Theory MultiNdet

(*<*)
―‹ ********************************************************************
 * Project         : HOL-CSPM - Architectural operators for HOL-CSP
 *
 * Author          : Benoît Ballenghien, Safouan Taha, Burkhart Wolff
 *
 * This file       : Multi-non-deterministic choice
 *
 * Copyright (c) 2023 Université Paris-Saclay, France
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *
 *     * Redistributions in binary form must reproduce the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer in the documentation and/or other materials provided
 *       with the distribution.
 *
 *     * Neither the name of the copyright holders nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 ******************************************************************************›
(*>*)


chapter ‹The MultiNdet Operator›

theory MultiNdet
  imports Patch PreliminaryWork
begin



section ‹Definition›



text ‹Defining the multi operator of constNdet requires more work than with constDet
      since there is no neutral element. 
      We will first build a version on typ list that we will generalize to typ set.›

fun MultiNdet_list :: ['a list, 'a  'b process]  'b process
  where MultiNdet_list   []    P = STOP
  |     MultiNdet_list (a # l) P = fold (λx r. r  P x) l (P a) 


syntax       "_MultiNdet_list" :: [pttrn,'a set,'b process]  'b process
                                  ((3l __. / _) 76)
translations  "l p  l. P "   "CONST MultiNdet_list l (λp. P)"


interpretation MultiNdet: comp_fun_idem where f=λx r. r  P x
  unfolding comp_fun_idem_def comp_fun_commute_def
            comp_fun_idem_axioms_def comp_def
  by (metis Ndet_commute Ndet_assoc Ndet_id)


lemma MultiNdet_list_set:
  set L = set L'  MultiNdet_list L P = MultiNdet_list L' P 
  apply (cases L, simp_all)
proof -
  fix a  l
  assume * : insert a (set l) = set L' and  ** : L = a # l 
  then obtain a' l' where *** : L' = a' # l' by (metis insertI1 list.set_cases)
  note * = *[simplified ***, simplified]
  have a0: MultiNdet_list L P =
            Finite_Set.fold (λx r. r  P x) (P a) (set L - {a})
    by (metis ** List.finite_set MultiNdet.fold_fun_left_comm
              MultiNdet.fold_insert_idem2 MultiNdet.fold_rec
              MultiNdet.fold_set_fold MultiNdet_list.simps(2)
              insert_iff list.simps(15) Ndet_id set_removeAll)
  have a11: a'  set L
   and a12: a  a'  insert a' (set L - {a, a'}) = set L - {a}
    by (auto simp add: * **)
  hence a2: Finite_Set.fold (λx r. r  P x) (P a) (insert a' (set L - {a, a'})) = 
             Finite_Set.fold (λx r. r  P x) (P a  P a') (set L - {a, a'}) 
    by (subst MultiNdet.fold_insert_idem2, simp_all)
  have a3:MultiNdet_list L' P =
           Finite_Set.fold (λx r. r  P x) (P a') (set L' - {a'}) 
    by (metis *** List.finite_set MultiNdet.fold_fun_left_comm
              MultiNdet.fold_insert_idem2 MultiNdet.fold_rec
              MultiNdet.fold_set_fold MultiNdet_list.simps(2)
              insert_iff list.simps(15) Ndet_id set_removeAll)
  have a41: a  set L'
   and a42: a  a'  insert a (set L' - {a, a'}) = set L' - {a'} 
    using * *** by auto
  hence a5: Finite_Set.fold (λx r. r  P x) (P a') (insert a (set L' - {a, a'}))
           = Finite_Set.fold (λx r. r  P x) (P a  P a') (set L' - {a, a'})
    by (subst MultiNdet.fold_insert_idem2, simp_all add: Ndet_commute)
  have a6: (set L - {a, a'}) = (set L' - {a, a'})
    using * ** *** by force
  from  * ** *** a0 a11 a12 a2 a3 a41 a42 a5 a6 
  show fold (λx r. r  P x) l (P a) = MultiNdet_list L' P
    by (metis MultiNdet_list.simps(2) list.simps(15))
qed


definition MultiNdet :: ['a set, 'a  'b process]  'b process
  where    MultiNdet A P = MultiNdet_list (SOME L. set L = A) P 


syntax "_MultiNdet" :: [pttrn, 'a set, 'b process]  'b process ((3 __. / _) 76)
translations " p  A. P"  "CONST MultiNdet A (λp. P)"



section ‹First Properties›

lemma MultiNdet_rec0[simp]: ( p  {}. P p) = STOP
  by(simp add: MultiNdet_def)


lemma MultiNdet_rec1[simp]: ( p  {a}. P p) = P a
  unfolding MultiNdet_def apply (rule someI2[of _ [a]], simp)
  by (rule MultiNdet_list_set[where L' = [a], simplified])

