Theory Algebra3
theory Algebra3 imports Algebra2 begin
section "Setproducts"
definition
commutators:: "_ ⇒ 'a set" where
"commutators G = {z. ∃ a ∈ carrier G. ∃b ∈ carrier G.
((a ⋅⇘G⇙ b) ⋅⇘G⇙ (ρ⇘G⇙ a)) ⋅⇘G⇙ (ρ⇘G⇙ b) = z}"
lemma (in Group) contain_commutator:"⟦G » H; (commutators G) ⊆ H⟧ ⟹ G ▹ H"
apply (rule cond_nsg[of "H"], assumption)
apply (rule ballI)+
apply (frule_tac h = h in sg_subset_elem[of "H"], assumption,
frule_tac a = h in i_closed,
frule_tac a = a in i_closed,
frule_tac a = a and b = h in mult_closed, assumption+,
frule_tac a = "a ⋅ h" and b = "ρ a" in mult_closed, assumption+)
apply (frule_tac a = "a ⋅ h ⋅ (ρ a)" and b = "ρ h" and c = h in tassoc,
assumption+)
apply (simp add:l_i r_unit)
apply (rule_tac a = "a ⋅ h ⋅ ρ a ⋅ ρ h ⋅ h" and A = H and b = "a ⋅ h ⋅ ρ a"
in eq_elem_in,
rule_tac x = "a ⋅ h ⋅ ρ a ⋅ ρ h" and y = h in sg_mult_closed[of "H"],
assumption,
rule_tac c = "a ⋅ h ⋅ ρ a ⋅ ρ h" in subsetD[of "commutators G" "H"],
assumption,
thin_tac "commutators G ⊆ H",
simp add:commutators_def, blast)
apply assumption+
done
definition
s_top :: "[_ , 'a set, 'a set] ⇒ 'a set " where
"s_top G H K = {z. ∃x ∈ H. ∃y ∈ K. (x ⋅⇘G⇙ y = z)}"
abbreviation
S_TOP :: "[('a, 'm) Group_scheme, 'a set, 'a set] ⇒ 'a set"
("(3_ ⋄ı _)" [66,67]66) where
"H ⋄⇘G⇙ K == s_top G H K"
lemma (in Group) s_top_induced:"⟦G » L; H ⊆ L; K ⊆ L⟧ ⟹
H ⋄⇘Gp G L⇙ K = H ⋄⇘G⇙ K"
by (simp add:s_top_def Gp_def)
lemma (in Group) s_top_l_unit:"G » K ⟹ {𝟭} ⋄⇘G⇙ K = K"
apply (rule equalityI)
apply (rule subsetI, simp add:s_top_def, erule bexE,
frule_tac h = y in sg_subset_elem[of "K"], assumption+,
simp add:l_unit)
apply (rule subsetI,
simp add:s_top_def)
apply (frule_tac h = x in sg_subset_elem, assumption,
frule_tac a = x in l_unit, blast)
done
lemma (in Group) s_top_r_unit:"G » K ⟹ K ⋄⇘G⇙ {𝟭} = K"
apply (rule equalityI)
apply (rule subsetI, simp add:s_top_def, erule bexE,
frule_tac h = xa in sg_subset_elem[of "K"], assumption+,
simp add:r_unit)
apply (rule subsetI,
simp add:s_top_def,
frule_tac h = x in sg_subset_elem[of "K"], assumption+,
frule_tac a = x in r_unit, blast)
done
lemma (in Group) s_top_sub:"⟦G » H; G » K⟧ ⟹ H ⋄⇘G⇙ K ⊆ carrier G"
apply (rule subsetI) apply (simp add:s_top_def)
apply (erule bexE)+
apply (frule_tac h = xa in sg_subset_elem [of "H"], assumption+,
frule_tac h = y in sg_subset_elem[of "K"], assumption+,
frule_tac a = xa and b = y in mult_closed, assumption+, simp)
done
lemma (in Group) sg_inc_set_mult:"⟦G » L; H ⊆ L; K ⊆ L⟧ ⟹ H ⋄⇘G⇙ K ⊆ L"
apply (rule subsetI)
apply (simp add:s_top_def, (erule bexE)+)
apply (frule_tac c = xa in subsetD [of "H" "L"], assumption+,
frule_tac c = y in subsetD [of "K" "L"], assumption+,
frule_tac x = xa and y = y in sg_mult_closed[of "L"], assumption+)
apply simp
done
lemma (in Group) s_top_sub1:"⟦H ⊆ (carrier G); K ⊆ (carrier G)⟧ ⟹
H ⋄⇘G⇙ K ⊆ carrier G"
apply (rule subsetI)
apply (simp add:s_top_def)
apply (erule bexE)+
apply (frule_tac c = xa in subsetD[of "H" "carrier G"], assumption+,
frule_tac c = y in subsetD[of "K" "carrier G"], assumption+,
frule_tac a = xa and b = y in mult_closed, assumption+, simp)
done
lemma (in Group) s_top_elem:"⟦G » H; G » K; a ∈ H; b ∈ K⟧ ⟹ a ⋅ b ∈ H ⋄⇘G⇙ K"
by (simp add:s_top_def, blast)
lemma (in Group) s_top_elem1:"⟦H ⊆ carrier G; K ⊆ carrier G; a ∈ H; b ∈ K⟧ ⟹
a ⋅ b ∈ H ⋄⇘G⇙ K "
by (simp add:s_top_def, blast)
lemma (in Group) mem_s_top:"⟦H ⊆ carrier G; K ⊆ carrier G; u ∈ H ⋄⇘G⇙ K⟧ ⟹
∃a ∈ H. ∃b ∈ K. (a ⋅ b = u)"
by (simp add:s_top_def)
lemma (in Group) s_top_mono:"⟦H ⊆ carrier G; K ⊆ carrier G; H1 ⊆ H; K1 ⊆ K⟧
⟹ H1 ⋄⇘G⇙ K1 ⊆ H ⋄⇘G⇙ K"
by (rule subsetI, simp add:s_top_def, blast)
lemma (in Group) s_top_unit_closed:"⟦G » H; G » K⟧ ⟹ 𝟭 ∈ H ⋄⇘G⇙ K"
apply (frule sg_unit_closed [of "H"],
frule sg_unit_closed [of "K"])
apply (cut_tac unit_closed,
frule l_unit[of "𝟭"])
apply (simp add:s_top_def, blast)
done
lemma (in Group) s_top_commute:"⟦G » H; G » K; K ⋄⇘G⇙ H = H ⋄⇘G⇙ K;
u ∈ H ⋄⇘G⇙ K; v ∈ H ⋄⇘G⇙ K⟧ ⟹ u ⋅ v ∈ H ⋄⇘G⇙ K"
apply (frule sg_subset[of "H"], frule sg_subset[of "K"],
frule mem_s_top[of "H" "K" "u"], assumption+, (erule bexE)+,
frule mem_s_top[of "H" "K" "v"], assumption+, (erule bexE)+)
apply (rotate_tac 4, frule sym, thin_tac "a ⋅ b = u", frule sym,
thin_tac "aa ⋅ ba = v", simp,
thin_tac "u = a ⋅ b", thin_tac "v = aa ⋅ ba")
apply (frule_tac h = a in sg_subset_elem[of "H"], assumption+,
frule_tac h = aa in sg_subset_elem[of "H"], assumption+,
frule_tac h = b in sg_subset_elem[of "K"], assumption+,
frule_tac h = ba in sg_subset_elem[of "K"], assumption+)
apply (simp add:tOp_assocTr41[THEN sym], simp add:tOp_assocTr42)
apply (frule_tac a = b and b = aa in s_top_elem1[of "K" "H"], assumption+,
simp, thin_tac "K ⋄⇘G⇙ H = H ⋄⇘G⇙ K")
apply (frule_tac u = "b ⋅ aa" in mem_s_top[of "H" "K"], assumption+,
(erule bexE)+, frule sym, thin_tac "ab ⋅ bb = b ⋅ aa", simp,
thin_tac "b ⋅ aa = ab ⋅ bb")
apply (frule_tac h = ab in sg_subset_elem[of "H"], assumption+,
frule_tac h = bb in sg_subset_elem[of "K"], assumption+)
apply (simp add:tOp_assocTr42[THEN sym], simp add:tOp_assocTr41)
apply (frule_tac x = a and y = ab in sg_mult_closed[of "H"], assumption+,
frule_tac x = bb and y = ba in sg_mult_closed[of "K"], assumption+,
simp add:s_top_elem1)
done
lemma (in Group) s_top_commute1:"⟦G » H; G » K; K ⋄⇘G⇙ H = H ⋄⇘G⇙ K;
u ∈ H ⋄⇘G⇙ K⟧ ⟹ (ρ u) ∈ H ⋄⇘G⇙ K"
apply (frule sg_subset[of "H"], frule sg_subset[of "K"],
frule mem_s_top[of "H" "K" "u"], assumption+, (erule bexE)+)
apply (frule_tac h = a in sg_subset_elem[of "H"], assumption+,
frule_tac h = b in sg_subset_elem[of "K"], assumption+,
frule_tac a = a and b = b in i_ab, assumption+,
rotate_tac 4, frule sym, thin_tac "a ⋅ b = u", simp,
thin_tac "ρ (a ⋅ b) = ρ b ⋅ ρ a")
apply (frule_tac x = a in sg_i_closed[of "H"], assumption+,
frule_tac x = b in sg_i_closed[of "K"], assumption+,
frule_tac a = "ρ b" and b = "ρ a" in s_top_elem1[of "K" "H"],
assumption+, simp)
done
lemma (in Group) s_top_commute_sg:"⟦G » H; G » K; K ⋄⇘G⇙ H = H ⋄⇘G⇙ K⟧ ⟹
G » (H ⋄⇘G⇙ K)"
apply (subst sg_def)
apply (frule s_top_unit_closed[of "H" "K"], assumption,
simp add:nonempty, simp add:s_top_sub)
apply ((rule ballI)+,
frule_tac u = b in s_top_commute1[of "H" "K"], assumption+,
rule_tac u = a and v = "ρ b" in s_top_commute[of "H" "K"],
assumption+)
done
lemma (in Group) s_top_assoc:"⟦G » H; G » K; G » L⟧ ⟹
(H ⋄⇘G⇙ K) ⋄⇘G⇙ L = H ⋄⇘G⇙ (K ⋄⇘G⇙ L)"
apply (rule equalityI)
apply (rule subsetI, simp add:s_top_def) apply (erule exE)
apply (erule conjE)
apply (erule bexE)+
apply (rotate_tac -1, frule sym, thin_tac "xb ⋅ ya = xa", simp,
thin_tac "xa = xb ⋅ ya", frule sym, thin_tac "xb ⋅ ya ⋅ y = x",
simp)
apply (frule_tac h = xb in sg_subset_elem[of "H"], assumption+,
frule_tac h = y in sg_subset_elem[of "L"], assumption+,
frule_tac h = ya in sg_subset_elem[of "K"], assumption+,
simp add:tassoc, blast)
apply (rule subsetI, simp add:s_top_def,
erule bexE, erule exE, erule conjE, (erule bexE)+,
rotate_tac -1, frule sym, thin_tac "xb ⋅ ya = y", simp,
thin_tac "y = xb ⋅ ya")
apply (frule_tac h = xa in sg_subset_elem[of "H"], assumption+,
frule_tac h = ya in sg_subset_elem[of "L"], assumption+,
frule_tac h = xb in sg_subset_elem[of "K"], assumption+,
simp add:tassoc[THEN sym],
frule sym, thin_tac "xa ⋅ xb ⋅ ya = x", simp, blast)
done
lemma (in Group) s_topTr6:"⟦G » H1; G » H2; G » K; H1 ⊆ K⟧ ⟹
(H1 ⋄⇘G⇙ H2) ∩ K = H1 ⋄⇘G⇙ (H2 ∩ K)"
apply (rule equalityI)
apply (rule subsetI,
simp add:s_top_def, erule conjE, (erule bexE)+,
frule sym, thin_tac "xa ⋅ y = x", simp,
frule_tac c = xa in subsetD[of "H1" "K"], assumption+,
frule_tac x = "xa ⋅ y" in inEx[of _ "K"], erule bexE,
frule_tac x = xa in sg_i_closed[of "K"], assumption+,
frule_tac x = "ρ xa" and y = ya in sg_mult_closed[of "K"],
assumption+, simp)
apply (frule_tac h = xa in sg_subset_elem[of "K"], assumption+,
frule_tac h = "ρ xa" in sg_subset_elem[of "K"], assumption+,
frule_tac h = y in sg_subset_elem[of "H2"], assumption+,
simp add:tassoc[THEN sym] l_i l_unit)
apply blast
apply (rule subsetI,
simp add:s_top_def, (erule bexE)+, simp,
frule sym, thin_tac "xa ⋅ y = x", simp,
frule_tac c = xa in subsetD[of "H1" "K"], assumption+,
frule_tac x = xa and y = y in sg_mult_closed[of "K"], assumption+,
simp)
apply blast
done
lemma (in Group) s_topTr6_1:"⟦G » H1; G » H2; G » K; H2 ⊆ K⟧ ⟹
(H1 ⋄⇘G⇙ H2) ∩ K = (H1 ∩ K) ⋄⇘G⇙ H2"
apply (rule equalityI)
apply (rule subsetI)
apply (simp add:s_top_def, erule conjE, (erule bexE)+)
apply (frule_tac c = y in subsetD [of "H2" "K"], assumption+)
apply (frule_tac x = y in sg_i_closed [of "K"], assumption)
apply (frule_tac h = xa in sg_subset_elem[of "H1"], assumption+,
frule_tac h = x in sg_subset_elem[of "K"], assumption+,
frule_tac h = y in sg_subset_elem[of "K"], assumption+,
frule_tac h = "ρ y" in sg_subset_elem[of "K"], assumption+,
frule sym, thin_tac "xa ⋅ y = x",
frule_tac x = x and y = "ρ y" in sg_mult_closed[of "K"], assumption+,
simp add:tassoc r_i r_unit, blast)
apply (rule subsetI, simp add:s_top_def, (erule bexE)+,
simp, erule conjE,
frule_tac c = y in subsetD[of "H2" "K"], assumption+,
frule_tac x = xa and y = y in sg_mult_closed[of "K"], assumption+, simp,
blast)
done
lemma (in Group) l_sub_smult:"⟦G » H; G » K⟧ ⟹ H ⊆ H ⋄⇘G⇙ K"
apply (rule subsetI,
simp add:s_top_def)
apply (frule sg_unit_closed[of "K"],
frule_tac h = x in sg_subset_elem[of "H"], assumption+,
frule_tac a = x in r_unit)
apply blast
done
lemma (in Group) r_sub_smult:"⟦G » H; G » K⟧ ⟹ K ⊆ H ⋄⇘G⇙ K"
apply (rule subsetI,
simp add:s_top_def)
apply (frule sg_unit_closed[of "H"],
frule_tac h = x in sg_subset_elem[of "K"], assumption+,
frule_tac a = x in l_unit)
apply blast
done
lemma (in Group) s_topTr8:"G » H ⟹ H = H ⋄⇘G⇙ H"
apply (frule l_sub_smult[of "H" "H"], assumption)
apply (rule equalityI, assumption)
apply (rule subsetI)
apply (thin_tac "H ⊆ H ⋄⇘G⇙ H",
simp add:s_top_def, (erule bexE)+)
apply (frule_tac x = xa and y = y in sg_mult_closed[of "H"], assumption+,
simp)
done
section "Preliminary lemmas for Zassenhaus"
lemma (in Group) Gp_sg_subset:"⟦G » H; Gp G H » K⟧ ⟹ K ⊆ H"
by (frule Group_Gp[of "H"],
frule Group.sg_subset[of "♮H" "K"], assumption,
thin_tac "(♮H) » K", thin_tac "Group (♮H)",
simp add:Gp_def)
lemma (in Group) inter_Gp_nsg:"⟦G ▹ N; G » H ⟧ ⟹ (♮H) ▹ (H ∩ N)"
apply (frule Group_Gp[of "H"],
rule Group.cond_nsg[of "Gp G H" "H ∩ N"], assumption+,
frule nsg_sg[of "N"], frule inter_sgs[of "H" "N"], assumption+,
rule sg_sg [of "H" "H ∩ N"], assumption+)
apply (rule subsetI, simp)
apply ((rule ballI)+, simp,
simp add:Gp_carrier,
simp add:Gp_mult_induced[of "H"],
simp add:sg_i_induced[of "H"])
apply (erule conjE,
frule_tac x = a in sg_i_closed[of "H"], assumption+,
frule_tac x = a and y = h in sg_mult_closed, assumption+,
simp add:Gp_mult_induced[of "H"],
simp add:sg_mult_closed)
apply (frule_tac h = a in sg_subset_elem[of "H"], assumption+,
simp add:nsgPr1_1[of "N"])
done
lemma (in Group) ZassenhausTr0:"⟦G » H; G » H1; G » K; G » K1;
Gp G H ▹ H1; Gp G K ▹ K1⟧ ⟹ Gp G (H ∩ K) ▹ (H ∩ K1)"
apply (frule inter_sgs[of "H" "K"], assumption,
frule inter_sgs[of "H" "K1"], assumption,
frule Group_Gp[of "H"],
frule Group_Gp[of "K"],
frule Group.nsg_sg[of "♮H" "H1"], assumption+,
frule Group.nsg_sg[of "♮K" "K1"], assumption+)
apply (rule Group.cond_nsg[of "♮(H ∩ K)" "H ∩ K1"],
simp add:Group_Gp[of "H ∩ K"])
apply (rule sg_sg[of "H ∩ K" "H ∩ K1"], assumption+)
apply (frule Gp_sg_subset[of "K" "K1"], assumption+,
rule subsetI, simp add:subsetD)
apply ((rule ballI)+, simp)
apply (frule Gp_sg_subset[of "K" "K1"], assumption+,
erule conjE, frule_tac c = h in subsetD[of "K1" "K"], assumption+)
apply (rule conjI)
apply (simp only:Gp_carrier,
subst Gp_mult_induced1[of "H" "K"], assumption+, simp,
simp only:sg_i_induced1)
apply (frule_tac a = a and b = h in Group.mult_closed[of "♮H"],
