Theory DivLogicSoundness
section "Soundness of Hoare logic for diverging programs"
theory DivLogicSoundness imports StdLogicSoundness DivLogicCompleteness begin
lemma p_loop_deterministic:
"star_n (λs t. guard x s ∧ terminates s p t) n s t ⟹
star_n (λs t. guard x s ∧ terminates s p t) n s t' ⟹ t = t'"
proof(induct rule: star_n.induct)
case (refl_n x) thus ?case by cases simp
next
case (step_n x y n z)
show ?case using step_n.prems step_n.hyps
by cases (force dest: terminates_deterministic)
qed
lemma loop_accum:
" ⟦∀i. hoare (λs. H i s ∧ output_of s = []) p
(λs. H (Suc i) s ∧ output_of s = ev i ∧ guard x s);
guard x (a, b); H 0 (a, b); ignores_output H⟧
⟹ ∀i. ∃ s. star_n (λs t. guard x s ∧ terminates s p t) i (a, b) s ∧
guard x s ∧ H i s"
apply (rule allI)
apply (rule nat.induct)
apply clarsimp
apply (rule_tac x=a in exI)
apply (rule_tac x=b in exI)
apply clarsimp
apply clarsimp
apply (rename_tac n a' b')
apply (drule_tac x=n in spec)
apply (drule Hoare_soundness)
apply (clarsimp simp: hoare_sem_def)
apply (drule_tac x=a' in spec)
apply (frule_tac i=n in H_for_Nil_output[rotated], simp)
apply clarsimp
apply (drule_tac s="(a', [])" in terminates_history)
apply clarsimp
apply (drule_tac x=b' in spec)
apply (drule step_n_rev)
apply fastforce
apply (fastforce simp: guard_def ignores_output_def)
done
lemma output_accum:
" ⟦star_n (λs t. guard x s ∧ terminates s p t) i (a, b) s;
guard x (a, b); H 0 (a, b); ignores_output H;
∀i. hoare (λs. H i s ∧ output_of s = []) p
(λs. H (Suc i) s ∧ output_of s = ev i ∧ guard x s)⟧
⟹ output_of s = b @ (concat (map ev [0..<i]))"
proof(induct i arbitrary: s)
case 0 thus ?case by cases clarsimp
next
case (Suc n) thus ?case
apply clarsimp
apply (erule star_n_lastE)
apply clarsimp
apply (rename_tac a' b' a'' b'')
apply (frule (3) loop_accum)
apply (rotate_tac -1)
apply (drule_tac x=n in spec)
apply clarsimp
apply (drule (1) p_loop_deterministic, clarsimp)
apply (rename_tac a')
apply (drule_tac x=n in spec)
apply (drule Hoare_soundness)
apply (clarsimp simp: hoare_sem_def)
apply (drule_tac x=a' in spec)
apply (subgoal_tac "H n (a', [])")
prefer 2
apply (fastforce simp: ignores_output_def)
apply clarsimp
apply (drule_tac x=a' and y=b' in meta_spec2)
apply clarsimp
apply (drule_tac s="(a', [])" in terminates_history)
apply clarsimp
apply (drule_tac x="b @ concat (map ev [0..<n])" in spec)
apply clarsimp
apply (drule (1) terminates_deterministic, clarsimp)
done
qed
lemma helper_lemma:
" ⟦guard x (a, b); H 0 (a, b); ignores_output H;
∀i. hoare (λs. H i s ∧ output_of s = []) p
(λs. H (Suc i) s ∧ output_of s = ev i ∧ guard x s)⟧
⟹ ∀i. ∃ s. star_n (λs t. guard x s ∧ terminates s p t) i (a, b) s ∧
guard x s ∧ H i s ∧ output_of s = b @ (concat (map ev [0..< i]))"
apply clarsimp
apply (frule (3) loop_accum)
apply (rotate_tac -1)
apply (rename_tac i)
apply (drule_tac x=i in spec)
apply clarsimp
apply (frule (4) output_accum)
apply (rename_tac a' b')
apply (rule_tac x=a' in exI)
apply (clarsimp simp: output_of_def)
done
lemma add_While_loops:
" ⟦star_n (λs t. guard x s ∧ terminates s p t) i (a, b) s⟧
⟹ star_n (λs t. star step (While x p, s) (While x p, t) ∧ terminates s p t ∧ guard x s)
i (a, b) s"
proof(induct i arbitrary: a b s)
case 0
then show ?case by cases simp
next
case (Suc n a b s)
thus ?case
by(force dest: While_body_add3real_step star_n_real_step_step
simp: terminates star_eq_star_n
elim: step_n_rev star_n_lastE)
qed
lemma loop_upper_bound:
"⟦∀i. ∃s. star_n (λs t. guard x s ∧ terminates s p t) i (a, b) s ∧ guard x s ∧ H i s;
star_n step n (While x p, a, []) (q, t, out)⟧ ⟹
∃i t' n'. star_n (λs t. star step (While x p, s) (While x p, t)