  
lemma MultiNdet_in_id[simp]:
  a  A  ( p  insert a A. P p) =  p  A. P p
  unfolding MultiNdet_def by (simp add: insert_absorb)


lemma MultiNdet_insert[simp]:
  assumes fin: finite A and notempty: A  {} and notin: a  A
  shows ( p  insert a A. P p) = P a  ( p  A. P p)
  unfolding MultiNdet_def
  apply (rule someI2_ex, simp add: fin finite_list)+
proof-
  fix l l'
  assume set l = A and set l' = insert a A
  from notempty and set l = A have l  [] by fastforce
  then have MultiNdet_list (a # l) P = P a  MultiNdet_list l P
    proof(induct l rule: List.list_nonempty_induct)
    case (single x)
    show MultiNdet_list [a, x] P = P a  MultiNdet_list [x] P by simp
  next
    case (cons x xs)
    have MultiNdet_list (a # x # xs) P = P a  ((MultiNdet_list xs P)  P x)
      by (metis List.finite_set MultiNdet.fold_insert_idem MultiNdet.fold_set_fold
                MultiNdet_list.simps(2) cons.hyps(2) list.simps(15) Ndet_assoc)
    thus MultiNdet_list (a # x # xs) P = P a  MultiNdet_list (x # xs) P
    proof -
      have f1: MultiNdet_list (a # x # xs) P =
                Finite_Set.fold (λa p. p  P a) (P x  P a) (set xs)
        by (simp add: MultiNdet.fold_set_fold Ndet_commute)
      have MultiNdet_list (x # xs) P =
            Finite_Set.fold (λa p. p  P a) (P x) (set xs)
        by (simp add: MultiNdet.fold_set_fold)
      hence MultiNdet_list (a # x # xs) P = MultiNdet_list (x # xs) P  P a
        using f1 by (simp add: MultiNdet.fold_fun_left_comm)
      thus MultiNdet_list (a # x # xs) P = P a  MultiNdet_list (x # xs) P
        by (simp add: Ndet_commute)
    qed
  qed
  moreover have set l' = set (a # l)
    by (simp add: set l = A set l' = insert a A)
  ultimately show MultiNdet_list l' P = P a  MultiNdet_list l P
    by (metis MultiNdet_list_set)
qed


lemma MultiNdet_insert'[simp]:
  finite A; A  {}  ( p  insert a A. P p) = P a  ( p  A. P p)
  apply (cases a  A, subst Set.insert_absorb, simp_all)
  apply (cases A = {a}, simp add: Ndet_id)
proof -
  assume finite A and a  A and A  {a}
  then obtain A' where A'  {} A = insert a A' a  A' finite A'
    by (metis Set.set_insert finite_insert)
  hence MultiNdet A P = P a  MultiNdet A' P by simp
  hence MultiNdet A P = P a  P a  MultiNdet A' P by (simp add: Ndet_id)
  thus MultiNdet A P = P a  MultiNdet A P by (metis Ndet_id Ndet_assoc)
qed


lemma mono_MultiNdet_eq:
  finite A  x  A. P x = Q x  MultiNdet A P = MultiNdet A Q
  by (induct A rule: induct_subset_empty_single; simp)



section ‹Some Tests›

lemma (l p  []. P p) = STOP 
  and (l p  [a]. P p) = P a 
  and (l p  [a, b]. P p) = P a  P b    
  and (l p  [a, b, c]. P p) = P a  P b  P c   
  by auto


lemma ( p  {}. P p) = STOP 
  and ( p  {a}. P p) = P a 
  and ( p  {a, b}. P p) = P a  P b    
  and ( p  {a, b, c}. P p) = P a  P b  P c   
  by (simp add: Ndet_assoc)+


lemma test_MultiNdet: ( p  {1::int .. 3}. P p) = P 1  P 2  P 3
proof -
  have {1::int .. 3} = insert 1 (insert 2 (insert 3 {})) by fastforce
  thus ( p  {1::int .. 3}. P p) = P 1  P 2  P 3 by (simp add: Ndet_assoc)
qed


lemma test_MultiNdet':
  ( p  {0::nat .. a}. P p) = ( p  {a}  {1 .. a}  {0} . P p)
  by (metis Un_insert_right atMost_atLeast0 boolean_algebra_cancel.sup0
            image_Suc_lessThan insert_absorb2 insert_is_Un lessThan_Suc 
            lessThan_Suc_atMost lessThan_Suc_eq_insert_0)



section ‹Continuity›

lemma MultiNdet_cont[simp]:
  finite A; x  A. cont (P x)  cont (λy.  zA. P z y)
  by (cases A = {}, simp, erule finite_set_induct_nonempty; simp)