simp add:Gp_carrier, simp add:Gp_carrier,
simp only:Gp_carrier)
apply (frule_tac a = a in Group.i_closed[of "♮H"],
simp add:Gp_carrier)
apply (simp add:Gp_mult_induced1[of "H" "K"], simp add:Gp_carrier,
subst Gp_mult_induced1[of "H" "K"], assumption+,
simp add:Gp_mult_induced sg_mult_closed,
simp add:sg_i_induced sg_i_closed)
apply (simp add:Gp_mult_induced sg_i_induced, simp add:sg_mult_closed)
apply (subst Gp_mult_induced2[of "H" "K"], assumption+,
simp add:Gp_carrier, simp, subst sg_i_induced2, assumption+,
simp add:Gp_carrier)
apply (frule_tac a = a and b = h in Group.mult_closed[of "♮K"],
simp add:Gp_carrier, simp add:Gp_carrier,
frule_tac a = a in Group.i_closed[of "♮K"], simp add:Gp_carrier)
apply (subst Gp_mult_induced2, assumption+,
simp add:Gp_carrier, simp add:Gp_mult_induced sg_mult_closed,
simp add:Gp_carrier, simp add:sg_i_induced sg_i_closed)
apply (rule_tac a = a and h = h in Group.nsgPr1_1[of "♮K" "K1"], assumption+,
simp add:Gp_carrier, assumption)
done
lemma (in Group) lcs_sub_s_mult:"⟦G » H; G » N; a ∈ H⟧ ⟹ a ♢ N ⊆ H ⋄⇘G⇙ N"
apply (rule subsetI)
apply (simp add:lcs_def s_top_def, blast)
done
lemma (in Group) rcs_sub_smult:"⟦G » H; G » N; a ∈ H⟧ ⟹ N ∙ a ⊆ N ⋄⇘G⇙ H"
apply (rule subsetI)
apply (simp add:rcs_def s_top_def, blast)
done
lemma (in Group) smult_commute_sg_nsg:"⟦G » H; G ▹ N⟧ ⟹ H ⋄⇘G⇙ N = N ⋄⇘G⇙ H"
apply (frule nsg_sg[of "N"])
apply (rule equalityI)
apply (rule subsetI,
simp add:s_top_def, (erule bexE)+,
frule_tac h = xa in sg_subset_elem, assumption+,
frule_tac h = y in sg_subset_elem, assumption,
frule_tac a = xa and b = y in mult_closed, assumption,
frule_tac a = xa in i_closed,
frule_tac a = "xa ⋅ y" and b = "ρ xa" and c = xa in tassoc,
assumption+,
frule sym, thin_tac "xa ⋅ y = x", simp,
thin_tac "x = xa ⋅ y", simp add:l_i r_unit,
frule_tac a = xa and h = y in nsgPr1_1[of "N"], assumption+)
apply blast
apply (rule subsetI)
apply (simp add:s_top_def, (erule bexE)+,
frule_tac h = xa in sg_subset_elem, assumption+,
frule_tac h = y in sg_subset_elem, assumption,
frule_tac a = xa and b = y in mult_closed, assumption,
frule_tac a = y in i_closed,
frule_tac a = y and b = "ρ y" and c = "xa ⋅ y" in tassoc,
assumption+,
frule sym, thin_tac "xa ⋅ y = x", simp,
thin_tac "x = xa ⋅ y", simp add:r_i l_unit,
frule_tac a = y and h = xa in nsgPr2[of "N"], assumption+,
frule sym, thin_tac "xa ⋅ y = y ⋅ (ρ y ⋅ (xa ⋅ y))")
apply blast
done
lemma (in Group) smult_sg_nsg:"⟦G » H; G ▹ N⟧ ⟹ G » H ⋄⇘G⇙ N"
apply (frule smult_commute_sg_nsg[of "H" "N"], assumption+,
frule nsg_sg[of "N"],
rule s_top_commute_sg[of "H" "N"], assumption+,
rule sym, assumption)
done
lemma (in Group) smult_nsg_sg:"⟦G » H; G ▹ N⟧ ⟹ G » N ⋄⇘G⇙ H"
apply (frule smult_commute_sg_nsg[THEN sym, of "H" "N"], assumption+)
apply (simp add:smult_sg_nsg)
done
lemma (in Group) Gp_smult_sg_nsg:"⟦G » H; G ▹ N⟧ ⟹ Group (Gp G (H ⋄⇘G⇙ N))"
apply (frule smult_sg_nsg[of "H" "N"], assumption+)
apply (simp add:Group_Gp)
done
lemma (in Group) N_sg_HN:"⟦G » H; G ▹ N⟧ ⟹ Gp G (H ⋄⇘G⇙ N) » N"
apply (frule smult_sg_nsg[of "H" "N"], assumption+,
frule nsg_sg[of "N"],
frule r_sub_smult[of "H" "N"], assumption+)
apply (rule sg_sg[of "H ⋄⇘G⇙ N" "N"], assumption+)
done
lemma (in Group) K_absorb_HK:"⟦G » H; G » K; H ⊆ K⟧ ⟹ H ⋄⇘G⇙ K = K"
apply (frule r_sub_smult[of "H" "K"], assumption+)
apply (rule equalityI)
apply (thin_tac "K ⊆ H ⋄⇘G⇙ K",
rule subsetI, simp add:s_top_def, (erule bexE)+,
frule_tac c = xa in subsetD[of "H" "K"], assumption+,
frule_tac x = xa and y = y in sg_mult_closed[of "K"], assumption+,
simp)
apply assumption
done
lemma (in Group) nsg_Gp_nsg:"⟦G » H; G ▹ N; N ⊆ H⟧ ⟹ Gp G H ▹ N"
apply (frule Group_Gp[of "H"],
frule nsg_sg[of "N"],
frule sg_sg[of "H" "N"], assumption+,
rule Group.cond_nsg[of "♮H" "N"], assumption+)
apply ((rule ballI)+,
frule_tac c = h in subsetD[of "N" "H"], assumption+,
simp add:Gp_carrier,
simp add:Gp_mult_induced[of "H"] sg_i_induced[of "H"]
sg_mult_closed sg_i_closed)
apply (rule_tac a = a and h = h in nsgPr1_1[of "N"], assumption+,
rule_tac h = a in sg_subset_elem[of "H"], assumption+)
done
lemma (in Group) Gp_smult_nsg:"⟦G » H; G ▹ N⟧ ⟹ Gp G (H ⋄⇘G⇙ N) ▹ N"
apply (frule smult_sg_nsg[of "H" "N"], assumption+,
frule nsg_sg[of "N"],
frule N_sg_HN[of "H" "N"], assumption+,
frule Gp_smult_sg_nsg[of "H" "N"], assumption+,
rule Group.cond_nsg[of "♮(H ⋄⇘G⇙ N)" "N"], assumption+)
apply ((rule ballI)+,
frule_tac a = a in Group.i_closed[of "♮(H ⋄⇘G⇙ N)"], assumption+,
simp add:Gp_carrier)
apply (frule r_sub_smult[of "H" "N"], assumption+,
frule_tac c = h in subsetD[of "N" "H ⋄⇘G⇙ N"], assumption+,
simp add:Gp_mult_induced[of "H ⋄⇘G⇙ N"] sg_i_induced[of "H ⋄⇘G⇙ N"])
apply (frule_tac x = a and y = h in sg_mult_closed[of "H ⋄⇘G⇙ N"], assumption+,
simp add:Gp_mult_induced)
apply (rule_tac a = a and h = h in nsgPr1_1[of "N"], assumption+,
frule sg_subset[of "H ⋄⇘G⇙ N"], frule_tac c = a in subsetD[of "H ⋄⇘G⇙ N"
"carrier G"], assumption+)
done
lemma (in Group) Gp_smult_nsg1:"⟦G » H; G ▹ N⟧ ⟹ Gp G (N ⋄⇘G⇙ H) ▹ N"
apply (simp add:smult_commute_sg_nsg[THEN sym, of "H" "N"],
simp only:Gp_smult_nsg)
done
lemma (in Group) ZassenhausTr2_3:"⟦G » H; G » H1; Gp G H ▹ H1⟧ ⟹ H1 ⊆ H"
apply (frule Group_Gp[of "H"],
frule Group.nsg_sg[of "♮H" "H1"], assumption,
frule Group.sg_subset[of "♮H" "H1"], assumption, simp add:Gp_carrier)
done
lemma (in Group) ZassenhausTr2_4:"⟦G » H; G » H1; Gp G H ▹ H1; h ∈ H;
h1 ∈ H1⟧ ⟹ h ⋅ h1 ⋅ (ρ h) ∈ H1"
apply (frule Group_Gp[of "H"])
apply (frule_tac a = h and h = h1 in Group.nsgPr1_1[of "♮H" "H1"], assumption)
apply (simp add:Gp_carrier) apply assumption
apply (simp add:Gp_def)
done
lemma (in Group) ZassenhausTr1:"⟦G » H; G » H1; G » K; G » K1;
Gp G H ▹ H1; Gp G K ▹ K1⟧ ⟹ H1 ⋄⇘G⇙ (H ∩ K1) = (H ∩ K1) ⋄⇘G⇙ H1"
apply (frule Group_Gp[of "H"],
frule Group.nsg_sg[of "♮H" "H1"], assumption,
frule Group.sg_subset[of "♮H" "H1"], assumption, simp add:Gp_carrier)
apply (frule Group_Gp[of "K"],
frule Group.nsg_sg[of "♮K" "K1"], assumption,
frule Group.sg_subset[of "♮K" "K1"], assumption, simp add:Gp_carrier)
apply (rule equalityI)
apply (rule subsetI,
simp add:s_top_def, (erule bexE)+,
frule_tac h = xa in sg_subset_elem[of "H1"], assumption+,
frule_tac h = y in sg_subset_elem[of "H"], simp,
frule_tac a = y in i_closed,
frule_tac a = xa and b = y in mult_closed, assumption+,
frule_tac a1 = y and b1 = "ρ y" and c1 = "xa ⋅ y" in tassoc[THEN sym],
assumption+)
apply (frule sym, thin_tac "xa ⋅ y = x", simp, thin_tac "x = xa ⋅ y",
simp add:r_i l_unit,
frule_tac x = y in sg_i_closed[of "H"], simp)
apply (frule_tac a1 = "ρ y" and b1 = xa and c1 = y in tassoc[THEN sym],
assumption+, simp, thin_tac "ρ y ⋅ (xa ⋅ y) = ρ y ⋅ xa ⋅ y")
apply (frule_tac h = "ρ y" and ?h1.0 = xa in ZassenhausTr2_4[of "H" "H1"],
assumption+, simp add:iop_i_i)
apply blast
apply (rule subsetI)
apply (simp add:s_top_def, (erule bexE)+,
frule_tac h = xa in sg_subset_elem[of "H"], simp,
frule_tac h = y in sg_subset_elem[of "H1"], assumption,
frule sym, thin_tac "xa ⋅ y = x", simp, thin_tac "x = xa ⋅ y")
apply (frule_tac a = xa in i_closed,
frule_tac a = xa and b = y in mult_closed, assumption+,
frule_tac a = "xa ⋅ y" and b = "ρ xa" and c = xa in tassoc, assumption+)
apply (simp add:l_i r_unit,
frule_tac h = xa and ?h1.0 = y in ZassenhausTr2_4[of "H" "H1"],
assumption+, simp, assumption, blast)
done
lemma (in Group) ZassenhausTr1_1:"⟦G » H; G » H1; G » K; G » K1;
Gp G H ▹ H1; Gp G K ▹ K1⟧ ⟹ G » (H1 ⋄⇘G⇙ (H ∩ K1))"
apply (rule s_top_commute_sg, assumption)
apply (simp add:inter_sgs[of "H" "K1"])
apply (rule ZassenhausTr1 [THEN sym, of "H" "H1" "K" "K1"], assumption+)
done
lemma (in Group) ZassenhausTr2:"⟦G » H; G » H1; G » K; Gp G H ▹ H1⟧ ⟹
H1 ⋄⇘G⇙ (H ∩ K) = (H ∩ K) ⋄⇘G⇙ H1"
apply (frule special_nsg_G1[of "K"])
apply (simp add: ZassenhausTr1 [of "H" "H1" "K" "K"])
done
lemma (in Group) ZassenhausTr2_1:"⟦G » H; G » H1; G » K; Gp G H ▹ H1⟧
⟹ G » H1 ⋄⇘G⇙ (H ∩ K)"
apply (frule ZassenhausTr2 [of "H" "H1" "K"], assumption+,
frule inter_sgs [of "H" "K"], assumption+,
rule s_top_commute_sg, assumption+)
apply (rule sym, assumption)
done
lemma (in Group) ZassenhausTr2_2:"⟦G » H; G » H1; G » K; G » K1;
Gp G H ▹ H1; Gp G K ▹ K1⟧ ⟹ H1 ⋄⇘G⇙ (H ∩ K1) ⊆ H1 ⋄⇘G⇙ (H ∩ K)"
apply (frule Group_Gp[of "K"],
frule Group.nsg_sg[of "♮K" "K1"], assumption,
frule Group.sg_subset[of "♮K" "K1"], assumption, simp add:Gp_carrier,
frule Group_Gp[of "H"],
frule Group.nsg_sg[of "♮H" "H1"], assumption,
frule Group.sg_subset[of "♮H" "H1"], assumption, simp add:Gp_carrier,
frule sg_subset[of "H"], frule sg_subset[of "K"])
apply (rule s_top_mono[of "H1" "H ∩ K" "H1" "H ∩ K1"],
rule subset_trans[of "H1" "H" "carrier G"], assumption+,
blast, simp, blast)
done
lemma (in Group) ZassenhausTr2_5:"⟦G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1; a∈ H1; b ∈ H ∩ K1; c ∈ H1⟧ ⟹
a ⋅ b ⋅ c ∈ H1 ⋄⇘G⇙ (H ∩ K1)"
apply (simp, erule conjE)
apply (frule sg_subset_elem[of "H1" "a"], assumption+,
frule sg_subset_elem[of "H1" "c"], assumption+,
frule sg_subset_elem[of "H" "b"], assumption+,
frule i_closed[of "b"],
frule mult_closed[of "a" "b"], assumption+,
frule mult_closed[of "a ⋅ b" "c"], assumption+,
frule tassoc[of "a ⋅ b ⋅ c" "ρ b" "b"], assumption+,
simp add:l_i r_unit)
apply (rule eq_elem_in[of "a ⋅ b ⋅ c ⋅ ρ b ⋅ b" "H1 ⋄⇘G⇙ H ∩ K1" "a ⋅ b ⋅ c"],
thin_tac "a ⋅ b ⋅ c ⋅ ρ b ⋅ b = a ⋅ b ⋅ c",
frule inter_sgs[of "H" "K1"], assumption+,
rule s_top_elem[of "H1" "H ∩ K1" "a ⋅ b ⋅ c ⋅ ρ b " "b"], assumption+,
subst tOp_assocTr42, assumption+,
frule mult_closed[of "b" "c"], assumption+,
simp add:tassoc[of "a" "b ⋅ c" "ρ b"])
apply (rule sg_mult_closed[of "H1" "a" "b ⋅ c ⋅ ρ b"], assumption+,
rule ZassenhausTr2_4[of "H" "H1" "b" "c"], assumption+) apply blast
apply assumption
done
lemma (in Group) ZassenhausTr2_6:"⟦u ∈ carrier G; v ∈ carrier G;
x ∈ carrier G; y ∈ carrier G⟧ ⟹
(u ⋅ v) ⋅ (x ⋅ y) ⋅ (ρ (u ⋅ v)) =
u ⋅ v ⋅ x ⋅ (ρ v) ⋅ (v ⋅ y ⋅ (ρ v)) ⋅ (ρ u)"
apply (simp add:i_ab)
apply (frule i_closed[of "u"], frule i_closed[of "v"])
apply (frule mult_closed[of "u" "v"], assumption+,
frule mult_closed[of "u ⋅ v" "x"], assumption+,
frule mult_closed[of "v" "y"], assumption+,
frule mult_closed[of "v ⋅ y" "ρ v"], assumption+,
frule mult_closed[of "u ⋅ v ⋅ x" "ρ v"], assumption+,
simp add:tOp_assocTr42[THEN sym, of "u ⋅ v ⋅ x ⋅ ρ v "
"v ⋅ y" "ρ v" "ρ u"])
apply (frule mult_closed[of "x" "y"], assumption+,
frule mult_closed[of "u ⋅ v" "x ⋅ y"], assumption+)
apply (simp add:tassoc[THEN sym, of "u ⋅ v ⋅ (x ⋅ y)" "ρ v" "ρ u"])
apply (rule r_mult_eqn[of _ _ "ρ u"],
rule mult_closed[of "u ⋅ v ⋅ (x ⋅ y)" "ρ v"], assumption+,
(rule mult_closed)+, assumption+)
apply (rule r_mult_eqn[of _ _ "ρ v"], assumption+,
(rule mult_closed)+, assumption+)
apply (simp add:tOp_assocTr41[THEN sym, of "u ⋅ v ⋅ x" "ρ v" "v" "y"],
simp add:tOp_assocTr42[of "u ⋅ v ⋅ x" "ρ v" "v" "y"],
simp add:l_i r_unit)
apply (simp add:tOp_assocTr41)
done
lemma (in Group) ZassenhausTr2_7:"⟦a ∈ carrier G; x ∈ carrier G; y ∈ carrier G⟧
⟹ a ⋅ ( x ⋅ y) ⋅ (ρ a) = a ⋅ x ⋅ (ρ a) ⋅ (a ⋅ y ⋅ (ρ a))"
apply (frule i_closed[of "a"],
frule mult_closed[of "a" "y"], assumption+,
frule mult_closed[of "a ⋅ y" "ρ a"], assumption+)
apply (simp add:tOp_assocTr41[of "a" "x" "ρ a" "a ⋅ y ⋅ (ρ a)"],
simp add:tassoc[THEN sym, of "ρ a" "a ⋅ y" "ρ a"],
simp add:tassoc[THEN sym, of "ρ a" "a" "y"] l_i l_unit,
simp add:tOp_assocTr41[THEN sym],
simp add:tOp_assocTr42[THEN sym])
done
lemma (in Group) ZassenhausTr3:"⟦G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹ Gp G (H1 ⋄⇘G⇙ (H ∩ K)) ▹ (H1 ⋄⇘G⇙ (H ∩ K1))"
apply (frule ZassenhausTr2_1 [of "H" "H1" "K"], assumption+,
frule ZassenhausTr2_1 [of "H" "H1" "K1"], assumption+,
frule ZassenhausTr2_2 [of "H" "H1" "K" "K1"], assumption+,
frule sg_sg [of "H1 ⋄⇘G⇙ (H ∩ K)" "H1 ⋄⇘G⇙ (H ∩ K1)"], assumption+,
frule Group_Gp[of "H1 ⋄⇘G⇙ H ∩ K"])
