Theory Renaming

(*<*)
―‹ ******************************************************************** 
 * Project         : HOL-CSP - A Shallow Embedding of CSP in  Isabelle/HOL
 * Version         : 2.0
 *
 * Author          : Benoît Ballenghien.
 *                   (Based on HOL-CSP 1.0 by Haykal Tej and Burkhart Wolff)
 *
 * This file       : A Combined CSP Theory
 *
 * Copyright (c) 2009 Université Paris-Sud, France
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *
 *     * Redistributions in binary form must reproduce the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer in the documentation and/or other materials provided
 *       with the distribution.
 *
 *     * Neither the name of the copyright holders nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 ******************************************************************************›
(*>*)

section‹ The Renaming Operator ›

theory  Renaming
  imports Process
begin

subsection‹Some preliminaries›

definition EvExt where EvExt f x  case_event (ev o f) tick x


term f -` B (* instead of defining our own antecedent function *)

definition finitary :: ('a  'b)  bool 
  where finitary f  x. finite(f -` {x})



text ‹We start with some simple results.›

lemma f -` {} = {} by simp

lemma X  Y  f -` X  f -` Y by (rule vimage_mono)

lemma f -`(X  Y) = f -` X  f -` Y by (rule vimage_Un)


lemma EvExt_id: EvExt id = id
  unfolding id_def EvExt_def by (metis comp_apply event.exhaust event.simps(4, 5))

lemma EvExt_eq_tick: EvExt f a = tick  a = tick
  by (metis EvExt_def comp_apply event.exhaust event.simps(3, 4, 5))

lemma tick_eq_EvExt: tick = EvExt f a  a = tick
  by (metis EvExt_eq_tick)

lemma EvExt_ev1: EvExt f b = ev a  (c. b = ev c  EvExt f (ev c) = ev a)
  by (metis event.exhaust event.simps(3) tick_eq_EvExt)

lemma EvExt_tF: tickFree (map (EvExt f) s)  tickFree s 
  unfolding tickFree_def by (auto simp add: tick_eq_EvExt image_iff)

lemma inj_EvExt: inj EvExt
  unfolding inj_on_def EvExt_def
  by auto (metis comp_eq_dest_lhs event.simps(4, 5) ext)




lemma EvExt_ftF: front_tickFree (map (EvExt f) s)  front_tickFree s 
  unfolding front_tickFree_def by safe (metis (no_types, opaque_lifting) EvExt_tF map_tl rev_map)+
 

lemma map_EvExt_tick: [tick] = map (EvExt f) t  t = [tick]
  using tick_eq_EvExt by fastforce


lemma anteced_EvExt_diff_tick: EvExt f -` (X - {tick}) = EvExt f -` X - {tick}
  by (rule subset_antisym) (simp_all add: EvExt_eq_tick subset_Diff_insert subset_vimage_iff)
  


lemma   ev_elem_anteced1: ev a  EvExt f -` A  ev (f a)  A
  and tick_elem_anteced1: tick  EvExt f -` A  tick  A
  unfolding EvExt_def by simp_all
  

lemma hd_map_EvExt: t  []  hd t = ev a  hd (map (EvExt f) t) = ev (f a)
  and tl_map_EvExt: t  []  tl (map (EvExt f) t) = map (EvExt f) (tl t)
  unfolding EvExt_def by (simp_all add:  list.map_sel(1) map_tl)