section ‹Factorization of constNdet in front of constMultiNdet

lemma MultiNdet_factorization_union:
  A  {}; finite A; B  {}; finite B 
   ( p  A. P p)  ( p  B. P p) =  p  A  B . P p
  by (erule finite_set_induct_nonempty, simp_all add: Ndet_assoc)



section term Absorbance›

lemma MultiNdet_BOT_absorb:
  assumes fin: finite A and bot: P a =  and dom: a  A 
    shows ( x  A. P x) = 
  apply(rule rev_mp[OF dom], rule rev_mp[OF bot])
  by (metis MultiNdet_insert MultiNdet_rec1 Ndet_commute fin
            finite_insert mk_disjoint_insert Ndet_BOT) 


lemma MultiNdet_is_BOT_iff:
  finite A  ( p  A. P p) =   (a  A. P a = )
  apply (cases A = {}, simp add: STOP_neq_BOT)
  by (rotate_tac, induct A rule: finite_set_induct_nonempty) (simp_all add: Ndet_is_BOT_iff)




section ‹First Properties›

lemma MultiNdet_id: A  {}  finite A  ( p  A. P) = P
  by (erule finite_set_induct_nonempty, (simp_all add: Ndet_id))


lemma MultiNdet_STOP_id: finite A  ( p  A. STOP) = STOP
  by (cases A = {}) (simp_all add: MultiNdet_id)


lemma MultiNdet_is_STOP_iff:
  finite A  ( p  A. P p) = STOP  A = {}  (a  A. P a = STOP)
  apply (cases A = {}, simp)
  by (rotate_tac, induct A rule: finite_set_induct_nonempty) (simp_all add: Ndet_is_STOP_iff)



section ‹Behaviour of constMultiNdet with constNdet

lemma MultiNdet_Ndet:
  finite A  ( a  A. P a)  ( a  A. Q a) =  a  A. P a  Q a
  apply (cases A = {}, simp add: Ndet_id)
  apply (rotate_tac, induct A rule: finite_set_induct_nonempty)
  by simp_all (metis (no_types, lifting) Ndet_commute Ndet_assoc)



section ‹Commutativity›

lemma MultiNdet_sets_commute: 
  finite A; finite B 
   ( a  A.  b  B. P a b) =  b  B.  a  A. P a b
proof (cases A = {})
  show finite A  finite B  A = {}  
        ( aA.  MultiNdet B (P a)) =  bB.   aA.  P a b
    by (simp add: MultiNdet_STOP_id)
next 
  assume A  {} and finite A and finite B
  thus ( aA.  MultiNdet B (P a)) =  bB.   aA.  P a b
    apply (induct A rule: finite_set_induct_nonempty)
    by (simp_all add: MultiNdet_Ndet)
qed



section ‹Behaviour with Injectivity›

lemma inj_on_mapping_over_MultiNdet:
  finite A; inj_on f A  ( x  A. P x) =  x  f ` A. P (inv_into A f x)
proof (induct A rule: induct_subset_empty_single)
  show MultiNdet {} P =  xf ` {}.  P (inv_into {} f x) by force
next
  case 2
  show ?case by force
next
  case (3 F a)
  hence f1: inv_into (insert a F) f (f a) = a by force
  show ?case
    apply (simp add: "3.hyps"(2) "3.hyps"(4) f1)
    apply (rule arg_cong[where f = λx. P a  x])
    apply (subst "3.hyps"(5), rule inj_on_subset[OF "3.prems" subset_insertI])
    apply (rule mono_MultiNdet_eq, simp add: "3.hyps"(2))
    using "3.prems" by fastforce
qed



section ‹The Projections›

lemma D_MultiNdet: finite A  𝒟 ( x  A. P x) = ( p  A. 𝒟 (P p))
  apply (cases A = {}, simp add: D_STOP, rotate_tac)
  by (induct rule: finite_set_induct_nonempty) (simp_all add: D_Ndet)

lemma F_MultiNdet:
  finite A   ( x  A. P x) =
                (if A = {} then {(s, X). s = []} else  p  A.  (P p))
  apply (simp add: F_STOP, intro impI, rotate_tac)
  by (induct rule: finite_set_induct_nonempty) (simp_all add: F_Ndet)

lemma T_MultiNdet:
  finite A  𝒯 ( x  A. P x) =
                (if A = {} then {[]} else  p  A. 𝒯 (P p))
  apply (simp add: T_STOP, intro impI, rotate_tac)
  by (induct rule: finite_set_induct_nonempty) (simp_all add: T_Ndet)