apply (rule Group.cond_nsg[of "♮(H1 ⋄⇘G⇙ H ∩ K)" "H1 ⋄⇘G⇙ H ∩ K1"], assumption+,
(rule ballI)+,
simp add:Gp_carrier)
apply (frule_tac c = h in subsetD[of "H1 ⋄⇘G⇙ H ∩ K1" "H1 ⋄⇘G⇙ H ∩ K"],
assumption+,
simp add:Gp_mult_induced[of "H1 ⋄⇘G⇙ H ∩ K"],
simp add:sg_i_induced[of "H1 ⋄⇘G⇙ H ∩ K"],
frule_tac x = a in sg_i_closed[of "H1 ⋄⇘G⇙ H ∩ K"], assumption+,
frule_tac x = a and y = h in sg_mult_closed[of "H1 ⋄⇘G⇙ H ∩ K"],
assumption+,
simp add:Gp_mult_induced[of "H1 ⋄⇘G⇙ H ∩ K"],
thin_tac "ρ a ∈ H1 ⋄⇘G⇙ H ∩ K", thin_tac "a ⋅ h ∈ H1 ⋄⇘G⇙ H ∩ K")
apply (simp add:s_top_def[of "G" "H1" "H ∩ K"], (erule bexE)+,
simp add:s_top_def[of "G" "H1" "H ∩ K1"], fold s_top_def,
(erule bexE)+, thin_tac "xa ⋅ ya = h", (erule conjE)+,
thin_tac "xa ∈ H1", thin_tac "ya ∈ H",
frule sym, thin_tac "x ⋅ y = a",
frule sym, thin_tac "xb ⋅ yb = h", simp, (erule conjE)+,
thin_tac "a = x ⋅ y", thin_tac "h = xb ⋅ yb")
apply (frule_tac h = x in sg_subset_elem[of "H1"], assumption+,
frule_tac h = y in sg_subset_elem[of "H"], assumption+,
frule_tac h = xb in sg_subset_elem[of "H1"], assumption+,
frule_tac h = yb in sg_subset_elem[of "H"], assumption+,
subst ZassenhausTr2_6, assumption+)
apply (frule_tac a = y and b = xb in mult_closed, assumption+,
frule_tac a = y in i_closed,
frule_tac a = "y ⋅ xb" and b = "ρ y" in mult_closed, assumption+,
frule_tac a = x and b = "y ⋅ xb ⋅ ρ y" in mult_closed, assumption+,
frule_tac a = y and b = yb in mult_closed, assumption+,
frule_tac a = "y ⋅ yb" and b = "ρ y" in mult_closed, assumption+,
frule_tac a = "x ⋅ y ⋅ xb ⋅ ρ y" and b = "y ⋅ yb ⋅ ρ y" and c = "ρ x"
in ZassenhausTr2_5[of "H" "H1" "K" "K1"], assumption+,
frule_tac a = x and b = y in mult_closed, assumption+,
frule_tac a = "x ⋅ y" and b = xb and c = "ρ y" in tassoc, assumption+,
simp, thin_tac "x ⋅ y ⋅ xb ⋅ ρ y = x ⋅ y ⋅ (xb ⋅ ρ y)",
frule_tac a = xb and b = "ρ y" in mult_closed, assumption+,
simp add:tassoc)
apply (rule_tac x = x and y = "y ⋅ (xb ⋅ ρ y)" in sg_mult_closed, assumption+,
simp add:tassoc[THEN sym],
rule_tac h = y and ?h1.0 = xb in ZassenhausTr2_4[of "H" "H1"],
assumption+)
apply (frule_tac x = y and y = yb in sg_mult_closed[of "H"], assumption+,
frule_tac x = y in sg_i_closed[of "H"], assumption+,
frule_tac x = "y ⋅ yb" and y = "ρ y" in sg_mult_closed[of "H"],
assumption+, simp,
rule_tac h = y and ?h1.0 = yb in ZassenhausTr2_4[of "K" "K1"],
assumption+,
rule_tac x = x in sg_i_closed[of "H1"], assumption+)
apply (simp add:s_top_def[of "G" "H1" "H ∩ K1"])
done
lemma (in Group) ZassenhausTr3_2:"⟦G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹ G » H1 ⋄⇘G⇙ (H ∩ K1) ⋄⇘G⇙ (H ∩ K)"
apply (frule s_top_assoc[of "H1" "H ∩ K1" "H ∩ K"],
(simp add:inter_sgs)+,
frule inter_sgs[of "H" "K1"], assumption+,
frule inter_sgs[of "H" "K"], assumption+)
apply (frule K_absorb_HK[of "H ∩ K1" "H ∩ K"], assumption+,
frule ZassenhausTr2_3[of "K" "K1"], assumption+, blast,
simp, simp add:ZassenhausTr2_1)
done
lemma (in Group) ZassenhausTr3_3:"⟦G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹ (H1 ∩ K) ⋄⇘G⇙ (H ∩ K1) = (K1 ∩ H) ⋄⇘G⇙ (K ∩ H1)"
apply (rule equalityI)
apply (rule subsetI, simp add:s_top_def, (erule bexE)+)
apply (frule sym, thin_tac "xa ⋅ y = x", simp, (erule conjE)+)
apply (frule_tac h = xa in sg_subset_elem[of "H1"], assumption+,
frule_tac h = y in sg_subset_elem[of "K1"], assumption+,
frule_tac a = xa in i_closed,
frule_tac a = xa and b = y and c = "ρ xa" and d = xa in tOp_assocTr41,
assumption+,
frule_tac a = xa and b = y in mult_closed, assumption,
simp add:l_i r_unit)
apply (frule_tac h = xa and ?h1.0 = y in ZassenhausTr2_4[of "K" "K1"],
assumption+)
apply (frule ZassenhausTr2_3[of "H" "H1"], assumption+,
frule_tac c = xa in subsetD[of "H1" "H"], assumption+)
apply (frule_tac x = xa and y = y in sg_mult_closed[of "H"], assumption+)
apply (frule_tac x = xa in sg_i_closed[of "H"], assumption+,
frule_tac x = "xa ⋅ y" and y = "ρ xa" in sg_mult_closed[of "H"],
assumption+)
apply blast
apply (rule subsetI, simp add:s_top_def, (erule bexE)+)
apply (frule sym, thin_tac "xa ⋅ y = x", simp, (erule conjE)+)
apply (frule_tac h = xa in sg_subset_elem[of "K1"], assumption+,
frule_tac h = y in sg_subset_elem[of "H1"], assumption+,
frule_tac a = xa in i_closed,
frule_tac a = xa and b = y and c = "ρ xa" and d = xa in tOp_assocTr41,
assumption+,
frule_tac a = xa and b = y in mult_closed, assumption,
simp add:l_i r_unit)
apply (frule_tac h = xa and ?h1.0 = y in ZassenhausTr2_4[of "H" "H1"],
assumption+)
apply (frule ZassenhausTr2_3[of "K" "K1"], assumption+)
apply (frule_tac c = xa in subsetD[of "K1" "K"], assumption+)
apply (frule_tac x = xa and y = y in sg_mult_closed[of "K"], assumption+)
apply (frule_tac x = xa in sg_i_closed[of "K"], assumption+,
frule_tac x = "xa ⋅ y" and y = "ρ xa" in sg_mult_closed[of "K"],
assumption+)
apply blast
done
lemma (in Group) ZassenhausTr3_4:"⟦G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1; g ∈ H ∩ K; h ∈ H ∩ K1⟧ ⟹ g ⋅ h ⋅ (ρ g) ∈ H ∩ K1"
apply (simp, (erule conjE)+)
apply (frule_tac x = g and y = h in sg_mult_closed, assumption+,
frule_tac x = g in sg_i_closed[of "H"], assumption+,
simp add:sg_mult_closed[of "H" "g ⋅ h" "ρ g"])
apply (rule ZassenhausTr2_4[of "K" "K1" "g" "h"], assumption+)
done
lemma (in Group) ZassenhausTr3_5:"⟦G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹ (Gp G (H ∩ K)) ▹ (H1 ∩ K) ⋄⇘G⇙ (H ∩ K1)"
apply (frule inter_sgs[of "H" "K"], assumption,
frule inter_sgs[of "H1" "K"], assumption,
frule inter_sgs[of "K" "H"], assumption,
frule inter_sgs[of "H" "K1"], assumption+)
apply (frule ZassenhausTr3[of "H ∩ K" "H1 ∩ K" "K ∩ H" "H ∩ K1"],
assumption+,
frule ZassenhausTr0[of "K" "K1" "H" "H1"], assumption+,
simp add:Int_commute,
frule ZassenhausTr0[of "H" "H1" "K" "K1"], assumption+,
simp add:Int_commute)
apply (frule ZassenhausTr2_3 [of "K" "K1"], assumption+,
frule ZassenhausTr2_3 [of "H" "H1"], assumption+)
apply (simp add:Int_commute[of "K" "H"])
apply (cut_tac Int_mono[of "H" "H" "K1" "K"])
apply (cut_tac Int_mono[of "H1" "H" "K" "K"])
apply (simp only:Int_absorb1[of "H ∩ K1" "H ∩ K"],
simp only:K_absorb_HK[of "H1 ∩ K" "H ∩ K"]) apply simp+
done
lemma (in Group) ZassenhausTr4:"⟦G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹ (H1 ⋄⇘G⇙ (H ∩ K1)) ⋄⇘G⇙ (H1 ⋄⇘G⇙ (H ∩ K)) = H1 ⋄⇘G⇙ (H ∩ K)"
apply (frule ZassenhausTr2 [of "H" "H1" "K"], assumption+,
frule ZassenhausTr2 [of "H" "H1" "K1"], assumption+,
frule ZassenhausTr1_1 [of "H" "H1" "K" "K1"], assumption+,
frule ZassenhausTr2_1 [of "H" "H1" "K"], assumption+,
frule ZassenhausTr2_2 [of "H" "H1" "K" "K1"], assumption+)
apply (rule K_absorb_HK[of "H1 ⋄⇘G⇙ H ∩ K1" "H1 ⋄⇘G⇙ H ∩ K"], assumption+)
done
lemma (in Group) ZassenhausTr4_0: "⟦G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹ H1 ⋄⇘G⇙ (H ∩ K) = (H1 ⋄⇘G⇙ (H ∩ K1)) ⋄⇘G⇙ (H ∩ K)"
apply (frule inter_sgs [of "H" "K1"], assumption+,
frule inter_sgs [of "H" "K"], assumption+)
apply (subst s_top_assoc [of "H1" "H ∩ K1" "H ∩ K"], assumption+,
subst K_absorb_HK[of "H ∩ K1" "H ∩ K"], assumption+)
apply (frule ZassenhausTr2_3[of "K" "K1"], assumption+,
rule Int_mono[of "H" "H" "K1" "K"])
apply simp+
done
lemma (in Group) ZassenhausTr4_1:"⟦G » H; (Gp G H) ▹ H1; (Gp G H) » (H ∩ K)⟧
⟹ (Gp G (H1 ⋄⇘G⇙ (H ∩ K))) ▹ H1"
apply (frule Group_Gp [of "H"],
frule Group.nsg_sg[of "Gp G H" "H1"], assumption+,
frule Group.Gp_smult_nsg1[of "♮H" "H ∩ K" "H1"], assumption+,
frule subg_sg_sg [of "H" "H1"], assumption+,
frule Group.sg_subset[of "♮H" "H1"], assumption,
frule Group.sg_subset[of "♮H" "H ∩ K"], assumption+,
frule Group.smult_nsg_sg[of "♮H" "H ∩ K" "H1"], assumption+,
frule Group.s_top_sub[of "♮H" "H1" "H ∩ K"], assumption+)
apply (simp only: Gp_carrier s_top_induced [of "H" "H1" "H ∩ K"])
apply (frule subg_sg_sg[of "H" "H1 ⋄⇘G⇙ H ∩ K"], assumption+,
simp add:Gp_inherited[of "H1 ⋄⇘G⇙ H ∩ K" "H"])
done
section "Homomorphism"
lemma gHom: "⟦Group F; Group G; f ∈ gHom F G ; x ∈ carrier F;
y ∈ carrier F⟧ ⟹ f (x ⋅⇘F⇙ y) = (f x) ⋅⇘G⇙ (f y)"
apply (simp add: gHom_def)
done
lemma gHom_mem:"⟦Group F; Group G; f ∈ gHom F G ; x ∈ carrier F⟧ ⟹
(f x) ∈ carrier G"
apply (simp add:gHom_def, (erule conjE)+)
apply (simp add:Pi_def)
done
lemma gHom_func:"⟦Group F; Group G; f ∈ gHom F G⟧ ⟹
f ∈ carrier F → carrier G"
by (simp add:gHom_def)
lemma gHomcomp:"⟦Group F; Group G; Group H; f ∈ gHom F G; g ∈ gHom G H⟧
⟹ (g ∘⇘F⇙ f) ∈ gHom F H"
apply (simp add:gHom_def)
apply (erule conjE)+
apply (simp add:cmpghom_def composition)
apply (rule ballI)+
apply (simp add:compose_def)
apply (frule_tac x = x in funcset_mem [of "f" "carrier F" "carrier G"],
assumption+)
apply (frule_tac x = y in funcset_mem [of "f" "carrier F" "carrier G"],
assumption+)
apply (simp add:Group.mult_closed[of "F"])
done
lemma gHom_comp_gsurjec:"⟦Group F; Group G; Group H; gsurj⇘F,G⇙ f;
gsurj⇘G,H⇙ g⟧ ⟹ gsurj⇘F,H⇙ (g ∘⇘F⇙ f)"
apply (simp add:gsurjec_def,
simp add:gHomcomp,
(erule conjE)+)
apply (simp add:cmpghom_def,
simp add:gHom_def, (erule conjE)+,
rule compose_surj, assumption+)
done
lemma gHom_comp_ginjec:"⟦Group F; Group G; Group H; ginj⇘F,G⇙ f; ginj⇘G,H⇙ g⟧ ⟹
ginj⇘F,H⇙ (g ∘⇘F⇙ f)"
apply (simp add:ginjec_def,
simp add:gHomcomp,
simp add:gHom_def,
(erule conjE)+)
apply (simp add:cmpghom_def,
simp add:comp_inj)
done
lemma ghom_unit_unit:"⟦Group F; Group G; f ∈ gHom F G ⟧ ⟹
f (𝟭⇘F⇙) = 𝟭⇘G⇙"
apply (frule Group.unit_closed[of "F"])
apply (frule gHom [of "F" "G" "f" "𝟭⇘F⇙" "𝟭⇘F⇙"], assumption+)
apply (simp add:Group.l_unit[of "F"])
apply (frule gHom_mem[of "F" "G" "f" "𝟭⇘F⇙"], assumption+)
apply (frule sym)
apply (rule Group.one_unique[of "G" "f 𝟭⇘F⇙" "f 𝟭⇘F⇙"], assumption+)
done
lemma ghom_inv_inv:"⟦Group F; Group G; f ∈ gHom F G ; x ∈ carrier F⟧ ⟹
f (ρ⇘F⇙ x) = ρ⇘G⇙ (f x)"
apply (frule Group.i_closed[of "F" "x"], assumption+,
frule gHom [of "F" "G" "f" "ρ⇘F⇙ x" "x"], assumption+)
apply (simp add:Group.l_i, simp add:ghom_unit_unit)
apply (frule sym,
frule gHom_mem[of "F" "G" "f" "x"], assumption+ ,
frule gHom_mem[of "F" "G" "f" "ρ⇘F⇙ x"], assumption+,
rule Group.l_i_unique[THEN sym, of "G" "f x" "f (ρ⇘F⇙ x)"], assumption+)
done
lemma ghomTr3:"⟦Group F; Group G; f ∈ gHom F G ; x ∈ carrier F;
y ∈ carrier F; f (x ⋅⇘F⇙ (ρ⇘F⇙ y)) = 𝟭⇘G⇙ ⟧ ⟹ f x = f y"
apply (frule Group.i_closed[of "F" "y"], assumption+,
simp only:gHom ghom_inv_inv)
apply (rule Group.r_div_eq[of "G" "f x" "f y"], assumption,
(simp add:gHom_mem)+)
done
lemma iim_nonempty:"⟦Group F; Group G; f ∈ gHom F G; G » K⟧ ⟹
(iim F G f K) ≠ {}"
apply (frule Group.sg_unit_closed[of "G" "K"], assumption+,
frule Group.unit_closed[of "F"])
apply (frule ghom_unit_unit[of "F" "G" "f"], assumption+, simp add:iim_def,
frule sym, thin_tac "f 𝟭⇘F⇙ = 𝟭⇘G⇙", simp)
apply blast
done
lemma ghomTr4:"⟦Group F; Group G; f ∈ gHom F G; G » K⟧ ⟹
F » (iim F G f K)"
apply (rule Group.sg_condition[of "F" "iim F G f K"], assumption+,
rule subsetI, simp add:iim_def,
simp add:iim_nonempty)
apply ((rule allI)+, rule impI, erule conjE)
apply (simp add:iim_def) apply (erule conjE)+
apply (frule_tac a = b in Group.i_closed[of "F"], assumption+,
frule_tac a = a and b = "ρ⇘F⇙ b" in Group.mult_closed[of "F"],
assumption+, simp)
apply (simp add:gHom ghom_inv_inv)
apply (frule_tac x = "f b" in Group.sg_i_closed[of "G" "K"], assumption+)
apply (simp add:gHom_mem Group.sg_mult_closed)
done
lemma (in Group) IdTr0: "idmap (carrier G) ∈ gHom G G"
apply (simp add:gHom_def)
apply (simp add:idmap_def extensional_def)
apply (simp add:Pi_def mult_closed)
done
abbreviation
IDMAP ("(I⇘_⇙)" [999]1000) where
"I⇘F⇙ == idmap (carrier F)"
abbreviation
INVFUN ("(3Ifn _ _ _)" [88,88,89]88) where
"Ifn F G f == invfun (carrier F) (carrier G) f"
lemma IdTr1:"⟦Group F; x ∈ carrier F⟧ ⟹ (I⇘F⇙) x = x"
apply (simp add:idmap_def)
done
lemma IdTr2:"Group F ⟹ gbij⇘F,F⇙ (I⇘F⇙)"
apply (simp add:gbijec_def)
apply (rule conjI)