subsection‹The Renaming Operator Definition›

lift_definition Renaming :: ['a process, 'a  'b]  'b process
  is λP f. ({(s, R).  s1. (s1, (EvExt f) -` R)   P  s = map (EvExt f) s1} 
             {(s ,R).  s1 s2. tickFree s1  front_tickFree s2  s = (map (EvExt f) s1) @ s2  s1  𝒟 P},
             {t.  s1 s2. tickFree s1  front_tickFree s2  t = (map (EvExt f) s1) @ s2  s1  𝒟 P})
proof -
  show "is_process ({(s, R).  s1. (s1, (EvExt f) -` R)   P  s = map (EvExt f) s1} 
              {(s ,R).  s1 s2.   tickFree s1  front_tickFree s2 
                                 s = (map (EvExt (f :: 'a  'b)) s1) @ s2  s1  𝒟 P},
              {t.       s1 s2. tickFree s1  front_tickFree s2 
                                 t = (map (EvExt f) s1) @ s2  s1  𝒟 P})"
              (is "is_process(?f, ?d)") for P f
unfolding is_process_def FAILURES_def DIVERGENCES_def
  proof (simp only: fst_conv snd_conv, intro conjI allI impI)
    show ([], {})  ?f
      by (simp add: process_charn)
  next
    show (s, X)  ?f  front_tickFree s for s X
      by (auto simp add: EvExt_ftF is_processT2 EvExt_tF front_tickFree_append)
  next
    show (s @ t, {})  ?f  (s, {})  ?f for s t
    proof (induct t rule: rev_induct, simp, auto,
           metis (no_types, lifting) is_processT3_SR map_eq_append_conv, goal_cases)
      case (1 x t s1 s2)
      show ?case
      proof (rule "1"(1), auto)
        assume a1: s1. tickFree s1  
                           (s2. s @ t = map (EvExt f) s1 @ s2  front_tickFree s2  s1  𝒟 P)
        have (if s2 = [] then butlast s1 else s1)  𝒟 P
          apply (rule a1[rule_format, of _ butlast s2])
          using "1"(3, 4, 5) apply (auto simp add: tickFree_def front_tickFree_def 
                                              intro: in_set_butlastD)
             apply ((metis append_assoc butlast_snoc map_butlast)+)[2]
           apply (metis append_assoc butlast_append butlast_snoc)
          by (metis butlast_rev list.set_sel(2) rev_is_Nil_conv rev_rev_ident)
        with s1  𝒟 P have s2 = [] by presburger
        with "1"(5, 6) show s1. (s1, {})   P  s @ t = map (EvExt f) s1
          apply (rule_tac x = butlast s1 in exI, intro conjI)
          by (metis append_butlast_last_id butlast.simps(1) process_charn)
             (metis butlast_append map_butlast snoc_eq_iff_butlast)
      qed
    qed
  next
    show (s, Y)  ?f  X  Y  (s, X)  ?f for s X Y
      apply (induct s rule: rev_induct, simp_all)
      by (meson is_processT4 vimage_mono)
         (metis process_charn vimage_mono)
  next
    show (s, X)  ?f  (c. c  Y  (s @ [c], {})  ?f)  (s, X  Y)  ?f for s X Y
      by auto (metis (no_types, lifting) is_processT5 list.simps(8, 9) map_append vimageE)
  next
    show (s @ [tick], {})  ?f  (s, X - {tick})  ?f for s X
      apply auto
      by (metis (no_types, lifting) anteced_EvExt_diff_tick is_processT6 map_EvExt_tick 
                                    map_eq_append_conv)
         (metis EvExt_tF append.assoc butlast_snoc front_tickFree_charn non_tickFree_tick
                tickFree_Nil tickFree_append tickFree_implies_front_tickFree)
  next
    show s  ?d  tickFree s  front_tickFree t  s @ t  ?d for s t
      using front_tickFree_append by safe auto
  next
    show s  ?d  (s, X)  ?f for s X by blast
      
  next
    show s @ [tick]  ?d  s  ?d for s
      apply (induct s, auto)
      by (metis EvExt_tF Nil_is_map_conv hd_append2 list.exhaust_sel list.sel(1) tickFree_Cons)
         (metis Cons_eq_appendI EvExt_tF append.assoc butlast_snoc front_tickFree_charn 
                non_tickFree_tick tickFree_Nil tickFree_append tickFree_implies_front_tickFree)
  qed
qed