∧ terminates s p t ∧ guard x s) i (a, b) t' ∧
star_n step n' (While x p, a, b) (While x p, t') ∧ n ≤ n'"
apply (insert add_While_loops[of x p])
apply (subgoal_tac "∃i>n. ∃s. star_n
(λs t. star step (While x p, s) (While x p, t) ∧
terminates s p t ∧ guard x s)
i (a, b) s")
prefer 2
apply (meson lessI)
apply safe
apply (rename_tac i a' b')
apply (rule_tac x=i in exI)
apply (drule_tac x=i in spec)+
apply (rule_tac x="(a', b')" in exI)
apply clarsimp
apply (drule star_n_While_flatten)
apply fastforce
done
theorem Pohjola_soundness:
"pohjola P c Q ⟹ pohjola_sem P c Q"
unfolding pohjola_sem_def
proof (induct rule: pohjola.induct)
case (p_seq_d P p D q)
then show ?case
using diverges_Seq by blast
next
case (p_seq_h P p M q D)
then show ?case
apply clarsimp
apply (frule Hoare_soundness)
apply (clarsimp simp: hoare_sem_def)
apply (rotate_tac -1)
apply (rename_tac a b)
apply (drule_tac x=a and y=b in spec2)
by clarsimp (meson diverges_Seq)
next
case (p_if P x p D q)
then show ?case
apply clarsimp
apply (rename_tac a b)
apply (drule_tac x=a and y=b in spec2)+
using diverges_If by fastforce
next
case (p_while1 P x D p)
then show ?case
apply clarsimp
apply (rename_tac a b)
apply (drule_tac x=a and y=b in meta_spec2)
apply clarsimp
apply (frule (3) loop_accum)
apply (rename_tac ev)
apply (rule_tac x="flat (LCons (output_of (a, b)) (inf_llist ev))" in exI)
apply (simp (no_asm_simp) add: diverges.simps)
apply (rule context_conjI)
apply clarsimp
apply (drule terminates_While_NRC, simp)
apply clarsimp
apply (rename_tac n)
apply (drule_tac x=n in spec)+
apply clarsimp
apply (drule (1) p_loop_deterministic, clarsimp)
apply (subst lappend_initial_output)
apply (subst lSup_lappend)
apply (rule chainI)
apply clarsimp
apply (meson lprefix_chain_NRC_step' lprefix_llist_of star_eq_star_n)
apply blast
apply (rule_tac f="lappend (llist_of b)" in arg_cong)
apply (subst lmap_inf_llist[symmetric])
apply (subst flat_inf_llist_lSup)
apply (rule sym)
apply (rule upper_subset_lSup_eq[OF lprefix_chain_RTC_step])
apply safe
apply (simp (no_asm_simp))
apply (rotate_tac -2)
apply (rename_tac i)
apply (drule_tac x=i in spec)
apply safe
apply (frule (4) output_accum)
apply clarsimp
apply (drule add_While_loops[THEN star_n_While_flatten])
apply clarsimp
apply (drule star_n_step_output_extend, clarsimp)
apply (drule_tac x=Nil in spec, clarsimp simp: star_eq_star_n)
apply fastforce
apply (simp only: star_eq_star_n, erule exE)
apply (rename_tac n)
apply (drule (1) loop_upper_bound, elim exE conjE)
apply (frule star_n_conjunct2[THEN star_n_commute])
apply (frule (4) output_accum)
apply clarsimp
apply (drule_tac n=n in star_n_step_output_extend)
apply clarsimp
apply (drule_tac x=b in spec)
apply (simp add: le_eq_less_or_eq)
apply (erule disjE)
apply (drule (2) star_n_step_decompose)
using NRC_step_output_mono apply fastforce
apply simp
apply (drule (1) NRC_step_deterministic, simp)
apply fastforce
done
next
case (p_while2 P x R b p D)
then show ?case
apply -
apply rotate_tac
apply (intro allI)
apply (erule wfP_induct)
apply (intro impI allI)
apply (rename_tac xa)
apply (case_tac "b xa")
apply (drule_tac x=xa in spec)
apply (drule Hoare_soundness)+
apply (clarsimp simp: hoare_sem_def)
apply (rotate_tac -6)
apply (rename_tac aa bb)
apply (drule_tac x=aa and y=bb in spec2)
apply simp
apply (elim exE)
apply (simp (no_asm) add: diverges_While diverges_If)
apply (simp add: diverges_Seq)
apply (rename_tac l)
apply (rule_tac x=l in exI)
apply (rule conjI; simp?)
apply fastforce
apply (simp (no_asm) add: diverges_While diverges_If)
apply (simp add: diverges_Seq)
by fastforce
qed fastforce+
end