apply (simp add:gsurjec_def)
apply (rule conjI)
apply (simp add:idmap_def gHom_def Group.mult_closed)
apply (simp add:surj_to_def image_def idmap_def)
apply (simp add:ginjec_def)
apply (simp add:idmap_def gHom_def Group.mult_closed)
done
lemma Id_l_unit:"⟦Group G; gbij⇘G,G⇙ f⟧ ⟹ I⇘G⇙ ∘⇘G⇙ f = f"
apply (rule funcset_eq[of _ "carrier G"])
apply (simp add:cmpghom_def)
apply (simp add:gbijec_def gsurjec_def gHom_def)
apply (rule ballI)
apply (simp add:cmpghom_def compose_def)
apply (frule_tac x = x in gHom_mem[of "G" "G" "f"], assumption+)
apply (simp add:gbijec_def gsurjec_def, assumption)
apply (simp add:IdTr1)
done
section "Gkernel"
lemma gkernTr1:"⟦Group F; Group G; f ∈ gHom F G; x ∈ gker⇘F,G⇙ f⟧ ⟹ x ∈ carrier F"
apply (simp add: gkernel_def)
done
lemma gkernTr1_1:"⟦Group F; Group G; f ∈ gHom F G⟧ ⟹ gker⇘F,G⇙ f ⊆ carrier F"
by (rule subsetI, simp add:gkernTr1)
lemma gkernTr2:"⟦Group F; Group G; f ∈ gHom F G; x ∈ gker⇘F,G⇙ f; y ∈ gker⇘F,G⇙ f⟧
⟹ (x ⋅⇘F⇙ y) ∈ gker⇘F,G⇙ f"
apply (simp add:gkernel_def)
apply (simp add:gHom, (erule conjE)+)
apply (simp add:Group.mult_closed,
frule Group.unit_closed[of "G"],
simp add:Group.l_unit[of "G"])
done
lemma gkernTr3:"⟦Group F; Group G; f ∈ gHom F G ; x ∈ gker⇘F,G⇙ f⟧ ⟹
(ρ⇘F⇙ x) ∈ gker⇘F,G⇙ f"
apply (simp add:gkernel_def)
apply (simp add:ghom_inv_inv [of "F" "G" "f" "x"])
apply (simp add:Group.i_closed) apply (simp add:Group.i_one)
done
lemma gkernTr6:"⟦Group F; Group G; f ∈ gHom F G⟧ ⟹ (𝟭⇘F⇙) ∈ gker⇘F,G⇙ f"
apply (simp add:gkernel_def)
apply (simp add:Group.unit_closed ghom_unit_unit [of "F" "G" "f" ])
done
lemma gkernTr7:"⟦Group F; Group G; f ∈ gHom F G ⟧ ⟹ F » gker⇘F,G⇙ f"
apply (rule Group.sg_condition[of "F" "gker⇘F,G⇙ f"], assumption+,
rule subsetI, simp add:gkernTr1,
frule gkernTr6[of "F" "G" "f"], assumption+, simp add:nonempty)
apply ((rule allI)+, rule impI, erule conjE,
frule_tac x = b in gkernTr3[of "F" "G" "f"], assumption+)
apply (simp add:gkernTr2)
done
lemma gker_normal:"⟦Group F; Group G; f ∈ gHom F G⟧ ⟹ F ▹ gker⇘F,G⇙ f"
apply (rule Group.cond_nsg[of "F" "gker⇘F,G⇙ f"], assumption)
apply (simp add:gkernTr7)
apply (rule ballI)+
apply (simp add:gkernel_def, erule conjE)
apply (frule_tac a = a in Group.i_closed[of "F"], assumption)
apply (subst gHom [of "F" "G" "f" _], assumption+)
apply (simp add:Group.mult_closed[of "F"])
apply assumption
apply (simp add:gHom)
apply (simp add:Group.mult_closed[of "F"])+
apply (frule_tac x = a in gHom_mem[of "F" "G" "f"], assumption+,
simp add:Group.r_unit[of "G"])
apply (simp add:ghom_inv_inv, simp add:Group.r_i)
done
lemma Group_coim:"⟦Group F; Group G; f ∈ gHom F G⟧ ⟹ Group ( F / gker⇘F,G⇙ f)"
by (frule gker_normal[of "F" "G" "f"], assumption+,
simp add:Group.Group_Qg[of "F" "gker⇘F,G⇙ f"])
lemma gkern1:"⟦Group F; Ugp E; f ∈ gHom F E⟧ ⟹ gker⇘F,E⇙ f = carrier F"
apply (frule Group_Ugp[of "E"])
apply (frule gkernTr1_1[of "F" "E" "f"], assumption+)
apply (rule equalityI, assumption)
apply (rule subsetI,
thin_tac "gker⇘F,E⇙ f ⊆ carrier F",
simp add:gkernel_def,
frule_tac x = x in gHom_mem[of "F" "E" "f"], assumption+,
simp add:Ugp_def)
done
lemma gkern2:"⟦Group F; Group G; f ∈ gHom F G; ginj⇘F,G⇙ f⟧ ⟹
gker⇘F,G⇙ f = {𝟭⇘F⇙}"
apply (frule gkernTr6[of "F" "G" "f"], assumption+,
frule singleton_sub[of "𝟭⇘F⇙" "gker⇘F,G⇙ f"],
rule equalityI)
apply (rule subsetI,
thin_tac "{𝟭⇘F⇙} ⊆ gker⇘F,G⇙ f",
simp add:gkernel_def, (erule conjE)+)
apply (frule sym, thin_tac "f 𝟭⇘F⇙ = 𝟭⇘G⇙", simp, thin_tac "𝟭⇘G⇙ = f 𝟭⇘F⇙",
simp add:ginjec_def, simp add:inj_on_def)
apply assumption
done
lemma gkernTr9:"⟦Group F; Group G; f ∈ gHom F G; a ∈ carrier F; b ∈ carrier F⟧
⟹ ((gker⇘F,G⇙ f) ∙⇘F⇙ a = (gker⇘F,G⇙ f) ∙⇘F⇙ b) = (f a = f b)"
apply (frule gkernTr7[of "F" "G" "f"], assumption+)
apply (subst Group.rcs_eq[THEN sym, of "F" "gker⇘F,G⇙ f" "a" "b"], assumption+)
apply (thin_tac "F » gker⇘F,G⇙ f")
apply (simp add:gkernel_def)
apply (frule Group.i_closed[of "F" "a"], assumption)
apply (simp add:Group.mult_closed[of "F"])
apply (simp add:gHom, simp add:ghom_inv_inv)
apply (frule gHom_mem[of "F" "G" "f" "a"], assumption+,
frule gHom_mem[of "F" "G" "f" "b"], assumption+)
apply (rule iffI)
apply (rule Group.r_div_eq[THEN sym, of "G" "f b" "f a"], assumption+)
apply (simp add:Group.r_i[of "G"])
done
lemma gkernTr11:"⟦Group F; Group G; f ∈ gHom F G ; a ∈ carrier F⟧ ⟹
(iim F G f {f a}) = (gker⇘F,G⇙ f) ∙⇘F⇙ a"
apply (frule gkernTr7[of "F" "G" "f"], assumption+)
apply (rule equalityI)
apply (rule subsetI,
simp add:iim_def,
erule conjE)
apply (frule_tac a1 = x in gkernTr9[THEN sym, of "F" "G" "f" _ "a"],
assumption+, simp,
frule_tac a = x in Group.a_in_rcs[of "F" "gker⇘F,G⇙ f"], assumption+,
simp)
apply (rule subsetI)
apply (simp add:gkernel_def rcs_def iim_def, erule exE, (erule conjE)+,
rotate_tac -1, frule sym, thin_tac "h ⋅⇘F⇙ a = x", simp add:gHom,
thin_tac "x = h ⋅⇘F⇙ a",
frule gHom_mem[of "F" "G" "f" "a"], assumption+,
simp add:Group.mult_closed Group.l_unit)
done
lemma gbij_comp_bij:"⟦Group F; Group G; Group H; gbij⇘F,G⇙ f; gbij⇘G,H⇙ g⟧
⟹ gbij⇘F,H⇙ (g ∘⇘F⇙ f)"
apply (simp add:gbijec_def)
apply (simp add:gHom_comp_gsurjec gHom_comp_ginjec)
done
lemma gbij_automorph:"⟦Group G; gbij⇘G,G⇙ f; gbij⇘G,G⇙ g⟧ ⟹
gbij⇘G,G⇙ (g ∘⇘G⇙ f)"
apply (simp add:gbij_comp_bij)
done
lemma l_unit_gHom:"⟦Group F; Group G; f ∈ gHom F G⟧ ⟹ (I⇘G⇙) ∘⇘F⇙ f = f"
apply (simp add:cmpghom_def)
apply (rule funcset_eq[of _ "carrier F"],
simp add:compose_def, simp add:gHom_def)
apply (rule ballI,
simp add:idmap_def compose_def,
simp add:gHom_mem[of "F" "G" "f"])
done
lemma r_unit_gHom:"⟦Group F; Group G; f ∈ gHom F G ⟧ ⟹ f ∘⇘F⇙ (I⇘F⇙) = f"
apply (simp add:cmpghom_def)
apply (rule funcset_eq[of _ "carrier F"],
simp add:compose_def, simp add:gHom_def)
apply (rule ballI,
simp add:idmap_def compose_def)
done
section "Image"
lemma inv_gHom:"⟦Group F; Group G; gbij⇘F,G⇙ f⟧ ⟹ (Ifn F G f) ∈ gHom G F"
apply (simp add:gHom_def)
apply (rule conjI)
apply (simp add:invfun_def restrict_def extensional_def)
apply (rule conjI)
apply (rule inv_func)
apply (simp add:gbijec_def gsurjec_def gHom_def)
apply (simp add:gbijec_def gsurjec_def ginjec_def)+
apply (rule ballI)+ apply (erule conjE)+
apply (frule gHom_func[of "F" "G" "f"], assumption+,
frule inv_func[of "f" "carrier F" "carrier G"], assumption+)
apply (frule_tac b = x in invfun_mem[of "f" "carrier F" "carrier G"],
assumption+,
frule_tac b = y in invfun_mem[of "f" "carrier F" "carrier G"],
assumption+)
apply (frule_tac x = "(Ifn F G f) x" and y = "(Ifn F G f) y" in
gHom[of "F" "G" "f"], assumption+)
apply (simp only:invfun_r)
apply (frule sym, thin_tac "f ((Ifn F G f) x ⋅⇘F⇙ (Ifn F G f) y) = x ⋅⇘G⇙ y")
apply (frule_tac a = x and b = y in Group.mult_closed[of "G"], assumption+)
apply (frule_tac b = "x ⋅⇘G⇙ y" in invfun_r[of "f" "carrier F"
"carrier G"], assumption+)
apply (frule_tac r = "f ((Ifn F G f) (x ⋅⇘G⇙ y))" and s = "x ⋅⇘G⇙ y" and t = "f ((Ifn F G f) x ⋅⇘F⇙ (Ifn F G f) y)" in trans, assumption+)
apply (thin_tac "f ((Ifn F G f) (x ⋅⇘G⇙ y)) = x ⋅⇘G⇙ y",
thin_tac "x ⋅⇘G⇙ y = f ((Ifn F G f) x ⋅⇘F⇙ (Ifn F G f) y)")
apply (frule_tac b = "x ⋅⇘G⇙ y" in invfun_mem[of "f" "carrier F" "carrier G"],
assumption+,
frule_tac a = "(Ifn F G f) x" and b = "(Ifn F G f) y" in
Group.mult_closed[of "F"], assumption+)
apply (simp add:inj_on_def)
done
lemma inv_gbijec_gbijec:"⟦Group F; Group G; gbij⇘F,G⇙ f⟧ ⟹ gbij⇘G,F⇙ (Ifn F G f)"
apply (frule inv_gHom [of "F" "G" "f"], assumption+)
apply (simp add:gbijec_def)
apply (rule conjI)
apply (simp add:gsurjec_def ginjec_def, (erule conjE)+)
apply (frule gHom_func[of "F" "G" "f"], simp add:invfun_surj,
assumption+, simp add:invfun_surj)
apply (erule conjE, simp add:gsurjec_def ginjec_def, erule conjE,
frule gHom_func[of "F" "G" "f"], assumption+,
rule invfun_inj, assumption+)
done
lemma l_inv_gHom:"⟦Group F; Group G; gbij⇘F,G⇙ f⟧ ⟹ (Ifn F G f) ∘⇘F⇙ f = (I⇘F⇙)"
apply (rule funcset_eq[of _ "carrier F"],
simp add:cmpghom_def, simp add:idmap_def,
rule ballI)
apply (simp add:idmap_def cmpghom_def compose_def,
simp add:gbijec_def gsurjec_def ginjec_def, (erule conjE)+,
frule gHom_func[of "F" "G" "f"], assumption+)
apply (rule invfun_l, assumption+)
done
lemma img_mult_closed:"⟦Group F; Group G; f ∈ gHom F G; u ∈ f `(carrier F);
v ∈ f `(carrier F)⟧ ⟹ u ⋅⇘G⇙ v ∈ f `(carrier F)"
apply (simp add:image_def)
apply ((erule bexE)+, simp)
apply (subst gHom [of "F" "G" "f", THEN sym], assumption+)
apply (frule_tac a = x and b = xa in Group.mult_closed [of "F"], assumption+)
apply blast
done
lemma img_unit_closed:"⟦Group F; Group G; f ∈ gHom F G⟧ ⟹
𝟭⇘G⇙ ∈ f `(carrier F)"
apply (cut_tac Group.unit_closed[of "F"],
frule ghom_unit_unit[THEN sym, of "F" "G" "f"], assumption+,
simp add:image_def, blast,
assumption)
done
lemma imgTr7:"⟦Group F; Group G; f ∈ gHom F G; u ∈ f `(carrier F)⟧
⟹ ρ⇘G⇙ u ∈ f `(carrier F)"
apply (simp add:image_def, erule bexE, simp)
apply (subst ghom_inv_inv[THEN sym, of "F" "G" "f"], assumption+)
apply (frule_tac a = x in Group.i_closed[of "F"], assumption+)
apply blast
done
lemma imgTr8:"⟦Group F; Group G; f ∈ gHom F G; F » H; u ∈ f ` H;
v ∈ f` H ⟧ ⟹ u ⋅⇘G⇙ v ∈ f ` H"
apply (simp add:image_def, (erule bexE)+, simp,
subst gHom [of "F" "G" "f" _, THEN sym], assumption+)
apply (simp only:Group.sg_subset_elem[of "F"],
simp only:Group.sg_subset_elem[of "F"])
apply (frule_tac x = x and y = xa in Group.sg_mult_closed[of "F" "H"],
assumption+)
apply blast
done
lemma imgTr9:"⟦Group F; Group G; f ∈ gHom F G; F » H; u ∈ f ` H⟧ ⟹
ρ⇘G⇙ u ∈ f ` H"
apply (simp add:image_def, erule bexE, simp)
apply (frule_tac h = x in Group.sg_subset_elem[of "F" "H"], assumption+,
simp add:ghom_inv_inv[THEN sym])
apply (frule_tac x = x in Group.sg_i_closed [of "F" "H"], assumption+,
blast)
done
lemma imgTr10:"⟦Group F; Group G; f ∈ gHom F G; F » H⟧ ⟹ 𝟭⇘G⇙ ∈ f ` H"
apply (frule Group.sg_unit_closed[of "F" "H"], assumption+,
subst ghom_unit_unit[THEN sym, of "F" "G" "f"], assumption+)
apply (simp add:image_def, blast)
done
lemma imgTr11:"⟦Group F; Group G; f ∈ gHom F G; F » H⟧ ⟹ G » (f ` H)"
apply (frule gHom_func[of "F" "G" "f"], assumption+,
frule Group.sg_subset[of "F" "H"], assumption+,
frule image_sub[of "f" "carrier F" "carrier G" "H"], assumption+)
apply (rule Group.sg_condition[of "G" "f ` H"], assumption+,
frule imgTr10[of "F" "G" "f" "H"], assumption+,
rule nonempty, assumption)
apply ((rule allI)+, rule impI, erule conjE,
frule_tac u = b in imgTr9[of "F" "G" "f" "H"], assumption+,
frule_tac u = a and v = "ρ⇘G⇙ b" in imgTr8[of "F" "G" "f"], assumption+)
done
lemma sg_gimg:"⟦Group F; Group G; f ∈ gHom F G ⟧ ⟹ G » f`(carrier F)"
apply (frule Group.special_sg_G [of "F"])
apply (simp add:imgTr11)
done
lemma Group_Img:"⟦Group F; Group G; f ∈ gHom F G ⟧ ⟹ Group (Img⇘F,G⇙ f)"
apply (frule sg_gimg [of "F" "G" "f"], assumption+,
simp add:Gimage_def Group.Group_Gp[of "G"])
done
lemma Img_carrier:"⟦Group F; Group G; f ∈ gHom F G ⟧ ⟹
carrier (Img⇘F,G⇙ f) = f ` (carrier F)"
by (simp add:Gimage_def Gp_def)
lemma hom_to_Img:"⟦Group F; Group G; f ∈ gHom F G⟧ ⟹ f ∈ gHom F (Img⇘F,G⇙ f)"
by (simp add:gHom_def Gimage_def Gp_def)
lemma gker_hom_to_img:"⟦Group F; Group G; f ∈ gHom F G ⟧ ⟹
gker⇘F,(Img⇘F,G⇙ f)⇙ f = gker⇘F,G⇙ f"
by (simp add:gkernel_def Gimage_def,
frule sg_gimg[of "F" "G" "f"], assumption+,
simp add:Group.one_Gp_one[of "G" "f ` (carrier F)"])
lemma Pj_im_subg:"⟦Group G; G » H; G ▹ K; K ⊆ H⟧ ⟹
Pj G K ` H = carrier ((Gp G H) / K)"
apply (simp add: Qg_def [of "Gp G H" "K"])
apply (rule equalityI)
apply (simp add: Pj_def set_rcs_def Group.sg_subset_elem cong: image_cong_simp)
using Group.Gp_rcs Group.carrier_Gp Group.nsg_sg apply fastforce
apply (rule subsetI)
apply (simp add:image_def Pj_def)
apply (simp add:set_rcs_def)
apply (simp add:Group.Gp_carrier, erule bexE)
apply (frule Group.nsg_sg[of "G" "K"], assumption+)
