Theory Big_Step
theory Big_Step imports Com begin
subsection "Big-Step Semantics of Commands"
text ‹
The big-step semantics is a straight-forward inductive definition
with concrete syntax. Note that the first parameter is a tuple,
so the syntax becomes ‹(c,s) ⇒ s'›.
›
inductive
big_step :: "com × state ⇒ state ⇒ bool" (infix "⇒" 55)
where
Skip: "(SKIP,s) ⇒ s" |
Assign: "(x ::= a,s) ⇒ s(x := aval a s)" |
Seq: "⟦ (c⇩1,s⇩1) ⇒ s⇩2; (c⇩2,s⇩2) ⇒ s⇩3 ⟧ ⟹ (c⇩1;;c⇩2, s⇩1) ⇒ s⇩3" |
IfTrue: "⟦ bval b s; (c⇩1,s) ⇒ t ⟧ ⟹ (IF b THEN c⇩1 ELSE c⇩2, s) ⇒ t" |
IfFalse: "⟦ ¬bval b s; (c⇩2,s) ⇒ t ⟧ ⟹ (IF b THEN c⇩1 ELSE c⇩2, s) ⇒ t" |
WhileFalse: "¬bval b s ⟹ (WHILE b DO c,s) ⇒ s" |
WhileTrue:
"⟦ bval b s⇩1; (c,s⇩1) ⇒ s⇩2; (WHILE b DO c, s⇩2) ⇒ s⇩3 ⟧
⟹ (WHILE b DO c, s⇩1) ⇒ s⇩3"
text‹We want to execute the big-step rules:›
code_pred big_step .
text‹For inductive definitions we need command
\texttt{values} instead of \texttt{value}.›
values "{t. (SKIP, λ_. 0) ⇒ t}"
text‹We need to translate the result state into a list
to display it.›
values "{map t [''x''] |t. (SKIP, <''x'' := 42>) ⇒ t}"
values "{map t [''x''] |t. (''x'' ::= N 2, <''x'' := 42>) ⇒ t}"
values "{map t [''x'',''y''] |t.
(WHILE Less (V ''x'') (V ''y'') DO (''x'' ::= Plus (V ''x'') (N 5)),
<''x'' := 0, ''y'' := 13>) ⇒ t}"
text‹Proof automation:›
text ‹The introduction rules are good for automatically
construction small program executions. The recursive cases
may require backtracking, so we declare the set as unsafe
intro rules.›
declare big_step.intros [intro]
text‹The standard induction rule
@{thm [display] big_step.induct [no_vars]}›
thm big_step.induct
text‹
This induction schema is almost perfect for our purposes, but
our trick for reusing the tuple syntax means that the induction
schema has two parameters instead of the ‹c›, ‹s›,
and ‹s'› that we are likely to encounter. Splitting
the tuple parameter fixes this:
›
lemmas big_step_induct = big_step.induct[split_format(complete)]
thm big_step_induct
text ‹
@{thm [display] big_step_induct [no_vars]}
›
subsection "Rule inversion"
text‹What can we deduce from @{prop "(SKIP,s) ⇒ t"} ?
That @{prop "s = t"}. This is how we can automatically prove it:›
inductive_cases SkipE[elim!]: "(SKIP,s) ⇒ t"
thm SkipE
text‹This is an \emph{elimination rule}. The [elim] attribute tells auto,
blast and friends (but not simp!) to use it automatically; [elim!] means that
it is applied eagerly.
Similarly for the other commands:›
inductive_cases AssignE[elim!]: "(x ::= a,s) ⇒ t"
thm AssignE
inductive_cases SeqE[elim!]: "(c1;;c2,s1) ⇒ s3"
thm SeqE
inductive_cases IfE[elim!]: "(IF b THEN c1 ELSE c2,s) ⇒ t"
thm IfE
inductive_cases WhileE[elim]: "(WHILE b DO c,s) ⇒ t"
thm WhileE
text‹Only [elim]: [elim!] would not terminate.›
text‹An automatic example:›
lemma "(IF b THEN SKIP ELSE SKIP, s) ⇒ t ⟹ t = s"
by blast
text‹Rule inversion by hand via the ``cases'' method:›
lemma assumes "(IF b THEN SKIP ELSE SKIP, s) ⇒ t"
shows "t = s"
proof-
from assms show ?thesis
proof cases
case IfTrue thm IfTrue
thus ?thesis by blast
next
case IfFalse thus ?thesis by blast
qed
qed
lemma assign_simp:
"(x ::= a,s) ⇒ s' ⟷ (s' = s(x := aval a s))"
by auto
text ‹An example combining rule inversion and derivations›
lemma Seq_assoc:
"(c1;; c2;; c3, s) ⇒ s' ⟷ (c1;; (c2;; c3), s) ⇒ s'"
proof
assume "(c1;; c2;; c3, s) ⇒ s'"
then obtain s1 s2 where
c1: "(c1, s) ⇒ s1" and
c2: "(c2, s1) ⇒ s2" and
c3: "(c3, s2) ⇒ s'" by auto
from c2 c3
have "(c2;; c3, s1) ⇒ s'" by (rule Seq)
with c1
show "(c1;; (c2;; c3), s) ⇒ s'" by (rule Seq)
next
assume "(c1;; (c2;; c3), s) ⇒ s'"
thus "(c1;; c2;; c3, s) ⇒ s'" by auto
qed
subsection "Command Equivalence"
text ‹
We call two statements ‹c› and ‹c'› equivalent wrt.\ the
big-step semantics when \emph{‹c› started in ‹s› terminates
in ‹s'› iff ‹c'› started in the same ‹s› also terminates
in the same ‹s'›}. Formally:
›
abbreviation
equiv_c :: "com ⇒ com ⇒ bool" (infix "∼" 50) where
"c ∼ c' ≡ (∀s t. (c,s) ⇒ t = (c',s) ⇒ t)"
text ‹
Warning: ‹∼› is the symbol written \verb!\ < s i m >! (without spaces).
