Theory MultiSeq
chapter ‹The MultiSeq Operator›
theory MultiSeq
imports Patch
begin
section ‹Definition›
definition MultiSeq :: ‹['a list, 'a ⇒ 'b process] ⇒ 'b process›
where ‹MultiSeq S P = foldr (λa r. (P a) ❙; r ) S SKIP›
syntax "_MultiSeq" :: ‹[pttrn,'a list, 'b process] ⇒ 'b process›
(‹(3SEQ _∈@_./ _)› 73)
translations "SEQ i ∈@ A. P " ⇌ "CONST MultiSeq A (λi. P)"
section ‹First Properties›
lemma MultiSeq_rec0[simp]: ‹(SEQ p ∈@ []. P p) = SKIP›
by (simp add: MultiSeq_def)
lemma MultiSeq_rec1[simp]: ‹(SEQ p ∈@ [a]. P p) = P a›
by (simp add: MultiSeq_def Seq_SKIP)
lemma MultiSeq_Cons[simp]: ‹(SEQ i ∈@ a # L. P i) = P a ❙; (SEQ i ∈@ L. P i)›
by (simp add: MultiSeq_def)
section ‹Some Tests›
lemma ‹(SEQ p ∈@ []. P p) = SKIP›
and ‹(SEQ p ∈@ [a]. P p) = P a›
and ‹(SEQ p ∈@ [a,b]. P p) = P a ❙; P b›
and ‹(SEQ p ∈@ [a,b,c]. P p) = P a ❙; P b ❙; P c›
by (simp_all add: Seq_SKIP Seq_assoc)
lemma test_MultiSeq: ‹(SEQ p ∈@ [1::int .. 3]. P p) = P 1 ❙; P 2 ❙; P 3›
by (simp add: upto.simps Seq_SKIP Seq_assoc)
section ‹Continuity›
lemma MultiSeq_cont[simp]:
‹∀x ∈ set L. cont (P x) ⟹ cont (λy. SEQ z ∈@ L. P z y)›
by (induct L) force+
section ‹Factorization of \<^const>‹Seq› in front of \<^const>‹MultiSeq››
lemma MultiSeq_factorization_append:
‹(SEQ p ∈@ A. P p) ❙; (SEQ p ∈@ B. P p) = (SEQ p ∈@ A @ B . P p)›
by (induct A rule: list.induct, simp_all add: SKIP_Seq, metis Seq_assoc)
section ‹\<^term>‹⊥› Absorbance›
lemma MultiSeq_BOT_absorb:
‹P a = ⊥ ⟹ (SEQ z ∈@ l1 @ [a] @ l2. P z) = (SEQ z ∈@ l1. P z) ❙; ⊥›
by (metis BOT_Seq MultiSeq_Cons MultiSeq_factorization_append)
section ‹First Properties›
lemma MultiSeq_SKIP_neutral:
‹P a = SKIP ⟹ (SEQ z ∈@ l1 @ [a] @ l2. P z) = SEQ z ∈@ l1 @ l2. P z›
by (simp add: MultiSeq_def SKIP_Seq)
lemma MultiSeq_STOP_absorb:
‹P a = STOP ⟹
(SEQ z ∈@ l1 @ [a] @ l2. P z) = (SEQ z ∈@ l1. P z) ❙; STOP›
by (metis STOP_Seq MultiSeq_Cons MultiSeq_factorization_append)
lemma mono_MultiSeq_eq:
‹∀x ∈ set L. P x = Q x ⟹ MultiSeq L P = MultiSeq L Q›
by (induct L) fastforce+
lemma MultiSeq_is_SKIP_iff:
‹MultiSeq L P = SKIP ⟷ (∀a ∈ set L. P a = SKIP)›
by (induct L, simp_all add: Seq_is_SKIP_iff)
section ‹Commutativity›
text ‹Of course, since the sequential composition \<^term>‹P ❙; Q› is not commutative,
the result here is negative: the order of the elements of list \<^term>‹L›
does matter in @{term [eta_contract = false] ‹SEQ z ∈@ L. P z›}.›
section ‹Behaviour with Injectivity›
lemma inj_on_mapping_over_MultiSeq:
‹inj_on f (set C) ⟹
(SEQ x ∈@ C. P x) = SEQ x ∈@ map f C. P (inv_into (set C) f x)›
proof (induct C)
case Nil
show ?case by simp
next
case (Cons a C)
hence f1: ‹inv_into (insert a (set C)) f (f a) = a› by force
show ?case
apply (simp add: f1, rule arg_cong[where f = ‹λx. P a ❙; x›])
apply (subst "Cons.hyps"(1), rule inj_on_subset[OF "Cons.prems"],
simp add: subset_insertI)
apply (rule mono_MultiSeq_eq)
using "Cons.prems" by fastforce
qed
section ‹Definition of ‹first_elem››
primrec first_elem :: ‹['α ⇒ bool, 'α list] ⇒ nat›
where ‹first_elem P [] = 0›
| ‹first_elem P (x # L) = (if P x then 0 else Suc (first_elem P L))›
text ‹\<^const>‹first_elem› returns the first index \<^term>‹i› such that
\<^term>‹P (L ! i) = True› if it exists, \<^term>‹length L› otherwise.
This will be very useful later.›
value ‹first_elem (λx. 4 < x) [0::nat, 2, 5]›
lemma ‹first_elem (λx. 5 < x) [0::nat, 2, 5] = 3› by simp
lemma ‹P ` set L ⊆ {False} ⟹ first_elem P L = length L› by (induct L; simp)
end