apply (frule_tac x = a in Group.Gp_rcs[of "G" "K" "H"], assumption+,
simp)
apply (frule_tac h = a in Group.sg_subset_elem[of "G" "H"], assumption+)
apply blast
done
lemma (in Group) subg_Qsubg:"⟦G » H; G ▹ K; K ⊆ H⟧ ⟹
(G / K) » carrier ((Gp G H) / K)"
apply (frule Pj_ghom[of "K"])
apply (frule nsg_sg [of "K"])
apply (frule Group_Qg[of "K"])
apply (cut_tac imgTr11 [of "G" "G / K" "Pj G K" "H"])
apply (cut_tac Pj_im_subg [of "G" "H" "K"])
apply simp apply (rule Group_axioms | assumption)+
done
section "Induced homomorphisms"
lemma inducedhomTr:"⟦Group F; Group G; f ∈ gHom F G;
S ∈ set_rcs F (gker⇘F,G⇙ f); s1 ∈ S; s2 ∈ S ⟧ ⟹ f s1 = f s2"
apply (simp add:set_rcs_def, erule bexE)
apply (frule_tac a1 = a in gkernTr11[THEN sym, of "F" "G" "f"], assumption+,
simp, thin_tac "S = iim F G f {f a}",
thin_tac "gker⇘F,G⇙ f ∙⇘F⇙ a = iim F G f {f a}")
apply (simp add:iim_def)
done
definition
induced_ghom :: "[('a, 'more) Group_scheme, ('b, 'more1) Group_scheme,
('a ⇒ 'b)] ⇒ ('a set ⇒ 'b )" where
"induced_ghom F G f = (λX∈ (set_rcs F (gker⇘F,G⇙ f)). f (SOME x. x ∈ X))"
abbreviation
INDUCED_GHOM :: "['a ⇒ 'b, ('a, 'm) Group_scheme, ('b, 'm1) Group_scheme]
⇒ ('a set ⇒ 'b )" ("(3_¨⇘_,_⇙)" [82,82,83]82) where
"f¨⇘F,G⇙ == induced_ghom F G f"
lemma induced_ghom_someTr:"⟦Group F; Group G; f ∈ gHom F G;
X ∈ set_rcs F (gker⇘F,G⇙ f)⟧ ⟹ f (SOME xa. xa ∈ X) ∈ f `(carrier F)"
apply (simp add:set_rcs_def, erule bexE, simp)
apply (frule gkernTr7 [of "F" "G" "f"], assumption+)
apply (rule someI2_ex)
apply (frule_tac a = a in Group.a_in_rcs[of "F" "gker⇘F,G⇙ f"], assumption+)
apply blast
apply (frule_tac a = a and x = x in Group.rcs_subset_elem[of "F" "gker⇘F,G⇙ f"],
assumption+)
apply (simp add:image_def, blast)
done
lemma induced_ghom_someTr1:"⟦Group F; Group G; f ∈ gHom F G; a ∈ carrier F⟧ ⟹
f (SOME xa. xa ∈ (gker⇘F,G⇙ f) ∙⇘F⇙ a) = f a"
apply (rule someI2_ex)
apply (frule gkernTr7 [of "F" "G" "f"], assumption+)
apply (frule Group.a_in_rcs [of "F" "gker⇘F,G⇙ f" "a"], assumption+)
apply blast
apply (simp add:gkernTr11 [THEN sym])
apply (simp add:iim_def)
done
lemma inducedHOMTr0:"⟦Group F; Group G; f ∈ gHom F G; a ∈ carrier F⟧ ⟹
(f¨⇘F,G⇙) ((gker⇘F,G⇙ f) ∙⇘F⇙ a) = f a"
apply (simp add:induced_ghom_def)
apply (frule gkernTr7[of "F" "G" "f"], assumption+)
apply (simp add:Group.rcs_in_set_rcs[of "F"])
apply (simp add:induced_ghom_someTr1)
done
lemma inducedHOMTr0_1:"⟦Group F; Group G; f ∈ gHom F G⟧ ⟹
(f¨⇘F,G⇙) ∈ set_rcs F (gker⇘F,G⇙ f) → carrier G"
apply (rule Pi_I)
apply (simp add:set_rcs_def, erule bexE, simp)
apply (subst inducedHOMTr0[of "F" "G" "f"], assumption+)
apply (simp add:gHom_mem)
done
lemma inducedHOMTr0_2:"⟦Group F; Group G; f ∈ gHom F G⟧ ⟹
(f¨⇘F,G⇙) ∈ set_rcs F (gker⇘F,G⇙ f) → f ` (carrier F)"
apply (rule Pi_I)
apply (simp add:set_rcs_def, erule bexE, simp)
apply (subst inducedHOMTr0[of "F" "G" "f"], assumption+)
apply (simp add:image_def, blast)
done
lemma inducedHom:"⟦Group F; Group G; f ∈ gHom F G⟧ ⟹
(f¨⇘F,G⇙) ∈ gHom (F/(gker⇘F,G⇙ f)) G"
apply (simp add: gHom_def [of "F/ gker⇘F,G⇙ f" "G"])
apply (rule conjI)
apply (simp add:induced_ghom_def extensional_def)
apply (rule allI) apply (rule impI)+ apply (simp add:Qg_def)
apply (rule conjI)
apply (simp add:Qg_def inducedHOMTr0_1)
apply (rule ballI)+
apply (simp add:Qg_def set_rcs_def, (erule bexE)+)
apply simp
apply (frule gker_normal[of "F" "G" "f"], assumption+)
apply (simp add:Group.c_top_welldef [THEN sym, of "F" "gker⇘F,G⇙ f"])
apply (frule_tac a = a and b = aa in Group.mult_closed[of "F"], assumption+)
apply (simp add:inducedHOMTr0)
apply (simp add:gHom)
done
lemma induced_ghom_ginjec: "⟦Group F; Group G; f ∈ gHom F G ⟧ ⟹
ginj⇘(F/(gker⇘F,G⇙ f)),G⇙ (f¨⇘F,G⇙)"
apply (simp add:ginjec_def)
apply (simp add:inducedHom)
apply (simp add:inj_on_def)
apply (rule ballI)+
apply (simp add:Qg_def)
apply (simp add:set_rcs_def)
apply ((erule bexE)+, rule impI, simp)
apply (simp add:inducedHOMTr0)
apply (simp add: gkernTr11[THEN sym])
done
lemma inducedhomgsurjec:"⟦Group F; Group G; gsurj⇘F,G⇙ f⟧ ⟹
gsurj⇘(F/(gker⇘F,G⇙ f)),G⇙ (f¨⇘F,G⇙)"
apply (simp add:gsurjec_def)
apply (simp add:inducedHom)
apply (erule conjE)
apply (frule gHom_func[of "F" "G" "f"], assumption+)
apply (rule surj_to_test)
apply (simp add:Qg_def)
apply (frule inducedHOMTr0_2[of "F" "G" "f"], assumption+)
apply (simp add:surj_to_def[of "f" "carrier F" "carrier G"])
apply (rule ballI)
apply (simp add:surj_to_def[of "f" "carrier F" "carrier G"],
frule sym, thin_tac "f ` carrier F = carrier G", simp,
thin_tac "carrier G = f ` carrier F")
apply (simp add:image_def, erule bexE, simp,
thin_tac "b = f x")
apply (simp add:Qg_def)
apply (frule_tac a = x in inducedHOMTr0[of "F" "G" "f"], assumption+)
apply (frule gkernTr7[of "F" "G" "f"], assumption+)
apply (frule_tac a = x in Group.rcs_in_set_rcs[of "F" "gker⇘F,G⇙ f"],
assumption+)
apply blast
done
lemma homomtr: "⟦Group F; Group G; f ∈ gHom F G⟧ ⟹
(f¨⇘F,G⇙) ∈ gHom (F / (gker⇘F,G⇙ f)) (Img⇘F,G⇙ f)"
apply (simp add:gHom_def [of "F / (gker⇘F,G⇙ f)" _])
apply (rule conjI)
apply (simp add:induced_ghom_def extensional_def)
apply (rule allI, (rule impI)+, simp add:Qg_def)
apply (rule conjI)
apply (rule Pi_I)
apply (simp add:Gimage_def Qg_def Gp_def, simp add:set_rcs_def, erule bexE)
apply simp
apply (simp add:inducedHOMTr0)
apply (rule ballI)+
apply (simp add:Qg_def set_rcs_def, (erule bexE)+, simp)
apply (frule gker_normal[of "F" "G" "f"], assumption+)
apply (simp add:Group.c_top_welldef[THEN sym, of "F" "gker⇘F,G⇙ f"])
apply (frule_tac a = a and b = aa in Group.mult_closed[of "F"], assumption+)
apply (simp add:inducedHOMTr0)
apply (simp add:Gimage_def)
apply (subst Group.Gp_mult_induced[of "G" "f ` carrier F"], assumption+)
apply (simp add:sg_gimg)
apply (simp add:image_def, blast)
apply (simp add:image_def, blast)
apply (simp add:gHom)
done
lemma homom2img: "⟦Group F; Group G; f ∈ gHom F G ⟧ ⟹
(f¨⇘F,(Img⇘F,G⇙ f)⇙) ∈ gHom (F / (gker⇘F,G⇙ f)) (Img⇘F,G⇙ f)"
apply (frule hom_to_Img[of "F" "G" "f"], assumption+)
apply (frule inducedHom[of "F" "Img⇘F,G⇙ f" "f"])
apply (simp add:Group_Img) apply assumption
apply (simp add:gker_hom_to_img[of "F" "G" "f"])
done
lemma homom2img1:"⟦Group F; Group G; f ∈ gHom F G; X ∈ set_rcs F (gker⇘F,G⇙ f)⟧
⟹ (f¨⇘F,(Img⇘F,G⇙ f)⇙) X = (f¨⇘F,G⇙) X"
apply (frule gker_hom_to_img [of "F" "G" "f"], assumption+)
apply (simp add:induced_ghom_def)
done
subsection "Homomorphism therems"
definition
iota :: "('a, 'm) Group_scheme ⇒ ('a ⇒ 'a)"
("(ι⇘_⇙)" [1000]999) where
"ι⇘F⇙ = (λx ∈ carrier F. x)"
lemma iotahomTr0:"⟦Group G; G » H; h ∈ H ⟧ ⟹ (ι⇘(Gp G H)⇙) h = h"
apply (simp add:iota_def)
apply (simp add:Gp_def)
done
lemma iotahom:"⟦Group G; G » H; G ▹ N⟧ ⟹
ι⇘(Gp G H)⇙ ∈ gHom (Gp G H) (Gp G (H ⋄⇘G⇙ N))"
apply (simp add:gHom_def)
apply (rule conjI)
apply (simp add:iota_def extensional_def)
apply (rule conjI)
apply (simp add:Pi_def restrict_def iota_def)
apply (rule allI, rule impI)
apply (simp add:Gp_def)
apply (frule Group.nsg_sg[of "G" "N"], assumption+)
apply (frule Group.l_sub_smult[of "G" "H" "N"], assumption+,
simp add: subsetD)
apply (rule ballI)+
apply (simp add:iota_def, simp add:Group.Gp_carrier)
apply (frule Group.smult_sg_nsg[of "G" "H" "N"], assumption+,
frule Group.l_sub_smult[of "G" "H" "N"], assumption+,
simp add:Group.nsg_sg,
frule_tac c = x in subsetD[of "H" "H ⋄⇘G⇙ N"], assumption+,
frule_tac c = y in subsetD[of "H" "H ⋄⇘G⇙ N"], assumption+)
apply (simp add:Group.Gp_mult_induced[of "G"])
apply (simp add:Group.sg_mult_closed)
done
lemma iotaTr0: "⟦Group G; G » H; G ▹ N⟧ ⟹
ginj⇘(Gp G H),(Gp G (H ⋄⇘G⇙ N))⇙ (ι⇘(Gp G H)⇙)"
apply (simp add:ginjec_def)
apply (simp add:iotahom)
apply (simp add:inj_on_def iota_def Gp_def)
done
theorem homomthm1:"⟦Group F; Group G; f ∈ gHom F G ⟧ ⟹
gbij⇘(F/ (gkernel F G f)), (Gimage F G f)⇙ (f¨⇘F, (Gimage F G f)⇙)"
apply (frule homom2img [of "F" "G" "f"], assumption+)
apply (simp add:gbijec_def)
apply (frule hom_to_Img [of "F" "G" "f"], assumption+)
apply (frule Group_coim[of "F" "G" "f"], assumption+,
frule gHom_func[of "F / (gker⇘F,G⇙ f)" "Img⇘F,G⇙ f"
"f¨⇘F,Img⇘F,G⇙ f⇙"], simp add:Group_Img, assumption)
apply (rule conjI)
apply (simp add:gsurjec_def,
rule surj_to_test[of "f¨⇘F,Img⇘F,G⇙ f⇙"
"carrier (F / gker⇘F,G⇙ f)" "carrier (Img⇘F,G⇙ f)"], assumption+,
rule ballI)
apply (thin_tac "f¨⇘F,Img⇘F,G⇙ f⇙ ∈ gHom (F / gker⇘F,G⇙ f)
(Img⇘F,G⇙ f)")
apply (simp add:Img_carrier, simp add:image_def, erule bexE, simp,
simp add:Qg_def,
frule gkernTr7[of "F" "G" "f"], assumption+)
apply (frule_tac a = x in Group.rcs_in_set_rcs[of "F" "gker⇘F,G⇙ f"],
assumption+)
apply (simp add:homom2img1)
apply (frule_tac a = x in inducedHOMTr0[of "F" "G" "f"], assumption+)
apply blast
apply (frule induced_ghom_ginjec[of "F" "G" "f"], assumption+)
apply (simp add:ginjec_def)
apply (frule conjunct2)
apply (thin_tac "f¨⇘F,G⇙ ∈ gHom (F / gker⇘F,G⇙ f) G ∧
inj_on (f¨⇘F,G⇙) (carrier (F / gker⇘F,G⇙ f))")
apply (simp add:inj_on_def)
apply ((rule ballI)+, rule impI)
apply (simp add:Qg_def, fold Qg_def)
apply (simp add:homom2img1)
done
lemma isomTr0 [simp]:"Group F ⟹ F ≅ F"
by (frule IdTr2 [of "F"], simp add:isomorphic_def,
blast)
lemma isomTr1:"⟦Group F; Group G; F ≅ G ⟧ ⟹ G ≅ F"
apply (simp add:isomorphic_def, erule exE)
apply (frule_tac f = f in inv_gbijec_gbijec[of "F" "G"], assumption+)
apply blast
done
lemma isomTr2:"⟦Group F; Group G; Group H; F ≅ G; G ≅ H ⟧ ⟹ F ≅ H"
apply (simp add:isomorphic_def)
apply (erule exE)+
apply (simp add:gbijec_def)
apply (erule conjE)+
apply (frule gHom_comp_gsurjec [of "F" "G" "H" _ _], assumption+)
apply (frule gHom_comp_ginjec [of "F" "G" "H" _ _], assumption+)
apply blast
done
lemma gisom1: "⟦Group F; Group G; f ∈ gHom F G ⟧ ⟹
(F/ (gker⇘F,G⇙ f)) ≅ (Img⇘F,G⇙ f)"
apply (simp add:isomorphic_def)
apply (frule homomthm1 [of "F" "G" "f"], assumption+)
apply blast
done
lemma homomth2Tr0: "⟦Group F; Group G; f ∈ gHom F G; G ▹ N⟧ ⟹
F ▹ (iim F G f N)"
apply (frule Group.cond_nsg[of "F" "iim F G f N"],
frule Group.nsg_sg[of "G" "N"], assumption+,
simp add:ghomTr4[of "F" "G" "f" "N"])
apply ((rule ballI)+,
simp add:iim_def, erule conjE,
frule_tac a = a in Group.i_closed[of "F"], assumption+,
frule_tac a = a and b = h in Group.mult_closed[of "F"], assumption+)
apply (simp add:gHom ghom_inv_inv Group.mult_closed)
apply (frule_tac x = a in gHom_mem[of "F" "G" "f"], assumption+,
simp add:Group.nsgPr1_1,
assumption)
done
lemma kern_comp_gHom:"⟦Group F; Group G; gsurj⇘F,G⇙ f; G ▹ N⟧ ⟹
gker⇘F, (G/N)⇙ ((Pj G N) ∘⇘F⇙ f) = iim F G f N"
apply (simp add:gkernel_def iim_def)
apply (simp add:Group.Qg_one[of "G" "N"] cmpghom_def compose_def)
apply (rule equalityI)
apply (rule subsetI, simp, erule conjE, simp)
apply (simp add:gsurjec_def, frule conjunct1, fold gsurjec_def)
apply (frule_tac x = x in gHom_mem[of "F" "G" "f"], assumption+)
apply (simp add:Group.Pj_mem[of "G" "N"])
apply (frule Group.nsg_sg[of "G" "N"], assumption+)
apply (frule_tac a = "f x" in Group.a_in_rcs[of "G" "N"], assumption+)
apply simp
apply (rule subsetI)
apply (simp, erule conjE)
apply (frule Group.nsg_sg[of "G" "N"], assumption,
frule_tac h = "f x" in Group.sg_subset_elem[of "G" "N"], assumption+)
apply (simp add:Group.Pj_mem[of "G" "N"])
apply (simp add:Group.rcs_fixed2[of "G" "N"])
done
lemma QgrpUnit_1:"⟦Group G; Ugp E; G ▹ H; (G / H) ≅ E ⟧ ⟹ carrier G = H"
apply (simp add:isomorphic_def, erule exE)
apply (frule Group.Group_Qg[of "G" "H"], assumption+,
simp add:gbijec_def, erule conjE)
apply (frule_tac f = f in gkern2[of "G / H" "E"],
simp add:Ugp_def, simp add:gsurjec_def, assumption,
simp add:gsurjec_def, frule conjunct1, fold gsurjec_def,
frule_tac f = f in gkern1[of "G/H" "E"], assumption+)
apply (simp, thin_tac "gker⇘(G / H),E⇙ f = {𝟭⇘G / H⇙}",
thin_tac "gsurj⇘(G / H),E⇙ f", thin_tac "ginj⇘(G / H),E⇙ f",
thin_tac "Group (G / H)", thin_tac "f ∈ gHom (G / H) E",