section ‹Cartesian Product Results›

lemma MultiNdet_cartprod_σs_set_σs_set:
  (*we can't remove hypothesis on len1 in this proof for injectivity*)
  finite A; finite B; s  A. length s = len1  
   ( (s, t)  A × B. P (s @ t)) =  u  {s @ t |s t. (s, t)  A × B}. P u
  apply (subst inj_on_mapping_over_MultiNdet[where f = λ (s, t). s @ t],
         simp_all add: inj_on_def)
  apply (subst prem_Multi_cartprod(1)[simplified, symmetric])
  apply (rule mono_MultiNdet_eq, simp add: finite_image_set2)
  by (metis (no_types, lifting) case_prod_unfold f_inv_into_f)


lemma MultiNdet_cartprod_s_set_σs_set:
  finite A; finite B 
   ( (s, t)  A × B. P (s # t)) =  u  {s # t |s t. (s, t)  A × B}. P u
  apply (subst inj_on_mapping_over_MultiNdet[where f = λ (s, t). s # t],
         simp_all add: inj_on_def) 
  apply (subst prem_Multi_cartprod(2)[simplified, symmetric])
  apply (rule mono_MultiNdet_eq, simp add: finite_image_set2)
  by (metis (no_types, lifting) case_prod_unfold f_inv_into_f)


lemma MultiNdet_cartprod_s_set_s_set:
  finite A; finite B 
   ( (s, t)  A × B. P [s, t]) =  u  {[s, t] |s t. (s, t)  A × B}. P u
  apply (subst inj_on_mapping_over_MultiNdet[where f = λ (s, t). [s, t]],
         simp_all add: inj_on_def) 
  apply (subst prem_Multi_cartprod(3)[simplified, symmetric])
  apply (rule mono_MultiNdet_eq, simp add: finite_image_set2)
  by (metis (no_types, lifting) case_prod_unfold f_inv_into_f)


lemma MultiNdet_cartprod: 
  finite A; finite B  ( (s, t)  A × B. P s t) =  sA.  tB. P s t
  supply arg_cong_Ndet = arg_cong[where f = λQ. _  Q]
proof (induct card A arbitrary: A B rule: nat_less_induct)
  case (1 A B)
  from finite A finite B consider A = {} | B = {} | 
      mA mB a b A' B'. A = insert a A'  B = insert b B'  mA = card A'  
                         mB = card B'  mA < card A  mB < card B 
    by (metis card_Diff1_less_iff ex_in_conv insert_Diff)
  thus ((x, y)  A × B.  P x y) =  sA.  MultiNdet B (P s)
  proof cases
    show A = {}  ( (x, y)A × B. P x y) =  sA. MultiNdet B (P s)
      by simp
  next 
    show B = {}  ( (x, y)A × B. P x y) =  sA. MultiNdet B (P s)
      by (simp add: MultiNdet_STOP_id[OF "1.prems"(1)])
  next
    assume mA mB a b A' B'. A = insert a A'  B = insert b B'  
            mA = card A'  mB = card B'  mA < card A  mB < card B
    then obtain mA mB a b A' B'
      where * : A = insert a A' B = insert b B' mA = card A'
                mB = card B' mA < card A mB < card B by blast
    have **  : Pair a ` B' = {a} × B'
     and *** : (λa. (a, b)) ` A' = A' × {b} unfolding image_def by blast+
    show ((x, y)  A × B.  P x y) =  sA.  MultiNdet B (P s)
      using "*"(1, 2) finite A finite B
      apply (cases A' = {}; cases B' = {}; simp_all)
        apply (rule arg_cong_Ndet)
        apply (subst inj_on_mapping_over_MultiNdet[of B' λb. (a, b)],
               simp_all add: inj_on_def "**")
        apply (rule mono_MultiNdet_eq, simp_all)
        apply (metis Pair_inject f_inv_into_f image_eqI)
       apply (rule arg_cong_Ndet)
       apply (subst inj_on_mapping_over_MultiNdet[of A' λa. (a, b)],
              simp_all add: inj_on_def "***")
       apply (rule mono_MultiNdet_eq, simp_all)
       apply (metis (no_types, lifting) f_inv_into_f image_eqI prod.inject)

      apply (subst MultiNdet_factorization_union[symmetric], simp_all)
      apply (subst "1"(1)[rule_format, OF "*"(5, 3)], simp_all)
      apply (simp add: MultiNdet_Ndet[symmetric])
      apply (subst Ndet_assoc, rule arg_cong_Ndet)
      apply (subst (3) Ndet_commute, rule arg_cong_Ndet)
      apply (subst inj_on_mapping_over_MultiNdet[of B' λb. (a, b)],
             simp_all add: inj_on_def "**")
      apply (rule mono_MultiNdet_eq)
       apply (simp; fail)
      by (metis "**" case_prod_conv f_inv_into_f)
  qed
qed



end