declare shrK_neq_pubK [simp]
lemma priEK_noteq_shrK [simp]: "priEK A ≠ shrK B"
by auto
lemma publicKey_notin_image_shrK [simp]: "publicKey b x ∉ shrK ` AA"
by auto
lemma privateKey_notin_image_shrK [simp]: "privateKey b x ∉ shrK ` AA"
by auto
lemma shrK_notin_image_publicKey [simp]: "shrK x ∉ publicKey b ` AA"
by auto
lemma shrK_notin_image_privateKey [simp]: "shrK x ∉ invKey ` publicKey b ` AA"
by auto
lemma shrK_image_eq [simp]: "(shrK x ∈ shrK ` AA) = (x ∈ AA)"
by auto
text‹For some reason, moving this up can make some proofs loop!›
declare invKey_K [simp]
subsection‹Initial States of Agents›
overloading
initState ≡ initState
begin
primrec initState where
initState_Friend:
"initState (Friend i) =
{Key (priEK (Friend i)), Key (priSK (Friend i)), Key (shrK (Friend i))} ∪
(Key ` range pubEK) ∪ (Key ` range pubSK)"
end
lemma used_parts_subset_parts [rule_format]:
"∀X ∈ used evs. parts {X} ⊆ used evs"
apply (induct evs)
prefer 2
apply (simp add: used_Cons split: event.split)
apply (metis Un_iff empty_subsetI insert_subset le_supI1 le_supI2 parts_subset_iff)
txt‹Base case›
apply (auto dest!: parts_cut simp add: used_Nil)
done
lemma MPair_used_D: "⦃X,Y⦄ ∈ used H ⟹ X ∈ used H ∧ Y ∈ used H"
by (drule used_parts_subset_parts, simp, blast)
text‹There was a similar theorem in Event.thy, so perhaps this one can
be moved up if proved directly by induction.›
lemma MPair_used [elim!]:
"[| ⦃X,Y⦄ ∈ used H;
[| X ∈ used H; Y ∈ used H |] ==> P |]
==> P"
by (blast dest: MPair_used_D)
text‹Rewrites should not refer to @{term "initState(Friend i)"} because
that expression is not in normal form.›
lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
apply (unfold keysFor_def)
apply (induct_tac "C")
apply (auto intro: range_eqI)
done
lemma Crypt_notin_initState: "Crypt K X ∉ parts (initState B)"
by (induct B, auto)
lemma Crypt_notin_used_empty [simp]: "Crypt K X ∉ used []"
by (simp add: Crypt_notin_initState used_Nil)
lemma shrK_in_initState [iff]: "Key (shrK A) ∈ initState A"
by (induct_tac "A", auto)
lemma shrK_in_knows [iff]: "Key (shrK A) ∈ knows A evs"
by (simp add: initState_subset_knows [THEN subsetD])
lemma shrK_in_used [iff]: "Key (shrK A) ∈ used evs"
by (rule initState_into_used, blast)
lemma Key_not_used [simp]: "Key K ∉ used evs ⟹ K ∉ range shrK"
by blast
lemma shrK_neq: "Key K ∉ used evs ⟹ shrK B ≠ K"
by blast
lemmas neq_shrK = shrK_neq [THEN not_sym]
declare neq_shrK [simp]
subsection‹Function @{term "knows Spy"}›
lemma not_SignatureE [elim!]: "b ≠ Signature ⟹ b = Encryption"
by (cases b, auto)
text‹Agents see their own private keys!›
lemma priK_in_initState [iff]: "Key (privateKey b A) ∈ initState A"
by (cases A, auto)
text‹Agents see all public keys!›
lemma publicKey_in_initState [iff]: "Key (publicKey b A) ∈ initState B"
by (cases B, auto)
text‹All public keys are visible›
lemma spies_pubK [iff]: "Key (publicKey b A) ∈ knows B evs"
apply (induct_tac "evs")
apply (auto simp add: imageI knows_Cons split: event.split)
done
lemmas analz_spies_pubK = spies_pubK [THEN analz.Inj]
declare analz_spies_pubK [iff]
lemma publicKey_into_used [iff] :"Key (publicKey b A) ∈ used evs"
apply (rule initState_into_used)