simp add:Group.Qg_carrier)
apply (rule contrapos_pp, simp+,
frule Group.nsg_sg[of "G" "H"], assumption+,
frule Group.sg_subset[of "G" "H"], assumption+,
frule sets_not_eq[of "carrier G" "H"], assumption, erule bexE,
frule_tac a = a in Group.rcs_in_set_rcs[of "G" "H"], assumption+,
simp)
apply (thin_tac "set_rcs G H = {𝟭⇘G / H⇙}", simp add:Qg_def,
frule_tac a = a in Group.a_in_rcs[of "G" "H"], assumption+,
simp)
done
lemma QgrpUnit_2:"⟦Group G; Ugp E; G ▹ H; carrier G = H⟧ ⟹ (G/H) ≅ E"
apply (frule Group.Group_Qg [of "G" "H"], assumption+)
apply (simp add:Group.Qg_unit_group[THEN sym, of "G" "H"])
apply (simp add:Ugp_def)
apply (frule Group.Qg_carrier[of "G" "H"], simp)
apply (thin_tac "set_rcs G H = {H}")
apply (frule Group.Qg_one[of "G" "H"], assumption+, erule conjE)
apply (rule Ugps_isomorphic[of "G / H" "E"])
apply (simp add:Ugp_def)+
done
lemma QgrpUnit_3:"⟦Group G; Ugp E; G » H; G » H1; (Gp G H) ▹ H1;
((Gp G H) / H1) ≅ E ⟧ ⟹ H = H1"
apply (frule Group.Group_Gp[of "G" "H"], assumption+)
apply (frule QgrpUnit_1 [of "Gp G H" "E" "H1"], assumption+)
apply (simp add:Group.Gp_carrier)
done
lemma QgrpUnit_4:"⟦Group G; Ugp E; G » H; G » H1; (Gp G H) ▹ H1;
¬ ((Gp G H) / H1) ≅ E ⟧ ⟹ H ≠ H1"
apply (frule Group.Group_Gp[of "G" "H"], assumption+)
apply (rule contrapos_pp, simp) apply simp
apply (frule QgrpUnit_2 [of "Gp G H1" "E" "H1"], assumption+)
apply (simp add:Group.Gp_carrier)
apply simp
done
definition
Qmp :: "[('a, 'm) Group_scheme, 'a set, 'a set] ⇒ ('a set ⇒ 'a set)" where
"Qmp G H N = (λX∈ set_rcs G H. {z. ∃ x ∈ X. ∃ y ∈ N. (y ⋅⇘G⇙ x = z)})"
abbreviation
QP :: "[_, 'a set, 'a set] ⇒ ('a set ⇒ 'a set)"
("(3Qm⇘_ _,_⇙)" [82,82,83]82) where
"Qm⇘G H,N⇙ == Qmp G H N"
lemma (in Group) QmpTr0:"⟦G » H; G » N; H ⊆ N ; a ∈ carrier G⟧ ⟹
Qmp G H N (H ∙ a) = (N ∙ a)"
apply (frule_tac a = a in rcs_in_set_rcs[of "H"], assumption,
simp add:Qmp_def)
apply (rule equalityI)
apply (rule subsetI, simp, (erule bexE)+,
thin_tac "H ∙ a ∈ set_rcs G H",
simp add:rcs_def, erule bexE)
apply (frule sym, thin_tac "y ⋅ xa = x", frule sym, thin_tac "h ⋅ a = xa",
simp,
frule_tac h = y in sg_subset_elem[of "N"], assumption+,
frule_tac h = h in sg_subset_elem[of "H"], assumption+,
frule_tac c = h in subsetD[of "H" "N"], assumption+,
frule_tac x = y and y = h in sg_mult_closed[of "N"], assumption+,
subst tassoc[THEN sym], assumption+, blast)
apply (rule subsetI,
thin_tac "H ∙ a ∈ set_rcs G H",
simp add:rcs_def, erule bexE,
frule sg_unit_closed[of "H"],
frule l_unit[of "a"], blast)
done
lemma (in Group) QmpTr1:"⟦G » H; G » N; H ⊆ N; a ∈ carrier G; b ∈ carrier G;
H ∙ a = H ∙ b⟧ ⟹ N ∙ a = N ∙ b"
apply (simp add:rcs_eq[THEN sym, of "H" "a" "b"],
frule subsetD[of "H" "N" "b ⋅ ρ a"], assumption+,
simp add:rcs_eq[of "N" "a" "b"])
done
lemma (in Group) QmpTr2:"⟦G » H; G » N; H ⊆ N ; X ∈ carrier (G/H)⟧
⟹ (Qmp G H N) X ∈ carrier (G/N)"
by (simp add:Qg_carrier[of "H"] set_rcs_def, erule bexE, simp add: QmpTr0,
simp add:Qg_carrier rcs_in_set_rcs)
lemma (in Group) QmpTr2_1:"⟦G » H; G » N; H ⊆ N ⟧ ⟹
Qmp G H N ∈ carrier (G/H) → carrier (G/N)"
by (simp add:QmpTr2 [of "H" "N"])
lemma (in Group) QmpTr3:"⟦G ▹ H; G ▹ N; H ⊆ N; X ∈ carrier (G/H);
Y ∈ carrier (G/H)⟧ ⟹
(Qmp G H N) (c_top G H X Y) = c_top G N ((Qmp G H N) X) ((Qmp G H N) Y)"
apply (frule nsg_sg[of "H"], frule nsg_sg[of "N"])
apply (simp add:Qg_carrier)
apply (simp add:set_rcs_def, (erule bexE)+, simp)
apply (subst c_top_welldef [THEN sym], assumption+)
apply (frule_tac a = a and b = aa in mult_closed, assumption+)
apply (simp add:QmpTr0)+
apply (subst c_top_welldef [THEN sym], assumption+)
apply simp
done
lemma (in Group) Gp_s_mult_nsg:"⟦G ▹ H; G ▹ N; H ⊆ N; a ∈ N ⟧ ⟹
H ∙⇘(Gp G N)⇙ a = H ∙ a"
by (frule nsg_sg[of "H"], frule nsg_sg[of "N"],
rule Gp_rcs[of "H" "N" "a"], assumption+)
lemma (in Group) QmpTr5:"⟦G ▹ H; G ▹ N; H ⊆ N; X ∈ carrier (G/H);
Y ∈ carrier (G/H) ⟧ ⟹ (Qmp G H N) ( X ⋅⇘(G / H)⇙ Y) =
((Qmp G H N) X) ⋅⇘(G / N)⇙ ((Qmp G H N) Y)"
by (frule nsg_sg[of "H"], frule nsg_sg[of "N"],
(subst Qg_def)+, simp,
simp add:QmpTr3 [of "H" "N" "X" "Y"])
lemma (in Group) QmpTr:"⟦G ▹ H; G ▹ N; H ⊆ N ⟧ ⟹
(Qm⇘G H,N⇙) ∈ gHom (G / H) (G / N)"
apply (simp add:gHom_def)
apply (rule conjI)
apply (simp add:Qmp_def extensional_def)
apply (rule allI, (rule impI)+, simp add:Qg_def)
apply (rule conjI)
apply (rule QmpTr2_1[of "H" "N"])
apply (simp add:nsg_sg)+
apply (rule ballI)+
apply (simp add:QmpTr5)
done
lemma (in Group) Qmpgsurjec:"⟦G ▹ H; G ▹ N; H ⊆ N ⟧ ⟹
gsurj⇘(G / H),(G / N)⇙ (Qm⇘G H,N⇙)"
apply (frule nsg_sg[of "H"], frule nsg_sg[of "N"])
apply (frule QmpTr [of "H" "N"], assumption+)
apply (simp add:gsurjec_def)
apply (rule surj_to_test)
apply (simp add:QmpTr2_1)
apply (rule ballI)
apply (simp add:Qg_carrier,
simp add:set_rcs_def[of "G" "N"], erule bexE,
frule_tac a = a in QmpTr0[of "H" "N"], assumption+, simp)
apply (frule_tac a = a in rcs_in_set_rcs[of "H"], assumption+,
blast)
done
lemma (in Group) gkerQmp:"⟦G ▹ H; G ▹ N; H ⊆ N ⟧ ⟹
gker⇘(G / H),(G / N)⇙ (Qm⇘G H,N⇙) = carrier ((Gp G N)/ H)"
apply (frule nsg_sg[of "H"], frule nsg_sg[of "N"])
apply (simp add:gkernel_def)
apply (rule equalityI)
apply (rule subsetI,
simp add:Qg_carrier set_rcs_def, erule conjE, erule bexE, simp,
simp add:Qg_one)
apply (simp add:QmpTr0,
frule_tac a = a in a_in_rcs[of "N"], assumption+, simp,
frule Group_Gp[of "N"])
apply (simp add:Group.Qg_carrier, simp add:set_rcs_def, simp add:Gp_carrier,
simp add:Gp_rcs, blast)
apply (rule subsetI)
apply (frule Group_Gp[of "N"],
simp add:Group.Qg_carrier Qg_one set_rcs_def, erule bexE,
simp add:Qg_carrier, thin_tac "x = H ∙⇘♮N⇙ a")
apply (simp add:Gp_carrier, simp add:Gp_rcs,
frule_tac h = a in sg_subset_elem[of "N"], assumption,
simp add:rcs_in_set_rcs, simp add:QmpTr0,
simp add:rcs_fixed2[of "N"])
done
theorem (in Group) homom2:"⟦G ▹ H; G ▹ N; H ⊆ N⟧ ⟹
gbij⇘((G/H)/(carrier ((Gp G N)/H))),(G/N)⇙ ((Qm⇘G H,N⇙)¨⇘(G/H),(G/N)⇙)"
apply (frule QmpTr [of "H" "N"], assumption+)
apply (simp add:gbijec_def)
apply (rule conjI)
apply (frule Group_Qg[of "H"], frule Group_Qg[of "N"])
apply (frule inducedHom [of "G/H" "G/N" " Qmp G H N"], assumption+)
apply (frule Qmpgsurjec [of "H" "N"], assumption+)
apply (frule inducedhomgsurjec [of "G/H" "G/N" "Qm⇘G H,N⇙"], assumption+)
apply (simp add:gkerQmp [of "H" "N"])
apply (frule QmpTr [of "H" "N"], assumption+)
apply (frule Group_Qg[of "H"], frule Group_Qg[of "N"])
apply (frule induced_ghom_ginjec [of "G/H" "G/N" "Qmp G H N"], assumption+)
apply (simp add:gkerQmp [of "H" "N"])
done
section "Isomorphims"
theorem (in Group) isom2:"⟦G ▹ H; G ▹ N; H ⊆ N⟧ ⟹
((G/H)/(carrier ((Gp G N)/H))) ≅ (G/N)"
apply (frule homom2 [of "H" "N"], assumption+)
apply (simp add:isomorphic_def)
apply blast
done
theorem homom3:"⟦ Group F; Group G; G ▹ N; gsurj⇘F,G⇙ f;
N1 = (iim F G f) N ⟧ ⟹ (F / N1) ≅ (G / N)"
apply (frule Group.Pj_gsurjec [of "G" "N"], assumption+)
apply (frule Group.Group_Qg[of "G" "N"], assumption)
apply (frule gHom_comp_gsurjec [of "F" "G" "G / N" "f" "Pj G N"], assumption+)
apply (frule inducedhomgsurjec [of "F" "G / N" "(Pj G N) ∘⇘F⇙ f"], assumption+)
apply (frule induced_ghom_ginjec [of "F" "G / N" "(Pj G N) ∘⇘F⇙ f"], assumption+)
apply (simp add:gsurjec_def [of "F" "G / N" "(Pj G N) ∘⇘F⇙ f"])
apply (simp add:kern_comp_gHom[of "F" "G" "f" "N"])
apply (frule sym, thin_tac "N1 = iim F G f N", simp)
apply (simp add:isomorphic_def gbijec_def, blast)
done
lemma (in Group) homom3Tr1:"⟦G » H; G ▹ N⟧ ⟹ H ∩ N =
gker⇘(Gp G H),((Gp G (H ⋄⇘G⇙ N))/N)⇙
((Pj (Gp G (H ⋄⇘G⇙ N)) N) ∘⇘(Gp G H)⇙ (ι⇘(Gp G H)⇙))"
apply (simp add:gkernel_def, frule nsg_sg,
simp add:Gp_carrier[of "H"],
frule smult_sg_nsg, assumption+,
frule Gp_smult_nsg[of "H" "N"], assumption,
frule Group_Gp [of "H ⋄⇘G⇙ N"])
apply (simp add:Group.Qg_one[of "Gp G (H ⋄⇘G⇙ N)" "N"],
simp add:iota_def Gp_carrier, simp add:cmpghom_def compose_def,
simp add:Gp_carrier)
apply (rule equalityI)
apply (rule subsetI, simp, erule conjE)
apply (frule_tac h = x in sg_subset_elem[of "H"], assumption+,
subst Group.Pj_mem, assumption+,
simp add:Gp_carrier,
frule l_sub_smult[of "H" "N"], assumption+,
rule_tac c = x in subsetD[of "H" "H ⋄⇘G⇙ N"], assumption+)
apply (frule r_sub_smult[of "H" "N"], assumption+,
frule_tac c = x in subsetD[of "N" "H ⋄⇘G⇙ N"], assumption+,
simp add:Gp_rcs[of "N" "H ⋄⇘G⇙ N"])
apply (simp add:rcs_fixed2)
apply (rule subsetI, simp, erule conjE, simp)
apply (frule_tac h = x in sg_subset_elem[of "H"], assumption+)
apply (frule l_sub_smult[of "H" "N"], assumption+,
frule r_sub_smult[of "H" "N"], assumption+)
apply (frule_tac x = x in Group.Pj_mem[of "Gp G (H ⋄⇘G⇙ N)" "N"], assumption+)
apply (simp add:Gp_carrier)
apply (
rule_tac c = x in subsetD[of "H" "H ⋄⇘G⇙ N"], assumption+)
apply (frule_tac c = x in subsetD[of "H" "H ⋄⇘G⇙ N"], assumption+)
apply (simp only:Group.Gp_rcs)
apply (simp only:Gp_rcs[of "N" "H ⋄⇘G⇙ N"])
apply (frule_tac a = x in a_in_rcs[of "N"], assumption+, simp)
done
subsection "An automorphism groups"
definition
automg :: "_ ⇒
⦇ carrier :: ('a ⇒ 'a) set, top :: ['a ⇒ 'a,'a ⇒ 'a] ⇒ ('a ⇒ 'a),
iop :: ('a ⇒ 'a) ⇒ ('a ⇒ 'a), one :: ('a ⇒ 'a)⦈" where
"automg G = ⦇ carrier = {f. gbij⇘G,G⇙ f},
top = λg∈{f. gbij⇘G,G⇙ f}. λf∈{f. gbij⇘G,G⇙ f}. ( g ∘⇘G⇙ f),
iop = λf∈{f. gbij⇘G,G⇙ f}. (Ifn G G f), one = I⇘G⇙ ⦈"
lemma automgroupTr1:"⟦Group G; gbij⇘G,G⇙ f; gbij⇘G,G⇙ g; gbij⇘G,G⇙ h⟧ ⟹
(h ∘⇘G⇙ g) ∘⇘G⇙ f = h ∘⇘G⇙ (g ∘⇘G⇙ f)"
apply (simp add:cmpghom_def,
unfold gbijec_def)
apply (frule conjunct1, rotate_tac 2, frule conjunct1,
rotate_tac 1, frule conjunct1, fold gbijec_def)
apply (simp add:gsurjec_def, (erule conjE)+,
frule gHom_func[of "G" "G" "f"], assumption+,
frule gHom_func[of "G" "G" "g"], assumption+,
frule gHom_func[of "G" "G" "h"], assumption+)
apply (simp add:compose_assoc)
done
lemma automgroup:"Group G ⟹ Group (automg G)"
apply (unfold Group_def [of "automg G"])
apply(auto simp: automg_def Pi_def gbij_comp_bij automgroupTr1 IdTr2 Id_l_unit l_inv_gHom inv_gbijec_gbijec)
done
subsection "Complete system of representatives"
definition
gcsrp :: "_ ⇒ 'a set ⇒ 'a set ⇒ bool" where
"gcsrp G H S == ∃f. (bij_to f (set_rcs G H) S)"
definition
gcsrp_map::"_ ⇒ 'a set ⇒ 'a set ⇒ 'a" where
"gcsrp_map G H == λX∈(set_rcs G H). SOME x. x ∈ X"
lemma (in Group) gcsrp_func:"G » H ⟹ gcsrp_map G H ∈ set_rcs G H → UNIV"
by (simp add:set_rcs_def)
lemma (in Group) gcsrp_func1:"G » H ⟹
gcsrp_map G H ∈ set_rcs G H → (gcsrp_map G H) ` (set_rcs G H)"
by (simp add:set_rcs_def)
lemma (in Group) gcsrp_map_bij:"G » H ⟹
bij_to (gcsrp_map G H) (set_rcs G H) ((gcsrp_map G H) `(set_rcs G H))"
apply (simp add:bij_to_def, rule conjI)
apply (rule surj_to_test)
apply (rule Pi_I)
apply (simp add:image_def, blast)
apply (rule ballI, simp add:image_def, erule bexE, simp, blast)
apply (simp add:inj_on_def)
apply ((rule ballI)+, rule impI)
apply (simp add:gcsrp_map_def)
apply (frule_tac X = x in rcs_nonempty, assumption+,
frule_tac X = y in rcs_nonempty, assumption+)
apply (frule_tac A = x in nonempty_some,
frule_tac A = y in nonempty_some, simp)
apply (rule_tac X = x and Y = y in rcs_meet[of "H"], assumption+)
apply blast
done
lemma (in Group) image_gcsrp:"G » H ⟹
gcsrp G H ((gcsrp_map G H) `(set_rcs G H))"
apply (simp add:gcsrp_def)
apply (frule gcsrp_map_bij[of "H"], blast)
done
lemma (in Group) gcsrp_exists:"G » H ⟹ ∃S. gcsrp G H S"
by (frule image_gcsrp[of "H"], blast)
definition
gcsrp_top :: "[_ , 'a set] ⇒ 'a ⇒ 'a ⇒ 'a" where
"gcsrp_top G H == λx ∈ ((gcsrp_map G H) `(set_rcs G H)).
λy ∈ ((gcsrp_map G H) `(set_rcs G H)).
gcsrp_map G H
(c_top G H
((invfun (set_rcs G H) ((gcsrp_map G H) `(set_rcs G H)) (gcsrp_map G H)) x)
((invfun (set_rcs G H) ((gcsrp_map G H) `(set_rcs G H)) (gcsrp_map G H)) y))"
definition
gcsrp_iop::"[_ , 'a set] ⇒ 'a ⇒ 'a" where
"gcsrp_iop G H = (λx ∈ ((gcsrp_map G H) `(set_rcs G H)).