text ‹Some syntaxic sugar›

syntax
  "_Renaming"  :: 'a process  updbinds  'a process (‹__ [100, 100]) (*see the values we need, at least 51*)
translations
  "_Renaming P updates"  "CONST Renaming P (_Update (CONST id) updates)"


text ‹Now we can write termPa := b. But like in theoryHOL.Fun, we can write this kind of
      expression with as many updates we want: termPa := b, c := d, e := f, g := h.
      By construction we also inherit all the results about constfun_upd, for example
      @{thm fun_upd_other fun_upd_upd fun_upd_twist}.›

lemma Px := y, x := z = Px := z by simp

lemma a  c  Pa := b, c := d = Pc := d, a := b by (simp add: fun_upd_twist)




subsection‹The Projections›

lemma F_Renaming:  (Renaming P f) = 
  {(s, R). s1. (s1, EvExt f -` R)   P  s = map (EvExt f) s1} 
  {(s, R). s1 s2. tickFree s1  front_tickFree s2  s = map (EvExt f) s1 @ s2  s1  𝒟 P}
  by (simp add: Failures.rep_eq FAILURES_def Renaming.rep_eq)

lemma D_Renaming: 𝒟 (Renaming P f) = {t. s1 s2. tickFree s1  front_tickFree s2  
                                                   t = map (EvExt f) s1 @ s2  s1  𝒟 P}
  by (simp add: Divergences.rep_eq DIVERGENCES_def Renaming.rep_eq)

lemma T_Renaming: 𝒯 (Renaming P f) = 
  {t.  t1. t1  𝒯 P  t = map (EvExt f) t1}  
  {t. t1 t2. tickFree t1  front_tickFree t2  t = map (EvExt f) t1 @ t2  t1  𝒟 P}
  apply (subst Traces.rep_eq, auto simp add: TRACES_def Failures.rep_eq[symmetric] F_Renaming)
  by (use F_T in blast) (metis T_F vimage_empty)



subsection‹Continuity Rule›

subsubsection ‹Monotonicity of constRenaming.›

lemma mono_Renaming[simp] : P  Q  (Renaming P f)  (Renaming Q f)
proof (subst le_approx_def, intro conjI)
  show P  Q  𝒟 (Renaming Q f)  𝒟 (Renaming P f)
    unfolding D_Renaming using le_approx1 by blast
next 
  show P  Q  s. s  𝒟 (Renaming P f)  a (Renaming P f) s = a (Renaming Q f) s
    apply (auto simp add: Ra_def D_Renaming F_Renaming)
      apply (metis EvExt_ftF append.right_neutral front_tickFree_charn front_tickFree_single
                   le_approx2 map_append process_charn tickFree_Cons tickFree_Nil tickFree_append)
    using le_approx_lemma_F by blast (metis le_approx_def subset_eq)
next
  show P  Q  min_elems (𝒟 (Renaming P f))  𝒯 (Renaming Q f)
  proof (unfold min_elems_def, auto simp add: D_Renaming T_Renaming, goal_cases)
    case (1 s1 s2)
    obtain t2 where f1: map (EvExt f) t2 = s2
      by (metis "1"(3, 4, 5, 6) front_tickFree_charn less_append map_is_Nil_conv nil_less2)
    with "1" show ?case 
      apply (rule_tac x = s1 @ t2 in exI, simp)
      apply (rule le_approx3[simplified subset_iff, OF "1"(1), rule_format])
      apply (induct s2 rule: rev_induct, induct s1 rule: rev_induct, auto)
        apply (simp add: Nil_min_elems)
       apply (metis "1"(5) append.right_neutral f1 less_self list.simps(8) min_elems3)
      by (metis append.assoc front_tickFree_dw_closed less_self)
  qed
qed