As an example, we show that loop unfolding is an equivalence
transformation on programs:
›
lemma unfold_while:
"(WHILE b DO c) ∼ (IF b THEN c;; WHILE b DO c ELSE SKIP)" (is "?w ∼ ?iw")
proof -
{ fix s t assume "(?w, s) ⇒ t"
{ assume "¬bval b s"
hence "t = s" using ‹(?w,s) ⇒ t› by blast
hence "(?iw, s) ⇒ t" using ‹¬bval b s› by blast
}
moreover
{ assume "bval b s"
with ‹(?w, s) ⇒ t› obtain s' where
"(c, s) ⇒ s'" and "(?w, s') ⇒ t" by auto
hence "(c;; ?w, s) ⇒ t" by (rule Seq)
with ‹bval b s› have "(?iw, s) ⇒ t" by (rule IfTrue)
}
ultimately
have "(?iw, s) ⇒ t" by blast
}
moreover
{ fix s t assume "(?iw, s) ⇒ t"
{ assume "¬bval b s"
hence "s = t" using ‹(?iw, s) ⇒ t› by blast
hence "(?w, s) ⇒ t" using ‹¬bval b s› by blast
}
moreover
{ assume "bval b s"
with ‹(?iw, s) ⇒ t› have "(c;; ?w, s) ⇒ t" by auto
then obtain s' where
"(c, s) ⇒ s'" and "(?w, s') ⇒ t" by auto
with ‹bval b s›
have "(?w, s) ⇒ t" by (rule WhileTrue)
}
ultimately
have "(?w, s) ⇒ t" by blast
}
ultimately
show ?thesis by blast
qed
text ‹Luckily, such lengthy proofs are seldom necessary. Isabelle can
prove many such facts automatically.›
lemma while_unfold:
"(WHILE b DO c) ∼ (IF b THEN c;; WHILE b DO c ELSE SKIP)"
by blast
lemma triv_if:
"(IF b THEN c ELSE c) ∼ c"
by blast
lemma commute_if:
"(IF b1 THEN (IF b2 THEN c11 ELSE c12) ELSE c2)
∼
(IF b2 THEN (IF b1 THEN c11 ELSE c2) ELSE (IF b1 THEN c12 ELSE c2))"
by blast
lemma sim_while_cong_aux:
"(WHILE b DO c,s) ⇒ t ⟹ c ∼ c' ⟹ (WHILE b DO c',s) ⇒ t"
apply(induction "WHILE b DO c" s t arbitrary: b c rule: big_step_induct)
apply blast
apply blast
done
lemma sim_while_cong: "c ∼ c' ⟹ WHILE b DO c ∼ WHILE b DO c'"
by (metis sim_while_cong_aux)
text ‹Command equivalence is an equivalence relation, i.e.\ it is
reflexive, symmetric, and transitive. Because we used an abbreviation
above, Isabelle derives this automatically.›
lemma sim_refl: "c ∼ c" by simp
lemma sim_sym: "(c ∼ c') = (c' ∼ c)" by auto
lemma sim_trans: "c ∼ c' ⟹ c' ∼ c'' ⟹ c ∼ c''" by auto
subsection "Execution is deterministic"
text ‹This proof is automatic.›
theorem big_step_determ: "⟦ (c,s) ⇒ t; (c,s) ⇒ u ⟧ ⟹ u = t"
by (induction arbitrary: u rule: big_step.induct) blast+
text ‹
This is the proof as you might present it in a lecture. The remaining
cases are simple enough to be proved automatically:
›
theorem
"(c,s) ⇒ t ⟹ (c,s) ⇒ t' ⟹ t' = t"
proof (induction arbitrary: t' rule: big_step.induct)
fix b c s s⇩1 t t'
assume "bval b s" and "(c,s) ⇒ s⇩1" and "(WHILE b DO c,s⇩1) ⇒ t"
assume IHc: "⋀t'. (c,s) ⇒ t' ⟹ t' = s⇩1"
assume IHw: "⋀t'. (WHILE b DO c,s⇩1) ⇒ t' ⟹ t' = t"
assume "(WHILE b DO c,s) ⇒ t'"
with ‹bval b s› obtain s⇩1' where
c: "(c,s) ⇒ s⇩1'" and
w: "(WHILE b DO c,s⇩1') ⇒ t'"
by auto
from c IHc have "s⇩1' = s⇩1" by blast
with w IHw show "t' = t" by blast
qed blast+
end