gcsrp_map G H
(c_iop G H
((invfun (set_rcs G H) ((gcsrp_map G H) `(set_rcs G H)) (gcsrp_map G H)) x)))"
definition
gcsrp_one::"[_ , 'a set] ⇒ 'a" where
"gcsrp_one G H = gcsrp_map G H H"
definition
Gcsrp :: "_ ⇒ 'a set ⇒ 'a Group" where
"Gcsrp G N = ⦇carrier = (gcsrp_map G N) `(set_rcs G N),
top = gcsrp_top G N, iop = gcsrp_iop G N, one = gcsrp_one G N⦈"
lemma (in Group) gcsrp_top_closed:"⟦Group G; G ▹ N;
a ∈ ((gcsrp_map G N) `(set_rcs G N)); b ∈ ((gcsrp_map G N) `(set_rcs G N))⟧
⟹ gcsrp_top G N a b ∈ (gcsrp_map G N) `(set_rcs G N)"
apply (frule nsg_sg[of "N"],
frule gcsrp_func1[of "N"],
frule gcsrp_map_bij[of "N"])
apply (frule invfun_mem1[of "gcsrp_map G N" "set_rcs G N"
"(gcsrp_map G N) ` (set_rcs G N)" "a"], assumption+,
frule invfun_mem1[of "gcsrp_map G N" "set_rcs G N"
"(gcsrp_map G N) ` (set_rcs G N)" "b"], assumption+)
apply (frule Qg_top_closed[of "N" "invfun (set_rcs G N)
(gcsrp_map G N ` set_rcs G N) (gcsrp_map G N) a"
"invfun (set_rcs G N)
(gcsrp_map G N ` set_rcs G N) (gcsrp_map G N) b"], assumption+)
apply (simp add:gcsrp_top_def)
done
lemma (in Group) gcsrp_tassoc:"⟦Group G; G ▹ N;
a ∈ ((gcsrp_map G N) `(set_rcs G N));
b ∈ ((gcsrp_map G N) `(set_rcs G N));
c ∈ ((gcsrp_map G N) `(set_rcs G N))⟧ ⟹
(gcsrp_top G N (gcsrp_top G N a b) c) =
(gcsrp_top G N a (gcsrp_top G N b c))"
apply (frule nsg_sg[of "N"],
frule gcsrp_func1[of "N"],
frule gcsrp_map_bij[of "N"])
apply (frule invfun_mem1[of "gcsrp_map G N" "set_rcs G N"
"(gcsrp_map G N) ` (set_rcs G N)" "a"], assumption+,
frule invfun_mem1[of "gcsrp_map G N" "set_rcs G N"
"(gcsrp_map G N) ` (set_rcs G N)" "b"], assumption+,
frule invfun_mem1[of "gcsrp_map G N" "set_rcs G N"
"(gcsrp_map G N) ` (set_rcs G N)" "c"], assumption+)
apply (frule Qg_top_closed[of "N" "invfun (set_rcs G N)
(gcsrp_map G N ` set_rcs G N) (gcsrp_map G N) a"
"invfun (set_rcs G N)
(gcsrp_map G N ` set_rcs G N) (gcsrp_map G N) b"], assumption+,
frule Qg_top_closed[of "N" "invfun (set_rcs G N)
(gcsrp_map G N ` set_rcs G N) (gcsrp_map G N) b"
"invfun (set_rcs G N)
(gcsrp_map G N ` set_rcs G N) (gcsrp_map G N) c"], assumption+)
apply (simp add:gcsrp_top_def)
apply (simp add:invfun_l1)
apply (simp add:Qg_tassoc[of "N"])
done
lemma (in Group) gcsrp_l_one:"⟦Group G; G ▹ N;
a ∈ ((gcsrp_map G N) `(set_rcs G N))⟧ ⟹
(gcsrp_top G N (gcsrp_one G N) a) = a"
apply (frule nsg_sg[of "N"],
frule gcsrp_func1[of "N"],
frule gcsrp_map_bij[of "N"],
frule invfun_mem1[of "gcsrp_map G N" "set_rcs G N"
"(gcsrp_map G N) ` (set_rcs G N)" "a"], assumption+)
apply (simp add:gcsrp_top_def gcsrp_one_def)
apply (frule Qg_unit_closed[of "N"])
apply (simp add:Pi_def invfun_l1 Qg_unit invfun_r1)
done
lemma (in Group) gcsrp_l_i:"⟦G ▹ N; a ∈ ((gcsrp_map G N) `(set_rcs G N))⟧ ⟹
gcsrp_top G N (gcsrp_iop G N a) a = gcsrp_one G N"
apply (frule nsg_sg[of "N"],
frule gcsrp_func1[of "N"],
frule gcsrp_map_bij[of "N"],
frule invfun_mem1[of "gcsrp_map G N" "set_rcs G N"
"(gcsrp_map G N) ` (set_rcs G N)" "a"], assumption+)
apply (frule Qg_iop_closed[of "N" "invfun (set_rcs G N) (gcsrp_map G N `
set_rcs G N) (gcsrp_map G N) a"], assumption+)
apply (simp add:gcsrp_top_def gcsrp_one_def gcsrp_iop_def)
apply (simp add:invfun_l1 Qg_i)
done
lemma (in Group) gcsrp_i_closed:"⟦G ▹ N; a ∈ ((gcsrp_map G N) `(set_rcs G N))⟧
⟹ gcsrp_iop G N a ∈ ((gcsrp_map G N) `(set_rcs G N))"
apply (frule nsg_sg[of "N"],
frule gcsrp_func1[of "N"],
frule gcsrp_map_bij[of "N"],
frule invfun_mem1[of "gcsrp_map G N" "set_rcs G N"
"(gcsrp_map G N) ` (set_rcs G N)" "a"], assumption+)
apply (frule Qg_iop_closed[of "N" "invfun (set_rcs G N) (gcsrp_map G N `
set_rcs G N) (gcsrp_map G N) a"], assumption+)
apply (simp add:gcsrp_iop_def)
done
lemma (in Group) Group_Gcsrp:"G ▹ N ⟹ Group (Gcsrp G N)"
apply (simp add:Group_def)
apply (rule conjI)
apply (rule Pi_I)
apply (simp add:Gcsrp_def)
apply (rule Pi_I)
apply (rule_tac a = x and b = xa in gcsrp_top_closed[of "N"], rule Group_axioms, assumption+)
apply (rule conjI)
apply (rule allI, rule impI)+
apply (simp add:Gcsrp_def)
apply (rule_tac a = a and b = b and c = c in gcsrp_tassoc[of "N"], rule Group_axioms, assumption+)
apply (rule conjI)
apply (rule Pi_I)
apply (simp add:Gcsrp_def, rule gcsrp_i_closed[of "N"], assumption+)
apply (rule conjI)
apply (rule allI, rule impI)
apply (simp add:Gcsrp_def,
rule gcsrp_l_i[of "N"], assumption+)
apply (rule conjI)
apply (frule Qg_unit_closed[of "N"],
simp add:Gcsrp_def gcsrp_one_def)
apply (rule allI, rule impI)
apply (simp add:Gcsrp_def)
apply (rule gcsrp_l_one[of "N"], rule Group_axioms, assumption+)
done
lemma (in Group) gcsrp_map_gbijec:"G ▹ N ⟹
gbij⇘(G/N), (Gcsrp G N)⇙ (gcsrp_map G N)"
apply (simp add:gbijec_def gsurjec_def ginjec_def Qg_carrier Gcsrp_def)
apply (frule nsg_sg[of "N"],
frule gcsrp_map_bij[of "N"], simp add:bij_to_def)
apply (fold Gcsrp_def)
apply (simp add:gHom_def)
apply (rule conjI)
apply (simp add:Qg_carrier gcsrp_map_def)
apply (rule conjI)
apply (simp add:Qg_carrier Gcsrp_def)
apply (fold bij_to_def)
apply (rule ballI)+
apply (simp add:Qg_def Gcsrp_def gcsrp_top_def)
apply (frule gcsrp_func1[of "N"])
apply (simp add:invfun_l1[of "gcsrp_map G N" "set_rcs G N"
"gcsrp_map G N ` set_rcs G N"])
done
lemma (in Group) Qg_equiv_Gcsrp:"G ▹ N ⟹ (G / N) ≅ Gcsrp G N"
apply (simp add:isomorphic_def)
apply (frule gcsrp_map_gbijec[of "N"], blast)
done
section "Zassenhaus"
text‹we show ‹H → H N/N› is gsurjective›
lemma (in Group) homom4Tr1:"⟦G ▹ N; G » H⟧ ⟹ Group ((Gp G (H ⋄⇘G⇙ N)) / N)"
apply (frule Gp_smult_sg_nsg[of "H" "N"], assumption+)
apply (frule Gp_smult_nsg [of "H" "N"], assumption+)
apply (simp add:Group.Group_Qg)
done
lemma homom3Tr2:"⟦Group G; G » H; G ▹ N⟧ ⟹
gsurj⇘(Gp G H),((Gp G (H ⋄⇘G⇙ N))/N)⇙
((Pj (Gp G (H ⋄⇘G⇙ N)) N) ∘⇘(Gp G H)⇙ (ι⇘(Gp G H)⇙))"
apply (frule iotahom[of "G" "H" "N"], assumption+,
frule Group.Gp_smult_nsg[of "G" "H" "N"], assumption+,
frule Group.smult_sg_nsg[of "G" "H" "N"], assumption+,
frule Group.Gp_smult_sg_nsg[of "G" "H" "N"], assumption+,
frule Group.Pj_gsurjec [of "Gp G (H ⋄⇘G⇙ N)" "N"], assumption,
frule Group.Group_Gp[of "G" "H"], assumption+,
frule Group.Group_Qg[of "Gp G (H ⋄⇘G⇙ N)" "N"], assumption+,
frule gHomcomp[of "Gp G H" "Gp G (H ⋄⇘G⇙ N)" "(Gp G (H ⋄⇘G⇙ N)) / N"
"ι⇘(♮⇘G⇙H)⇙" "Pj (Gp G (H ⋄⇘G⇙ N)) N"], assumption+)
apply (simp add:gsurjec_def)
apply (subst gsurjec_def, simp)
apply (rule surj_to_test,
simp add:gHom_def)
apply (rule ballI)
apply (simp add:Group.Qg_carrier[of "Gp G (H ⋄⇘G⇙ N)" "N"],
simp add:set_rcs_def, erule bexE,
frule Group.nsg_sg[of "G" "N"], assumption,
frule Group.r_sub_smult[of "G" "H" "N"], assumption+,
simp add:Group.Gp_carrier)
apply (simp add:Group.Gp_rcs[of "G" "N" "H ⋄⇘G⇙ N"])
apply (thin_tac "ι⇘(♮⇘G⇙H)⇙ ∈ gHom (♮⇘G⇙H) (♮⇘G⇙(H ⋄⇘G⇙ N))",
thin_tac "gsurj⇘(Gp G (H ⋄⇘G⇙ N)),((♮⇘G⇙(H ⋄⇘G⇙ N)) / N)⇙ Pj (♮⇘G⇙(H ⋄⇘G⇙ N)) N",
thin_tac "Pj (♮⇘G⇙(H ⋄⇘G⇙ N)) N ∘⇘(♮⇘G⇙H)⇙ ι⇘(♮⇘G⇙H)⇙ ∈ gHom (♮⇘G⇙H) ((♮⇘G⇙(H ⋄⇘G⇙ N)) / N)")
apply (simp add:cmpghom_def compose_def,
simp add:Group.Gp_carrier iota_def,
frule Group.smult_commute_sg_nsg[of "G" "H" "N"], assumption+,
frule_tac a = a in eq_set_inc[of _ "H ⋄⇘G⇙ N" "N ⋄⇘G⇙ H"], assumption+,
thin_tac "H ⋄⇘G⇙ N = N ⋄⇘G⇙ H")
apply (simp add:s_top_def[of "G" "N" "H"], (erule bexE)+,
rotate_tac -1, frule sym, thin_tac "x ⋅⇘G⇙ y = a",
frule_tac h = y in Group.sg_subset_elem[of "G" "H"], assumption+,
simp add:Group.rcs_fixed1[THEN sym])
apply (frule Group.l_sub_smult[of "G" "H" "N"], assumption+,
frule_tac x1 = y in Group.Pj_mem[THEN sym, of "Gp G (H ⋄⇘G⇙ N)" "N"],
assumption+, simp add:Group.Gp_carrier, simp add: subsetD)
apply (frule_tac c = y in subsetD[of "H" "H ⋄⇘G⇙ N"], assumption+,
simp add:Group.Gp_rcs[of "G" "N" "H ⋄⇘G⇙ N"], blast)
done
theorem homom4:"⟦Group G; G ▹ N; G » H⟧ ⟹gbij⇘((Gp G H)/(H ∩ N)),((Gp G (H ⋄⇘G⇙ N)) / N)⇙ (((Pj (Gp G (H ⋄⇘G⇙ N)) N) ∘⇘(Gp G H)⇙ (ι⇘(Gp G H)⇙))¨⇘(Gp G H),((Gp G (H ⋄⇘G⇙ N)) / N)⇙)"
apply (frule homom3Tr2 [of "G" "H" "N"], assumption+)
apply (frule Group.Gp_smult_sg_nsg, assumption+)
apply (frule Group.homom4Tr1[of "G" "N" "H"], assumption+)
apply (frule Group.Group_Gp [of "G" "H"], assumption+)
apply (frule induced_ghom_ginjec [of "Gp G H" "(Gp G (H ⋄⇘G⇙ N)/N)" "(Pj (Gp G (H ⋄⇘G⇙ N)) N) ∘⇘(Gp G H)⇙ (ι⇘(Gp G H)⇙)"], assumption+)
apply (simp add:gsurjec_def)
apply (frule inducedhomgsurjec [of "Gp G H" "(Gp G (H ⋄⇘G⇙ N))/N" "(Pj (Gp G (H ⋄⇘G⇙ N)) N) ∘⇘(Gp G H)⇙ (ι⇘(Gp G H)⇙)"], assumption+)
apply (frule Group.homom3Tr1[of "G" "H" "N"], assumption+)
apply simp
apply (simp add:gbijec_def)
done
lemma (in Group) homom4_2:"⟦G ▹ N; G » H⟧ ⟹ Group ((Gp G H) / (H ∩ N))"
by (frule Group_Gp[of "H"],
frule inter_Gp_nsg[of "N" "H"], assumption,
rule Group.Group_Qg, assumption+)
lemma isom4:"⟦Group G; G ▹ N; G » H⟧ ⟹
((Gp G H)/(H ∩ N)) ≅ ((Gp G (N ⋄⇘G⇙ H)) / N)"
apply (frule homom4 [of "G" "N" "H"], assumption+,
frule Group.smult_sg_nsg[of "G" "H" "N"], assumption+,
frule Group.smult_commute_sg_nsg[of "G" "H" "N"], assumption+)
apply (simp add:isomorphic_def, blast)
done
lemma ZassenhausTr5:"⟦Group G; G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹
((Gp G (H ∩ K))/((H1 ∩ K) ⋄⇘G⇙ (H ∩ K1))) ≅
((Gp G (H1 ⋄⇘G⇙ (H ∩ K)))/(H1 ⋄⇘G⇙ (H ∩ K1)))"
apply (frule Group.ZassenhausTr2_1 [of "G" "H" "H1" "K"], assumption+,
frule Group.Group_Gp [of "G" "H1 ⋄⇘G⇙ (H ∩ K)"], assumption+,
frule Group.ZassenhausTr3 [of "G" "H" "H1" "K" "K1"], assumption+,
frule Group.inter_sgs [of "G" "H" "K"], assumption+,
frule Group.r_sub_smult[of "G" "H1" "H ∩ K"], assumption+,
frule Group.sg_sg[of "G" "H1 ⋄⇘G⇙ H ∩ K" "H ∩ K"], assumption+,
frule isom4 [of "Gp G (H1 ⋄⇘G⇙ H ∩ K)" "H1 ⋄⇘G⇙ H ∩ K1" "H ∩ K"],
assumption+)
apply (simp add:Int_commute[of "H ∩ K" "H1 ⋄⇘G⇙ H ∩ K1"])
apply (frule Group.Group_Gp[of "G" "H"], assumption,
frule Group.Group_Gp[of "G" "K"], assumption,
frule Group.nsg_sg[of "Gp G H" "H1"], assumption+,
frule Group.sg_subset[of "Gp G H" "H1"], assumption+,
frule Group.nsg_sg[of "Gp G K" "K1"], assumption+,
frule Group.sg_subset[of "Gp G K" "K1"], assumption+,
simp add:Group.Gp_carrier,
frule Group.inter_sgs[of "G" "H" "K1"], assumption+,
cut_tac subset_self[of "H"],
frule Int_mono[of "H" "H" "K1" "K"], assumption)
apply (simp add:Group.s_topTr6_1[of "G" "H1" "H ∩ K1" "H ∩ K"],
simp add:Int_assoc[THEN sym, of "H1" "H" "K"])
apply (simp add:Int_absorb2[of "H1" "H"],
simp add:Group.Gp_inherited[of "G" "H ∩ K" "H1 ⋄⇘G⇙ H ∩ K"])
apply (frule Group.s_top_mono[of "G" "H1" "H ∩ K" "H1" "H ∩ K1"],
frule Group.sg_subset[of "G" "H"], assumption+,
rule subset_trans[of "H1" "H" "carrier G"], assumption+)
apply (rule Group.sg_subset[of "G" "H ∩ K"], assumption+, simp,
simp,
(frule Group.ZassenhausTr2_1[of "G" "H" "H1" "K"], assumption+,
frule Group.subg_sg_sg[of "G" "H1 ⋄⇘G⇙ H ∩ K" "H1 ⋄⇘G⇙ H ∩ K1"],
assumption+, simp add:Group.nsg_sg))
apply (simp add:Group.s_top_induced[of "G" "H1 ⋄⇘G⇙ H ∩ K" "H1 ⋄⇘G⇙ H ∩ K1" "H ∩ K"],
simp add:Group.s_top_assoc[of "G" "H1" "H ∩ K1" "H ∩ K"],
cut_tac subset_self[of "H"],
frule Int_mono[of "H" "H" "K1" "K"], assumption)
apply (simp add:Group.K_absorb_HK[of "G" "H ∩ K1" "H ∩ K"])
apply (cut_tac subset_self[of "H1 ⋄⇘G⇙ H ∩ K"],
simp add:Group.Gp_inherited[of "G" "H1 ⋄⇘G⇙ H ∩ K" "H1 ⋄⇘G⇙ H ∩ K"])
done
lemma ZassenhausTr5_1:"⟦Group G; G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹ ((Gp G (K ∩ H))/((K1 ∩ H) ⋄⇘G⇙ (K ∩ H1))) ≅
((Gp G (K1 ⋄⇘G⇙ (K ∩ H)))/(K1 ⋄⇘G⇙ (K ∩ H1)))"
apply (simp add:ZassenhausTr5 [of "G" "K" "K1" "H" "H1"])
done
lemma ZassenhausTr5_2: "⟦Group G; G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹
((Gp G (H ∩ K))/((H1 ∩ K) ⋄⇘G⇙ (H ∩ K1))) =
((Gp G (K ∩ H))/((K1 ∩ H) ⋄⇘G⇙ (K ∩ H1)))"
by (simp add:Group.ZassenhausTr3_3[of "G" "H" "H1" "K" "K1"],
simp add:Int_commute[of "H" "K"])
lemma ZassenhausTr6_1:"⟦Group G; G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹ Group (Gp G (H ∩ K) / (H1 ∩ K ⋄⇘G⇙ H ∩ K1))"
apply (frule Group.inter_sgs [of "G" "H" "K"], assumption+,
frule Group.Group_Gp [of "G" "H ∩ K"], assumption+,
frule Group.ZassenhausTr3_5 [of "G" "H" "H1" "K" "K1"], assumption+)
apply (rule Group.Group_Qg, assumption+)
done
lemma ZassenhausTr6_2:"⟦Group G; G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹ Group (Gp G (H1 ⋄⇘G⇙ H ∩ K) / (H1 ⋄⇘G⇙ H ∩ K1))"
apply (frule Group.ZassenhausTr2_1 [of "G" "H" "H1" "K"], assumption+,
frule Group.Group_Gp [of "G" "H1 ⋄⇘G⇙ H ∩ K"], assumption+,
frule Group.ZassenhausTr3 [of "G" "H" "H1" "K" "K1"], assumption+)
apply (simp add:Group.Group_Qg)
done
lemma ZassenhausTr6_3:"⟦Group G; G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹ Group (Gp G (K1 ⋄⇘G⇙ K ∩ H) / (K1 ⋄⇘G⇙ K ∩ H1))"
apply (frule Group.ZassenhausTr2_1 [of "G" "K" "K1" "H"], assumption+,
frule Group.Group_Gp [of "G" "K1 ⋄⇘G⇙ K ∩ H"], assumption+,
frule Group.ZassenhausTr3[of "G" "K" "K1" "H" "H1"], assumption+)
apply (simp add:Group.Group_Qg)
done
theorem Zassenhaus:"⟦Group G; G » H; G » H1; G » K; G » K1; Gp G H ▹ H1;
Gp G K ▹ K1⟧ ⟹ (Gp G (H1 ⋄⇘G⇙ H ∩ K) / (H1 ⋄⇘G⇙ H ∩ K1)) ≅
(Gp G (K1 ⋄⇘G⇙ K ∩ H) / (K1 ⋄⇘G⇙ K ∩ H1))"
apply (frule ZassenhausTr6_1[of "G" "K" "K1" "H" "H1"], assumption+)
apply (frule ZassenhausTr6_3 [of "G" "H" "H1" "K" "K1"], assumption+)
apply (frule ZassenhausTr6_2 [of "G" "H" "H1" "K" "K1"], assumption+)
apply (rule isomTr2[of "(♮⇘G⇙(H1 ⋄⇘G⇙ H ∩ K)) / (H1 ⋄⇘G⇙ H ∩ K1)"
"(♮⇘G⇙(K ∩ H)) / (K1 ∩ H ⋄⇘G⇙ K ∩ H1)"
"(♮⇘G⇙(K1 ⋄⇘G⇙ K ∩ H)) / (K1 ⋄⇘G⇙ K ∩ H1)"], assumption+)
apply (frule ZassenhausTr5_1[of "G" "K" "K1" "H" "H1"], assumption+)