  


lemma {ev c |c. f c = a} = ev`{c . f c = a} by (rule setcompr_eq_image)


lemma vimage_EvExt_subset_vimage: EvExt f -` (ev ` A)  insert tick (ev ` (f -` A))
  and vimage_subset_vimage_EvExt: (ev ` (f -` A))  (EvExt f -` (ev ` A)) - {tick}
  unfolding EvExt_def by auto (metis comp_apply event.exhaust event.simps(4) image_iff vimage_eq)



subsubsection ‹Some useful results about constfinitary, and preliminaries lemmas for continuity.›

lemma inj_imp_finitary[simp] : inj f  finitary f by (simp add: finitary_def finite_vimageI)

lemma finitary_comp_iff : finitary g  finitary (g o f)  finitary f
proof (unfold finitary_def, intro iffI allI;
       (subst vimage_comp[symmetric] | subst (asm) vimage_comp[symmetric]))
  have f1: f -` g -` {x} = (y  g -` {x}. f -` {y}) for x by blast
  show finite (f -` g -` {x}) if  x. finite (f -` {x}) and x. finite (g -` {x}) for x
    apply (subst f1, subst finite_UN)
    by (rule that(2)[unfolded finitary_def, rule_format])
       (intro ballI that(1)[rule_format])
qed (metis finite_Un insert_absorb vimage_insert vimage_singleton_eq)



lemma finitary_updated_iff[simp] : finitary (f (a := b))  finitary f
proof (unfold fun_upd_def finitary_def vimage_def, intro iffI allI)
  show finite {x. (if x = a then b else f x)  {y}} if y. finite {x. f x  {y}} for y
    apply (rule finite_subset[of _ {x. x = a}  {x. f x  {y}}], (auto)[1])
    apply (rule finite_UnI)
    by simp (fact that[rule_format]) 
next
  show finite {x. f x  {y}} if y. finite {x. (if x = a then b else f x)  {y}} for y
    apply (rule finite_subset[of _ {x. x = a  f x  {y}}  {x. x  a  f x  {y}}], (auto)[1])
    apply (rule finite_UnI)
    using that[rule_format, of y] by (simp_all add: Collect_mono rev_finite_subset)
qed

text ‹By declaring this simp, we automatically obtain this kind of result.›

lemma finitary f  finitary (f (a := b, c := d, e:= g, h := i)) by simp
    


lemma Cont_RenH2: finitary (EvExt f)  finitary f
proof -
  have inj_ev: inj ev by (simp add: inj_def)
  show finitary (EvExt f)  finitary f
    apply (subst finitary_comp_iff[of ev f, symmetric], simp add: inj_ev)
  proof (intro iffI; subst finitary_def, intro allI)
    have inj_ev: inj ev by (simp add: inj_def)
    show finite ((ev  f) -` {x}) if finitary (EvExt f) for x
      apply (fold vimage_comp)
    proof (cases x = tick, (insert finite.simps)[1], blast) 
      assume x  tick
      with subset_singletonD[OF inj_vimage_singleton[OF inj_ev, of x]] obtain y 
        where f1: ev -` {x} = {y} by auto (metis empty_iff event.exhaust vimage_singleton_eq)
      have f2: (f -` {y}) = ev -` ev ` f -` {y} by (simp add: inj_ev inj_vimage_image_eq)
      show finite (f -` ev -` {x}) 
        apply (subst f1, subst f2)
        apply (rule finite_vimageI[OF _ inj_ev]) 
        apply (rule finite_subset[OF vimage_subset_vimage_EvExt])
        apply (rule finite_Diff)
        using finitary_def that by fastforce
    qed
  next
    show finite (EvExt f -` {x}) if finitary (ev  f) for x
    proof (cases x = tick,
           metis Diff_cancel anteced_EvExt_diff_tick finite.emptyI infinite_remove vimage_empty)
      assume x  tick
      with subset_singletonD[OF inj_vimage_singleton[OF inj_ev, of x]] obtain y 
        where f1: {x} = ev ` {y} using event.exhaust by auto
      show finite (EvExt f -` {x})
        apply (subst f1)
        apply (rule finite_subset[OF vimage_EvExt_subset_vimage])
        apply (subst finite_insert)
        apply (rule finite_imageI)
        by (fact finitary_comp_iff[OF inj_imp_finitary[OF inj_ev], of f, 
                                   simplified that, simplified, unfolded finitary_def, rule_format])
    qed
  qed 
qed



