Theory Affine_Arithmetic.Ex_Ineqs
section‹Examples on Proving Inequalities›
theory Ex_Ineqs
imports
Affine_Code
Print
Float_Real
begin
definition "plotcolors =
[[(0, 1, ''0x000000'')],
[(0, 2, ''0xff0000''),
(1, 2, ''0x7f0000'')],
[(0, 3, ''0x00ff00''),
(1, 3, ''0x00aa00''),
(2, 3, ''0x005500'')],
[(1, 4, ''0x0000ff''),
(2, 4, ''0x0000c0''),
(3, 4, ''0x00007f''),
(0, 4, ''0x00003f'')],
[(0, 5, ''0x00ffff''),
(1, 5, ''0x00cccc''),
(2, 5, ''0x009999''),
(3, 5, ''0x006666''),
(4, 5, ''0x003333'')],
[(0, 6, ''0xff00ff''),
(1, 6, ''0xd500d5''),
(2, 6, ''0xaa00aa''),
(3, 6, ''0x800080''),
(4, 6, ''0x550055''),
(5, 6, ''0x2a002a'')]]"
primrec prove_pos::"(nat * nat * string) list ⇒ nat ⇒ nat ⇒
(nat ⇒ real aform list ⇒ real aform option) ⇒ real aform list list ⇒ bool" where
"prove_pos prnt 0 p F X = (let _ = if prnt ≠ [] then print (STR ''# depth limit exceeded⏎'') else () in False)"
| "prove_pos prnt (Suc i) p F XXS =
(case XXS of [] ⇒ True | (X#XS) ⇒
let
R = F p X;
_ = if prnt ≠ [] then print (String.implode ((shows ''# '' o shows_box_of_aforms_hr X) ''⏎'')) else ();
_ = fold (λ(a, b, c) _. print (String.implode (shows_segments_of_aform a b X c ''⏎''))) prnt ()
in
if R ≠ None ∧ 0 < Inf_aform' p (the R)
then let _ = if prnt ≠ [] then print (STR ''# Success⏎'') else () in prove_pos prnt i p F XS
else let _ = if prnt ≠ [] then print (STR ''# Split⏎'') else () in case split_aforms_largest_uncond X of (a, b) ⇒
prove_pos prnt i p F (a#b#XS))"
definition "prove_pos_slp prnt p fa i xs = (let slp = slp_of_fas [fa] in prove_pos prnt i p (λp xs.
case approx_slp_outer p 1 slp xs of None ⇒ None | Some [x] ⇒ Some x | Some _ ⇒ None) xs)"
text‹\label{sec:examples}›
experiment begin
unbundle floatarith_notation
text ‹The examples below are taken from
@{url "http://link.springer.com/chapter/10.1007/978-3-642-38088-4_26"},
``Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations'',
Alexey Solovyev, Thomas C. Hales,
NASA Formal Methods 2013, LNCS 7871
›
definition "schwefel =
(5.8806 / 10 ^ 10) + (Var 0 - (Var 1)^⇩e2)^⇩e2 + (Var 1 - 1)^⇩e2 + (Var 0 - (Var 2)^⇩e2)^⇩e2 + (Var 2 - 1)^⇩e2"
lemma schwefel:
"5.8806 / 10 ^ 10 + (x0 - (x1)⇧2)⇧2 + (x1 - 1)⇧2 + (x0 - (x2)⇧2)⇧2 + (x2 - 1)⇧2 =
interpret_floatarith schwefel [x0, x1, x2]"
by (simp add: schwefel_def)
lemma "prove_pos_slp [] 30 schwefel 100000 [aforms_of_ivls [-10,-10,-10] [10,10,10]]"
unfolding schwefel_def
by eval
definition "delta6 = (Var 0 * Var 3 * (-Var 0 + Var 1 + Var 2 - Var 3 + Var 4 + Var 5) +
Var 1 * Var 4 * ( Var 0 - Var 1 + Var 2 + Var 3 - Var 4 + Var 5) +
Var 2 * Var 5 * ( Var 0 + Var 1 - Var 2 + Var 3 + Var 4 - Var 5)
- Var 1 * Var 2 * Var 3
- Var 0 * Var 2 * Var 4
- Var 0 * Var 1 * Var 5
- Var 3 * Var 4 * Var 5)"
schematic_goal delta6:
"(x0 * x3 * (-x0 + x1 + x2 - x3 + x4 + x5) +
x1 * x4 * ( x0 - x1 + x2 + x3 - x4 + x5) +
x2 * x5 * ( x0 + x1 - x2 + x3 + x4 - x5)
- x1 * x2 * x3
- x0 * x2 * x4
- x0 * x1 * x5
- x3 * x4 * x5) = interpret_floatarith delta6 [x0, x1, x2, x3, x4, x5]"
by (simp add: delta6_def)
lemma "prove_pos_slp [] 20 delta6 10000 [aforms_of_ivls (replicate 6 4) (replicate 6 (FloatR 104045 (-14)))]"
unfolding delta6_def
by eval
definition "caprasse = (3.1801 + - Var 0 * (Var 2) ^⇩e 3 + 4 * Var 1 * (Var 2)^⇩e2 * Var 3 +
4 * Var 0 * Var 2 * (Var 3)^⇩e2 + 2 * Var 1 * (Var 3)^⇩e3 + 4 * Var 0 * Var 2 + 4 * (Var 2)^⇩e2 - 10 * Var 1 * Var 3 +
-10 * (Var 3)^⇩e2 + 2)"
schematic_goal caprasse:
"(3.1801 + - xs!0 * (xs!2) ^ 3 + 4 * xs!1 * (xs!2)⇧2 * xs!3 +
4 * xs!0 * xs!2 * (xs!3)⇧2 + 2 * xs!1 * (xs!3)^3 + 4 * xs!0 * xs!2 + 4 * (xs!2)⇧2 - 10 * xs!1 * xs!3 +
-10 * (xs!3)⇧2 + 2) = interpret_floatarith caprasse xs"
by (simp add: caprasse_def)
lemma "prove_pos_slp [] 20 caprasse 10000 [aforms_of_ivls (replicate 4 (1/2)) (replicate 4 (1/2))]"
unfolding caprasse_def
by eval
definition "magnetism =
0.25001 + (Var 0)^⇩e2 + 2 * (Var 1)^⇩e2 + 2 * (Var 2)^⇩e2 + 2 * (Var 3)^⇩e2 + 2 * (Var 4)^⇩e2 + 2 * (Var 5)^⇩e2 +
2 * (Var 6)^⇩e2 - Var 0"
schematic_goal magnetism:
"0.25001 + (xs!0)⇧2 + 2 * (xs!1)⇧2 + 2 * (xs!2)⇧2 + 2 * (xs!3)⇧2 + 2 * (xs!4)⇧2 + 2 * (xs!5)⇧2 +
2 * (xs!6)⇧2 - xs!0 = interpret_floatarith magnetism xs"
by (simp add: magnetism_def)
end
end