Theory Labels
section ‹Labels›
theory Labels imports Com begin
text ‹Labels describe a mapping from the inner node label
to the matching command›
inductive labels :: "cmd ⇒ nat ⇒ cmd ⇒ bool"
where
Labels_Base:
"labels c 0 c"
| Labels_LAss:
"labels (V:=e) 1 Skip"
| Labels_Seq1:
"labels c⇩1 l c ⟹ labels (c⇩1;;c⇩2) l (c;;c⇩2)"
| Labels_Seq2:
"labels c⇩2 l c ⟹ labels (c⇩1;;c⇩2) (l + #:c⇩1) c"
| Labels_CondTrue:
"labels c⇩1 l c ⟹ labels (if (b) c⇩1 else c⇩2) (l + 1) c"
| Labels_CondFalse:
"labels c⇩2 l c ⟹ labels (if (b) c⇩1 else c⇩2) (l + #:c⇩1 + 1) c"
| Labels_WhileBody:
"labels c' l c ⟹ labels (while(b) c') (l + 2) (c;;while(b) c')"
| Labels_WhileExit:
"labels (while(b) c') 1 Skip"
| Labels_Call:
"labels (Call p es rets) 1 Skip"
lemma label_less_num_inner_nodes:
"labels c l c' ⟹ l < #:c"
proof(induct c arbitrary:l c')
case Skip
from ‹labels Skip l c'› show ?case by(fastforce elim:labels.cases)
next
case (LAss V e)
from ‹labels (V:=e) l c'› show ?case by(fastforce elim:labels.cases)
next
case (Seq c⇩1 c⇩2)
note IH1 = ‹⋀l c'. labels c⇩1 l c' ⟹ l < #:c⇩1›
note IH2 = ‹⋀l c'. labels c⇩2 l c' ⟹ l < #:c⇩2›
from ‹labels (c⇩1;;c⇩2) l c'› IH1 IH2 show ?case
by simp(erule labels.cases,auto,force)
next
case (Cond b c⇩1 c⇩2)
note IH1 = ‹⋀l c'. labels c⇩1 l c' ⟹ l < #:c⇩1›
note IH2 = ‹⋀l c'. labels c⇩2 l c' ⟹ l < #:c⇩2›
from ‹labels (if (b) c⇩1 else c⇩2) l c'› IH1 IH2 show ?case
by simp(erule labels.cases,auto,force)
next
case (While b c)
note IH = ‹⋀l c'. labels c l c' ⟹ l < #:c›
from ‹labels (while (b) c) l c'› IH show ?case
by simp(erule labels.cases,fastforce+)
next
case (Call p es rets)
thus ?case by simp(erule labels.cases,fastforce+)
qed
declare One_nat_def [simp del]
lemma less_num_inner_nodes_label:
assumes "l < #:c" obtains c' where "labels c l c'"
proof(atomize_elim)
from ‹l < #:c› show "∃c'. labels c l c'"
proof(induct c arbitrary:l)
case Skip
from ‹l < #:Skip› have "l = 0" by simp
thus ?case by(fastforce intro:Labels_Base)
next
case (LAss V e)
from ‹l < #:(V:=e)› have "l = 0 ∨ l = 1" by auto
thus ?case by(auto intro:Labels_Base Labels_LAss)
next
case (Seq c⇩1 c⇩2)
note IH1 = ‹⋀l. l < #:c⇩1 ⟹ ∃c'. labels c⇩1 l c'›
note IH2 = ‹⋀l. l < #:c⇩2 ⟹ ∃c'. labels c⇩2 l c'›
show ?case
proof(cases "l < #:c⇩1")
case True
from IH1[OF this] obtain c' where "labels c⇩1 l c'" by auto
hence "labels (c⇩1;;c⇩2) l (c';;c⇩2)" by(fastforce intro:Labels_Seq1)
thus ?thesis by auto
next
case False
hence "#:c⇩1 ≤ l" by simp
then obtain l' where "l = l' + #:c⇩1" and "l' = l - #:c⇩1" by simp
from ‹l = l' + #:c⇩1› ‹l < #:c⇩1;;c⇩2› have "l' < #:c⇩2" by simp
from IH2[OF this] obtain c' where "labels c⇩2 l' c'" by auto
with ‹l = l' + #:c⇩1› have "labels (c⇩1;;c⇩2) l c'"
by(fastforce intro:Labels_Seq2)
thus ?thesis by auto
qed
next
case (Cond b c⇩1 c⇩2)
note IH1 = ‹⋀l. l < #:c⇩1 ⟹ ∃c'. labels c⇩1 l c'›
note IH2 = ‹⋀l. l < #:c⇩2 ⟹ ∃c'. labels c⇩2 l c'›
show ?case
proof(cases "l = 0")
case True
thus ?thesis by(fastforce intro:Labels_Base)
next
case False
hence "0 < l" by simp
then obtain l' where "l = l' + 1" and "l' = l - 1" by simp
thus ?thesis
proof(cases "l' < #:c⇩1")
case True
from IH1[OF this] obtain c' where "labels c⇩1 l' c'" by auto
with ‹l = l' + 1› have "labels (if (b) c⇩1 else c⇩2) l c'"
by(fastforce dest:Labels_CondTrue)
thus ?thesis by auto
next
case False
hence "#:c⇩1 ≤ l'" by simp
then obtain l'' where "l' = l'' + #:c⇩1" and "l'' = l' - #:c⇩1" by simp