lemma Cont_RenH3:
  {s1 @ t1 |s1 t1. ( b. s1 = [b] & f b = a)  list = map f t1} = 
   ( b  f -`{a}. (λt. b # t) ` {t. list = map f t})
  by auto (metis append_Cons append_Nil)


lemma Cont_RenH4: finitary f  (s. finite {t. s = map f t})
proof (unfold finitary_def, intro iffI allI)
  show finite {t. s = map f t} if x. finite (f -` {x})for s
  proof (induct s, simp)
    case (Cons a s)
    have {t. a # s = map f t} = (b  f -` {a}. {b # t |t. s = map f t})
      by (subst Cons_eq_map_conv) blast
    thus ?case by (simp add: finite_UN[OF that[rule_format]] local.Cons)
  qed
next
  have map1: [a] = map f s = (b. s = [b]  f b = a) for a s by fastforce
  show finite (f -` {x}) if s. finite {t. s = map f t} for x
    by (simp add: vimage_def)
       (fact finite_vimageI[OF that[rule_format, of [x], simplified map1], 
                            of λx. [x], unfolded inj_on_def, simplified])
qed



lemma Cont_RenH5: finitary f  finite (t  {t. t  s}. {s. t=map (EvExt f) s})
  apply (rule finite_UN_I)
  unfolding le_list_def
    apply (induct s rule: rev_induct, simp)
   apply (subgoal_tac {t. r. t @ r = xs @ [x]} = insert (xs @ [x]) {t. r. t @ r = xs}, auto)
   apply (metis butlast_append butlast_snoc self_append_conv)
  using Cont_RenH2 Cont_RenH4 by blast



lemma Cont_RenH6: {t.  t2. tickFree t  front_tickFree t2  x = map (EvExt f) t @ t2} 
                    {y. xa. xa  {t. t <= x}  y  {s. xa = map (EvExt f) s}}
  by (auto simp add: le_list_def)



lemma Cont_RenH7: finite {t. t2. tickFree t  front_tickFree t2  s = map (EvExt f) t @ t2}
  if finitary f
proof -
  have f1: {y. map (EvExt f) y  s} = (z  {z. z  s}. {y. z = map (EvExt f) y}) by fast
  show ?thesis
    apply (rule finite_subset[OF Cont_RenH6])
    apply (simp add: f1)
    apply (rule finite_UN_I)
     apply (induct s rule: rev_induct, simp)
     apply (subgoal_tac {z. z  xs @ [x]} = insert (xs @ [x]) {z. z  xs}, auto)
      apply (metis append_eq_first_pref_spec append_self_conv le_list_def)
     apply (meson le_list_def order_trans)
    using Cont_RenH2 Cont_RenH4 that by blast
qed


lemma chain_Renaming: chain Y  chain (λi. Renaming (Y i) f)
  by (simp add: chain_def) 



text ‹A key lemma for the continuity.›

lemma Inter_nonempty_finite_chained_sets:
  i. S i  {}  finite (S 0)  i. S (Suc i)  S i  (i. S i)  {}
proof (induct card (S 0) arbitrary: S rule: nat_less_induct)
  case 1
  show ?case
  proof (cases i. S i = S 0)
    case True
    thus ?thesis by (metis "1.prems"(1) INT_iff ex_in_conv)
  next 
    case False
    have f1: i  j  S j  S i for i j by (simp add: "1.prems"(3) lift_Suc_antimono_le)
    with False obtain j m where f2: m < card (S 0) and f3: m = card (S j)
      by (metis "1.prems"(2) psubsetI psubset_card_mono zero_le)
    define T where T i  S (i + j) for i
    have f4: m = card (T 0) unfolding T_def by (simp add: f3)
    from f1 have f5: (i. S i) = (i. T i) unfolding T_def by (auto intro: le_add1)
    show ?thesis
      apply (subst f5)
      apply (rule "1.hyps"[rule_format, OF f2, of T, OF f4], unfold T_def)
      by (simp_all add: "1.prems"(1, 3) lift_Suc_antimono_le)
         (metis "1.prems"(2) add_0 f1 finite_subset le_add1)
  qed
qed