apply (rule publicKey_in_initState [THEN parts.Inj])
done
lemma privateKey_into_used [iff]: "Key (privateKey b A) ∈ used evs"
apply(rule initState_into_used)
apply(rule priK_in_initState [THEN parts.Inj])
done
lemma Crypt_analz_bad:
"[| Crypt (shrK A) X ∈ analz (knows A evs) |]
==> X ∈ analz (knows A evs)"
by force
subsection‹Fresh Nonces›
lemma Nonce_notin_initState [iff]: "Nonce N ∉ parts (initState B)"
by (induct_tac "B", auto)
lemma Nonce_notin_used_empty [simp]: "Nonce N ∉ used []"
by (simp add: used_Nil)
subsection‹Supply fresh nonces for possibility theorems›
text‹In any trace, there is an upper bound N on the greatest nonce in use›
lemma Nonce_supply_lemma: "∃N. ∀n. N≤n ⟶ Nonce n ∉ used evs"
apply (induct_tac "evs")
apply (rule_tac x = 0 in exI)
apply (simp_all (no_asm_simp) add: used_Cons split: event.split)
apply safe
apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+
done
lemma Nonce_supply1: "∃N. Nonce N ∉ used evs"
by (rule Nonce_supply_lemma [THEN exE], blast)
lemma Nonce_supply: "Nonce (SOME N. Nonce N ∉ used evs) ∉ used evs"
apply (rule Nonce_supply_lemma [THEN exE])
apply (rule someI, fast)
done
subsection‹Specialized Rewriting for Theorems About @{term analz} and Image›
lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} ∪ H"
by blast
lemma insert_Key_image: "insert (Key K) (Key`KK ∪ C) = Key ` (insert K KK) ∪ C"
by blast
lemma Crypt_imp_keysFor :"[|Crypt K X ∈ H; K ∈ symKeys|] ==> K ∈ keysFor H"
by (drule Crypt_imp_invKey_keysFor, simp)
text‹Lemma for the trivial direction of the if-and-only-if of the
Session Key Compromise Theorem›
lemma analz_image_freshK_lemma:
"(Key K ∈ analz (Key`nE ∪ H)) ⟶ (K ∈ nE | Key K ∈ analz H) ⟹
(Key K ∈ analz (Key`nE ∪ H)) = (K ∈ nE | Key K ∈ analz H)"
by (blast intro: analz_mono [THEN [2] rev_subsetD])
lemmas analz_image_freshK_simps =
simp_thms mem_simps
disj_comms
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
analz_insert_eq Un_upper2 [THEN analz_mono, THEN subsetD]
insert_Key_singleton
Key_not_used insert_Key_image Un_assoc [THEN sym]
ML ‹
structure Public =
struct
val analz_image_freshK_ss =
simpset_of (@{context}
delsimps [image_insert, image_Un]
delsimps [@{thm imp_disjL}]
addsimps @{thms analz_image_freshK_simps})
fun possibility_tac ctxt =
REPEAT
(ALLGOALS (simp_tac (ctxt delsimps [@{thm used_Says}]))
THEN
REPEAT_FIRST (eq_assume_tac ORELSE'
resolve_tac ctxt [refl, conjI, @{thm Nonce_supply}]))
fun basic_possibility_tac ctxt =
REPEAT
(ALLGOALS (asm_simp_tac (ctxt setSolver safe_solver))
THEN
REPEAT_FIRST (resolve_tac ctxt [refl, conjI]))
end
›
method_setup analz_freshK = ‹
Scan.succeed (fn ctxt =>
(SIMPLE_METHOD
(EVERY [REPEAT_FIRST (resolve_tac ctxt [allI, ballI, impI]),
REPEAT_FIRST (resolve_tac ctxt @{thms analz_image_freshK_lemma}),
ALLGOALS (asm_simp_tac (put_simpset Public.analz_image_freshK_ss ctxt))])))›
"for proving the Session Key Compromise theorem"
subsection‹Specialized Methods for Possibility Theorems›
method_setup possibility = ‹
Scan.succeed (SIMPLE_METHOD o Public.possibility_tac)›
"for proving possibility theorems"
method_setup basic_possibility = ‹
Scan.succeed (SIMPLE_METHOD o Public.basic_possibility_tac)›
"for proving possibility theorems"
end