from ‹l' = l'' + #:c⇩1› ‹l = l' + 1› ‹l < #:if (b) c⇩1 else c⇩2›
have "l'' < #:c⇩2" by simp
from IH2[OF this] obtain c' where "labels c⇩2 l'' c'" by auto
with ‹l' = l'' + #:c⇩1› ‹l = l' + 1› have "labels (if (b) c⇩1 else c⇩2) l c'"
by(fastforce dest:Labels_CondFalse)
thus ?thesis by auto
qed
qed
next
case (While b c')
note IH = ‹⋀l. l < #:c' ⟹ ∃c''. labels c' l c''›
show ?case
proof(cases "l < 1")
case True
hence "l = 0" by simp
thus ?thesis by(fastforce intro:Labels_Base)
next
case False
show ?thesis
proof(cases "l < 2")
case True
with ‹¬ l < 1› have "l = 1" by simp
thus ?thesis by(fastforce intro:Labels_WhileExit)
next
case False
with ‹¬ l < 1› have "2 ≤ l" by simp
then obtain l' where "l = l' + 2" and "l' = l - 2"
by(simp del:add_2_eq_Suc')
from ‹l = l' + 2› ‹l < #:while (b) c'› have "l' < #:c'" by simp
from IH[OF this] obtain c'' where "labels c' l' c''" by auto
with ‹l = l' + 2› have "labels (while (b) c') l (c'';;while (b) c')"
by(fastforce dest:Labels_WhileBody)
thus ?thesis by auto
qed
qed
next
case (Call p es rets)
show ?case
proof(cases "l < 1")
case True
hence "l = 0" by simp
thus ?thesis by(fastforce intro:Labels_Base)
next
case False
with ‹l < #:Call p es rets› have "l = 1" by simp
thus ?thesis by(fastforce intro:Labels_Call)
qed
qed
qed
lemma labels_det:
"labels c l c'⟹ (⋀c''. labels c l c''⟹ c' = c'')"
proof(induct rule:labels.induct)
case (Labels_Base c c'')
from ‹labels c 0 c''› obtain l where "labels c l c''" and "l = 0" by auto
thus ?case by(induct rule:labels.induct,auto)
next
case (Labels_Seq1 c⇩1 l c c⇩2)
note IH = ‹⋀c''. labels c⇩1 l c'' ⟹ c = c''›
from ‹labels c⇩1 l c› have "l < #:c⇩1" by(fastforce intro:label_less_num_inner_nodes)
with ‹labels (c⇩1;;c⇩2) l c''› obtain cx where "c'' = cx;;c⇩2 ∧ labels c⇩1 l cx"
by(fastforce elim:labels.cases intro:Labels_Base)
hence [simp]:"c'' = cx;;c⇩2" and "labels c⇩1 l cx" by simp_all
from IH[OF ‹labels c⇩1 l cx›] show ?case by simp
next
case (Labels_Seq2 c⇩2 l c c⇩1)
note IH = ‹⋀c''. labels c⇩2 l c'' ⟹ c = c''›
from ‹labels (c⇩1;;c⇩2) (l + #:c⇩1) c''› ‹labels c⇩2 l c› have "labels c⇩2 l c''"
by(auto elim:labels.cases dest:label_less_num_inner_nodes)
from IH[OF this] show ?case .
next
case (Labels_CondTrue c⇩1 l c b c⇩2)
note IH = ‹⋀c''. labels c⇩1 l c'' ⟹ c = c''›
from ‹labels (if (b) c⇩1 else c⇩2) (l + 1) c''› ‹labels c⇩1 l c› have "labels c⇩1 l c''"
by(fastforce elim:labels.cases dest:label_less_num_inner_nodes)
from IH[OF this] show ?case .
next
case (Labels_CondFalse c⇩2 l c b c⇩1)
note IH = ‹⋀c''. labels c⇩2 l c'' ⟹ c = c''›
from ‹labels (if (b) c⇩1 else c⇩2) (l + #:c⇩1 + 1) c''› ‹labels c⇩2 l c›
have "labels c⇩2 l c''"
by(fastforce elim:labels.cases dest:label_less_num_inner_nodes)
from IH[OF this] show ?case .
next
case (Labels_WhileBody c' l c b)
note IH = ‹⋀c''. labels c' l c'' ⟹ c = c''›
from ‹labels (while (b) c') (l + 2) c''› ‹labels c' l c›
obtain cx where "c'' = cx;;while (b) c' ∧ labels c' l cx"
by -(erule labels.cases,auto)
hence [simp]:"c'' = cx;;while (b) c'" and "labels c' l cx" by simp_all
from IH[OF ‹labels c' l cx›] show ?case by simp
qed (fastforce elim:labels.cases)+
definition label :: "cmd ⇒ nat ⇒ cmd"
where "label c n ≡ (THE c'. labels c n c')"
lemma labels_THE:
"labels c l c' ⟹ (THE c'. labels c l c') = c'"
by(fastforce intro:the_equality dest:labels_det)
lemma labels_label:"labels c l c' ⟹ label c l = c'"
by(fastforce intro:labels_THE simp:label_def)
end