subsubsection ‹Finally, continuity !›

lemma Cont_Renaming_prem:
  ( i. Renaming (Y i) f) = (Renaming ( i. Y i) f) if finitary: finitary f 
   and chain: chain Y
proof (subst Process_eq_spec, safe, goal_cases)
  show s  𝒟 (i. Renaming (Y i) f)  s  𝒟 (Renaming (Lub Y) f) for s
  proof (simp add: limproc_is_thelub chain chain_Renaming D_Renaming D_LUB)
    assume a1: i. s1.    tickFree s1 
                          (s2. front_tickFree s2 
                                   s = map (EvExt f) s1 @ s2  s1  𝒟 (Y i))
    define S where S i  {s1. t2.   tickFree s1  front_tickFree t2 
                                     s = map (EvExt f) s1 @ t2  s1  𝒟 (Y i)} for i

    have (i. S i)  {} 
      apply (rule Inter_nonempty_finite_chained_sets, unfold S_def)
        apply (insert a1, blast)[1]
       apply (rule finite_subset[OF _ Cont_RenH7[OF finitary, of s]], blast)
      using chain unfolding chain_def le_approx_def by blast
    then obtain s1 where f5: s1  (i. S i) by blast
    
    thus s1. tickFree s1  (s2.   front_tickFree s2 
                                    s = map (EvExt f) s1 @ s2 
                                    (i. s1  𝒟 (Y i)))
      by (rule_tac x = s1 in exI, unfold S_def) auto
  qed
next
  show s  𝒟 (Renaming (Lub Y) f)  s  𝒟 (i. Renaming (Y i) f) for s
    by (auto simp add: limproc_is_thelub chain chain_Renaming D_Renaming D_LUB)
next
  show (s, X)   (i. Renaming (Y i) f)  (s, X)   (Renaming (Lub Y) f) for s X
  proof (auto simp add: limproc_is_thelub chain chain_Renaming F_Renaming D_LUB F_LUB)
    assume a1: i. (s1. (s1, EvExt f -` X)   (Y i)  s = map (EvExt f) s1) 
                    (s1. tickFree s1  
                          (s2.   front_tickFree s2 
                                 s = map (EvExt f) s1 @ s2 
                                 s1  𝒟 (Y i)))
       and a2: s1. tickFree s1  
                     (s2. s = map (EvExt f) s1 @ s2
                              front_tickFree s2
                              (i. s1  𝒟 (Y i)))
    define S where S i  {s1. (s1, EvExt f -` X)   (Y i)  s = map (EvExt f) s1} 
                           {s1. t2. tickFree s1 
                                      front_tickFree t2 
                                      s = map (EvExt f) s1 @ t2 
                                      s1  𝒟 (Y i)} for i

    have s1  (i. S i)  (i. (s1, EvExt f -` X)   (Y i)  s = map (EvExt f) s1) 
                               tickFree s1  (s2.    front_tickFree s2 
                                                      s = map (EvExt f) s1 @ s2 
                                                      (i. s1  𝒟 (Y i))) for s1
      unfolding S_def by auto (meson NF_ND)
    hence f1: s1  (i. S i)  (i. (s1, EvExt f -` X)  (Y i)  s = map(EvExt f) s1) for s1
      by (meson a2)
    have (i. S i)  {}
      apply (rule Inter_nonempty_finite_chained_sets, unfold S_def)
        apply (insert a1, blast)[1]
       apply (subst finite_Un, intro conjI)
        apply (rule finite_subset[of _ {s1. s = map (EvExt f) s1}], blast)
        apply (insert Cont_RenH2 Cont_RenH4 finitary, blast)[1]
       apply (rule finite_subset[OF _ Cont_RenH7[OF finitary, of s]], blast)
      using NF_ND chain po_class.chainE proc_ord2a chain le_approx_def by safe blast+

    then obtain s1 where s1  (i. S i) by blast
    thus s1. (x. (s1, EvExt f -` X)   (Y x))  s = map (EvExt f) s1 
      using f1 by (rule_tac x = s1 in exI) blast
  qed
next
  show (s, X)   (Renaming (Lub Y) f)  (s, X)   (i. Renaming (Y i) f) for s X
    by (auto simp add: limproc_is_thelub chain chain_Renaming F_Renaming D_LUB F_LUB)  
qed
 

lemma Renaming_cont[simp] : cont P  finitary f  cont (λx. (Renaming (P x) f))
  by (rule contI2)
     (simp add: cont2monofunE monofunI, simp add: Cont_Renaming_prem ch2ch_cont cont2contlubE)


lemma RenamingF_cont : cont P  cont (λx. (P x)a := b)
  (* by simp *)
  by (simp only: Renaming_cont finitary_updated_iff inj_imp_finitary inj_on_id)


lemma cont P  cont (λx. (P x)a := b, c := d, e := f, g := a)
  (* by simp *)
  apply (erule Renaming_cont)
  apply (simp only: finitary_updated_iff)
  apply (rule inj_imp_finitary)
  by (rule inj_on_id)
  
 



subsection ‹Some nice properties›


lemma EvExt_comp: EvExt (g  f) = EvExt g  EvExt f
  unfolding EvExt_def by (rule ext, auto) (metis comp_apply event.exhaust event.simps(4, 5))



lemma Renaming_comp : Renaming P (g o f) = Renaming (Renaming P f) g
proof (subst Process_eq_spec, intro conjI subset_antisym)
  show  (Renaming P (g  f))   (Renaming (Renaming P f) g)
    apply (simp add: F_Renaming D_Renaming subset_iff, safe)
    by (metis (no_types, opaque_lifting) EvExt_comp list.map_comp set.compositionality)
       (metis (no_types, opaque_lifting) EvExt_comp EvExt_tF append.right_neutral 
                                         front_tickFree_Nil list.map_comp)
next
  show  (Renaming (Renaming P f) g)   (Renaming P (g  f))
    apply (auto simp add: F_Renaming D_Renaming EvExt_comp EvExt_ftF EvExt_tF front_tickFree_append)
    by (metis (no_types, opaque_lifting) EvExt_comp list.map_comp set.compositionality)
next
  show 𝒟 (Renaming P (g  f))  𝒟 (Renaming (Renaming P f) g)
    apply (simp add: D_Renaming subset_iff, safe)
    by (metis (no_types, opaque_lifting) EvExt_comp EvExt_tF append.right_neutral 
                                         front_tickFree_Nil list.map_comp)
next
  show 𝒟 (Renaming (Renaming P f) g)  𝒟 (Renaming P (g  f))
    apply (auto simp add: D_Renaming subset_iff)
    by (metis EvExt_comp EvExt_tF front_tickFree_append)
qed




lemma Renaming_id: Renaming P id = P
  by (subst Process_eq_spec, auto simp add: F_Renaming D_Renaming EvExt_id 
                                            is_processT7_S is_processT8_S)
     (metis append.right_neutral front_tickFree_mono list.distinct(1) 
            nonTickFree_n_frontTickFree process_charn)
  

lemma Renaming_inv: Renaming (Renaming P f) (inv f) = P if inj f
  apply (subst Renaming_comp[symmetric])
  apply (subst inv_o_cancel[OF that])
  by (fact Renaming_id)


end