apply (simp add:Int_commute[of "K" "H"])
apply (simp add:Group.ZassenhausTr3_3[THEN sym, of "G" "H" "H1" "K" "K1"])
apply (rule isomTr1[of "(♮⇘G⇙(H ∩ K)) / (H1 ∩ K ⋄⇘G⇙ H ∩ K1)"
"(♮⇘G⇙(H1 ⋄⇘G⇙ H ∩ K)) / (H1 ⋄⇘G⇙ H ∩ K1)"], assumption+)
apply (rule ZassenhausTr5_1[of "G" "H" "H1" "K" "K1"], assumption+)
done
section "Chain of groups I"
definition
d_gchain :: "[_ , nat, (nat ⇒ 'a set)] ⇒ bool" where
"d_gchain G n g = (if n=0 then G » g 0 else (∀l≤ n. G » (g l) ∧
(∀l ≤ (n - Suc 0). g (Suc l) ⊆ g l )))"
definition
D_gchain :: "[_ , nat, (nat ⇒ 'a set)] ⇒ bool" where
"D_gchain G n g = (if n = 0 then G » (g 0) else (d_gchain G n g) ∧
(∀l ≤ (n - Suc 0). (g (Suc l)) ⊂ (g l)))"
definition
td_gchain :: "[_ , nat, (nat ⇒ 'a set)] ⇒ bool" where
"td_gchain G n g = (if n=0 then g 0 = carrier G ∧ g 0 = {𝟭⇘G⇙} else
d_gchain G n g ∧ g 0 = carrier G ∧ g n = {𝟭⇘G⇙})"
definition
tD_gchain :: "[_, nat, (nat ⇒ 'a set)] ⇒ bool" where
"tD_gchain G n g = (if n=0 then g 0 = carrier G ∧ g 0 = {𝟭⇘G⇙} else
D_gchain G n g ∧ (g 0 = carrier G) ∧ (g n = {𝟭⇘G⇙}))"
definition
w_cmpser :: "[_ , nat, (nat ⇒ 'a set)] ⇒ bool" where
"w_cmpser G n g = (if n = 0 then d_gchain G n g else d_gchain G n g ∧
(∀l ≤ (n - 1). (Gp G (g l)) ▹ (g (Suc l))))"
definition
W_cmpser :: "[_ , nat, (nat ⇒ 'a set)] ⇒ bool" where
"W_cmpser G n g = (if n = 0 then d_gchain G 0 g else D_gchain G n g ∧
(∀l ≤ (n - 1). (Gp G (g l)) ▹ (g (Suc l))))"
definition
tw_cmpser :: "[_ , nat, (nat ⇒ 'a set)] ⇒ bool" where
"tw_cmpser G n g = (if n = 0 then td_gchain G 0 g else td_gchain G n g ∧
(∀l ≤ (n - 1). (Gp G (g l)) ▹ (g (Suc l))))"
definition
tW_cmpser :: "[_ , nat, (nat ⇒ 'a set)] ⇒ bool" where
"tW_cmpser G n g = (if n = 0 then td_gchain G 0 g else tD_gchain G n g ∧
(∀l ≤ (n - 1). (Gp G (g l)) ▹ (g (Suc l))))"
definition
Qw_cmpser :: "[_ , nat ⇒ 'a set] ⇒ (nat ⇒ ('a set) Group)" where
"Qw_cmpser G f l = ((Gp G (f l)) / (f (Suc l)))"
definition
red_chn :: "[_ , nat, (nat ⇒ 'a set)] ⇒ (nat ⇒ 'a set)" where
"red_chn G n f = (SOME g. g ∈ {h.(tW_cmpser G (card (f ` {i. i ≤ n}) - 1) h)
∧ h `{i. i ≤ (card (f ` {i. i ≤ n}) - 1)} = f `{i. i ≤ n}})"
definition
chain_cutout :: "[nat, (nat ⇒ 'a set) ] ⇒ (nat ⇒ 'a set)" where
"chain_cutout l f = (λj. f (slide l j))"
lemma (in Group) d_gchainTr0:"⟦0 < n; d_gchain G n f; k ≤ (n - 1)⟧
⟹ f (Suc k) ⊆ f k"
apply (simp add:d_gchain_def)
apply (frule_tac a = k in forall_spec)
apply (rule Nat.le_trans, assumption+, simp)
apply (erule conjE, rotate_tac 2,
frule_tac a = k in forall_spec, assumption,
thin_tac "∀l≤n - Suc 0. f (Suc l) ⊆ f l",
thin_tac "∀l≤n. G » f l ∧ (∀l≤n - Suc 0. f (Suc l) ⊆ f l)")
apply assumption
done
lemma (in Group) d_gchain_mem_sg:"d_gchain G n f ⟹ ∀i≤ n. G » (f i)"
apply (rule allI)
apply (rule impI, simp add:d_gchain_def)
apply (case_tac "n = 0", simp)
apply simp
done
lemma (in Group) d_gchain_pre:"d_gchain G (Suc n) f ⟹ d_gchain G n f"
apply (simp add:d_gchain_def, rule impI, rule impI)
apply (rule allI, rule impI)
apply (frule_tac a = l in forall_spec, arith)
apply (erule conjE)
apply (thin_tac "∀l≤Suc n. G » f l ∧ (∀l≤n. f (Suc l) ⊆ f l)",
frule_tac a = l in forall_spec, arith, assumption)
done
lemma (in Group) d_gchainTr1:"0 < n ⟶ (∀f. d_gchain G n f ⟶
(∀l ≤ n. ∀j ≤ n. l < j ⟶ f j ⊆ f l))"
apply (induct_tac n)
apply (rule impI, simp)
apply (rule impI, rule allI, rule impI)
apply ((rule allI, rule impI)+, rule impI)
apply (case_tac "n = 0", simp)
apply (case_tac "j = 0", simp,
frule le_imp_less_or_eq, thin_tac "j ≤ Suc 0",
simp, simp add:d_gchain_def)
apply (frule_tac a = 0 in forall_spec, simp, simp)
apply simp
apply (case_tac "j = Suc n")
apply (frule d_gchain_pre,
frule_tac a = f in forall_spec, assumption,
thin_tac "∀f. d_gchain G n f ⟶ (∀l≤n. ∀j≤n. l < j ⟶ f j ⊆ f l)",
thin_tac "d_gchain G n f",
simp add:d_gchain_def)
apply (frule_tac a = n in forall_spec, simp,
thin_tac "∀l≤Suc n. G » f l ∧ (∀l≤n. f (Suc l) ⊆ f l)",
erule conjE,
rotate_tac -1,
frule_tac a = n in forall_spec, simp,
thin_tac "∀l≤n. f (Suc l) ⊆ f l",
frule_tac x = l and n = n in Suc_less_le)
apply (case_tac "l = n", simp,
thin_tac "l < Suc n",
frule_tac x = l and y = n in le_imp_less_or_eq,
thin_tac "l ≤ n", simp)
apply (frule_tac a = l in forall_spec, simp,
thin_tac "∀l≤n. ∀j≤n. l < j ⟶ f j ⊆ f l") apply (
frule_tac a = n in forall_spec) apply (simp,
thin_tac "∀j≤n. l < j ⟶ f j ⊆ f l", simp)
apply (simp add: d_gchain_pre)
done
lemma (in Group) d_gchainTr2:"⟦0 < n; d_gchain G n f; l ≤ n; j ≤ n; l ≤ j ⟧
⟹ f j ⊆ f l"
apply (case_tac "l = j", simp)
apply (metis Group.d_gchainTr1 [OF Group_axioms] antisym_conv2)
done
lemma (in Group) im_d_gchainTr1:"⟦d_gchain G n f;
f l ∈ (f ` {i. i ≤ n}) - {f 0}⟧ ⟹
f (LEAST j. f j ∈ (f ` {i. i ≤ n}) - {f 0}) ∈ (f ` {i. i ≤ n} - {f 0})"
apply (rule LeastI)
apply simp
done
lemma (in Group) im_d_gchainTr1_0:"⟦d_gchain G n f;
f l ∈ (f ` {i. i ≤ n}) - {f 0}⟧ ⟹
0 < (LEAST j. f j ∈ (f ` {i. i ≤ n}) - {f 0})"
apply (frule im_d_gchainTr1 [of "n" "f"], assumption+)
apply (rule contrapos_pp, simp)
apply simp
done
lemma (in Group) im_d_gchainTr1_1:
"⟦d_gchain G n f; ∃ i. f i ∈ (f ` {i. i ≤ n}) - {f 0}⟧ ⟹
f (LEAST j. f j ∈ ((f ` {i. i ≤ n}) - {f 0})) ∈ ((f` {i. i ≤ n}) - {f 0})"
apply (subgoal_tac "∀i. f i ∈ f ` {i. i ≤ n} - {f 0} ⟶
f (LEAST j. f j ∈ f `{i. i ≤ n} - {f 0}) ∈ f ` {i. i≤ n} - {f 0}")
apply blast
apply (thin_tac "∃i. f i ∈ f `{i. i ≤ n} - {f 0}")
apply (rule allI) apply (rule impI)
apply (rule im_d_gchainTr1 [of "n" "f" _], assumption+)
done
lemma (in Group) im_d_gchainsTr1_2:"
⟦d_gchain G n f; i ≤ n; f i ∈ f `{i. i ≤ n} - {f 0}⟧ ⟹
(LEAST j. f j ∈ (f `{i. i ≤ n} - {f 0})) ≤ i"
by (rule Least_le, assumption)
lemma (in Group) im_d_gchainsTr1_3:"⟦d_gchain G n f; ∃i ≤ n.
f i ∈ f` {i. i ≤ n} - {f 0};
k < (LEAST j. f j ∈ (f `{i. i ≤ n} - {f 0}))⟧ ⟹ f k = f 0"
apply (erule exE)
apply (rule contrapos_pp, simp+)
apply (frule_tac i = i in im_d_gchainsTr1_2 [of "n" "f" _ ], simp+)
apply (erule conjE)+
apply (frule_tac x = k and
y = "LEAST j. f j ∈ f ` {i. i ≤ n} ∧ f j ≠ f 0" and
z = i in less_le_trans, assumption,
frule_tac x = k and
y = i and
z = n in less_le_trans, assumption)
apply (frule_tac i = k in im_d_gchainsTr1_2 [of "n" "f" _ ], simp+)
done
lemma (in Group) im_gdchainsTr1_4:"⟦d_gchain G n f;
∃v∈f `{i. i ≤ n}. v ∉ {f 0}; i < (LEAST j. f j ∈ (f `{i. i ≤ n}) ∧
f j ≠ f 0) ⟧ ⟹ f i = f 0"
apply (rule im_d_gchainsTr1_3 [of "n" "f" "i"], assumption,
thin_tac "i < (LEAST j. f j ∈ f ` {i. i ≤ n} ∧ f j ≠ f 0)",
simp add:image_def, blast)
apply simp
done
lemma (in Group) im_d_gchainsTr1_5:"⟦0 < n; d_gchain G n f; i ≤ n;
f i ∈ (f ` {i. i ≤ n} - {f 0}); (LEAST j. f j ∈ (f `{i. i ≤ n} - {f 0})) = j⟧
⟹ f `{i. i ≤ (j - (Suc 0))} = {f 0}"
apply (frule im_d_gchainTr1_0 [of "n" "f" "i"], assumption+)
apply (subst image_def)
apply (rule equalityI)
apply (rule subsetI, simp, erule exE, erule conjE)
apply (frule_tac x = xa and y = "j - Suc 0" and
z = "(LEAST j. f j ∈ f ` {i. i ≤ n} ∧ f j ≠ f 0)" in le_less_trans,
simp,
frule_tac k = xa in im_d_gchainsTr1_3[of "n" "f"])
apply (simp, blast, simp, simp)
apply (rule subsetI, blast)
done
lemma (in Group) im_d_gchains1:"⟦0 < n; d_gchain G n f; i ≤ n;
f i ∈ (f ` {i. i ≤ n} - {f 0});
(LEAST j. f j ∈ (f `{i. i ≤ n} - {f 0})) = j ⟧ ⟹
f `{i. i ≤ n} = {f 0} ∪ {f i |i. j ≤ i ∧ i ≤ n}"
apply (frule im_d_gchainTr1_0 [of "n" "f" "i"], assumption+,
frule im_d_gchainsTr1_2 [of "n" "f" "i"], assumption+,
frule Nset_nset_1 [of "n" "j - Suc 0"])
apply simp
apply (subst im_set_un2, simp)
apply (subst im_d_gchainsTr1_5[of "n" "f" "i" "j"])
apply (simp, assumption, simp+)
apply (rule equalityI)
apply (rule subsetI, simp, erule disjE, simp,
simp add:image_def nset_def, erule exE, blast)
apply (rule subsetI)
apply (simp, erule disjE, simp)
apply (erule exE, simp add:nset_def)
done
lemma (in Group) im_d_gchains1_1:"⟦d_gchain G n f; f n ≠ f 0⟧ ⟹
f `{i. i ≤ n} = {f 0} ∪
{f i |i. (LEAST j. f j ∈ (f `{i. i ≤ n} - {f 0})) ≤ i ∧ i ≤ n}"
apply (case_tac "n = 0")
apply simp
apply simp
apply (frule im_d_gchains1 [of "n" "f" "n"
"(LEAST j. f j ∈ f ` {i. i ≤ n} - {f 0})"], assumption+,
simp add:n_in_Nsetn)
apply (cut_tac n_in_Nsetn[of "n"], simp,
simp)
apply (simp cong del: image_cong)
done
lemma (in Group) d_gchains_leastTr:"⟦d_gchain G n f; f n ≠ f 0⟧ ⟹
(LEAST j. f j ∈ (f `{i. i ≤ n} - {f 0})) ∈ {i. i ≤ n} ∧
f (LEAST j. f j ∈ (f `{i. i ≤ n} - {f 0})) ≠ f 0"
apply (frule im_d_gchainsTr1_2 [of "n" "f" "n"],
simp add:n_in_Nsetn,
simp add:image_def, blast,
frule mem_of_Nset[of "LEAST j. f j ∈ f ` {i. i ≤ n} - {f 0}" "n"],
simp)
apply (frule im_d_gchainTr1[of "n" "f" "n"],
simp add:image_def, cut_tac n_in_Nsetn[of "n"], blast)
apply (simp add:image_def)
done
lemma (in Group) im_d_gchainTr2:"⟦d_gchain G n f; j ≤ n; f j ≠ f 0⟧ ⟹
∀i ≤ n. f 0 = f i ⟶ ¬ j ≤ i"
apply (case_tac "n = 0", simp, simp)
apply (rule allI, rule impI)
apply (rule contrapos_pp, simp+)
apply (case_tac "j = i", simp)
apply (frule d_gchainTr2 [of "n" "f" "0" "j"], assumption+,
simp, (erule conjE)+,
rule_tac i = j and j = i and k = n in le_trans, assumption+,
simp,
(erule conjE)+,
frule_tac l = j and j = i in d_gchainTr2 [of "n" "f"], assumption+)
apply simp+
done
lemma (in Group) D_gchain_pre:"⟦D_gchain G (Suc n) f⟧ ⟹ D_gchain G n f"
apply (simp add:D_gchain_def, erule conjE)
apply (case_tac "n = 0", rotate_tac -1)
apply (simp, insert lessI [of "0::nat"], simp)
apply (simp add:d_gchain_def, simp)
apply (frule d_gchain_pre [of "n"])
apply simp
done
lemma (in Group) D_gchain0:"⟦D_gchain G n f; i ≤ n; j ≤ n; i < j⟧ ⟹
f j ⊂ f i"
apply (case_tac "n = 0")
apply (simp, simp)
apply (cut_tac d_gchainTr1[of "n"], simp)
apply (simp add:D_gchain_def, frule conjunct1)
apply (frule_tac a = f in forall_spec, assumption,
thin_tac "∀f. d_gchain G n f ⟶ (∀l≤n. ∀j≤n. l < j ⟶ f j ⊆ f l)")
apply (frule_tac a = i in forall_spec,
frule_tac x = i and y = j and z = n in less_le_trans, assumption+,
simp)
apply ( thin_tac "∀l≤n. ∀j≤n. l < j ⟶ f j ⊆ f l",
frule_tac a = j in forall_spec, assumption,
thin_tac "∀j≤n. i < j ⟶ f j ⊆ f i", simp)
apply (frule Suc_leI[of i j],
frule less_le_trans[of i j n], assumption+,
frule less_le_diff[of i n])
apply (frule_tac a = i in forall_spec, assumption,
thin_tac "∀l≤n - Suc 0. f (Suc l) ⊂ f l")
apply (cut_tac d_gchainTr2[of "n" "f" "Suc i" "j"])
apply blast apply simp+
done
lemma (in Group) D_gchain1:"D_gchain G n f ⟹ inj_on f {i. i ≤ n}"
apply (case_tac "n = 0")
apply (simp add:inj_on_def)
apply (simp)
apply (simp add:inj_on_def)
apply ((rule allI)+, rule impI, rule contrapos_pp, simp+, erule exE)
apply (cut_tac x = x and y = y in less_linear, simp)
apply (erule disjE, (erule conjE)+)
apply (frule_tac i = x and j = y in D_gchain0 [of "n" "f"], assumption+,
simp,
simp, frule_tac i = y and j = x in D_gchain0 [of "n" "f"],
simp+)
done
lemma (in Group) card_im_D_gchain:"⟦0 < n; D_gchain G n f⟧
⟹ card (f `{i. i ≤ n}) = Suc n"
apply (frule D_gchain1 [of "n"])
apply (subst card_image, assumption+, simp)
done
lemma (in Group) w_cmpser_gr:"⟦0 < r; w_cmpser G r f; i ≤ r⟧
⟹ G » (f i)"
by (simp add:w_cmpser_def, erule conjE, simp add:d_gchain_def)
lemma (in Group) w_cmpser_ns:"⟦0 < r; w_cmpser G r f; i ≤ (r - 1)⟧ ⟹
(Gp G (f i)) ▹ (f (Suc i))"
apply (simp add:w_cmpser_def)
done
lemma (in Group) w_cmpser_pre:"w_cmpser G (Suc n) f ⟹ w_cmpser G n f"
apply (simp add:w_cmpser_def)
apply (erule conjE)
apply (case_tac "n = 0", rotate_tac -1, simp)
apply (rule d_gchain_pre [of "0" "f"], assumption+)
apply simp
apply (frule d_gchain_pre [of "n" "f"])
apply simp
done
lemma (in Group) W_cmpser_pre:"W_cmpser G (Suc n) f ⟹ W_cmpser G n f"
apply (simp add:W_cmpser_def)
apply (erule conjE)
apply (case_tac "n = 0", simp,
simp add:D_gchain_def, erule conjE,
rule d_gchain_pre, assumption+, simp)
apply (frule D_gchain_pre, simp)
done
lemma (in Group) td_gchain_n:"⟦td_gchain G n f; carrier G ≠ {𝟭}⟧ ⟹ 0 < n"
apply (simp add:td_gchain_def)
apply (rule contrapos_pp, simp+)
apply (erule conjE, simp)
done
section "Existence of reduced chain"
lemma (in Group) D_gchain_is_d_gchain:"D_gchain G n f ⟹ d_gchain G n f"
apply (simp add:D_gchain_def)
apply (case_tac "n = 0") apply (rotate_tac -1)
apply (simp add:d_gchain_def) apply (rotate_tac -1)
apply simp
done
lemma (in Group) joint_d_gchains:"⟦d_gchain G n f; d_gchain G m g;
g 0 ⊆ f n ⟧ ⟹ d_gchain G (Suc (n + m)) (jointfun n f m g)"
apply (case_tac "n = 0")
apply (case_tac "m = 0")
apply (simp add:d_gchain_def [of "G" "Suc (n + m)" _])
apply (simp add:jointfun_def sliden_def d_gchain_def)
apply (simp add:jointfun_def sliden_def d_gchain_def)
apply (rule allI) apply (rule conjI) apply (rule impI)
apply (rule allI) apply (rule impI)+ apply simp
apply (frule_tac a = la in forall_spec, assumption,
thin_tac "∀l≤m. G » g l ∧ (∀l≤m - Suc 0. g (Suc l) ⊆ g l)",
erule conjE)
apply (frule_tac a = "la - Suc 0" in forall_spec,
thin_tac "∀l≤m - Suc 0. g (Suc l) ⊆ g l",
rule diff_le_mono, assumption, simp)
apply (rule impI, rule impI)
apply (frule_tac m = l and n = "Suc m" and l = "Suc 0" in diff_le_mono)
apply simp
apply (rule allI, rule impI, rule impI)
apply (frule_tac a = la in forall_spec,assumption,
thin_tac "∀l≤m. G » g l ∧ (∀l≤m - Suc 0. g (Suc l) ⊆ g l)",
erule conjE)
apply (frule_tac a = "la - Suc 0" in forall_spec, simp)
apply simp_all
apply (simp add:d_gchain_def [of "G" _ "jointfun n f m g"])
apply (rule allI, rule impI) apply (rule conjI)
apply (case_tac "l ≤ n", simp add:jointfun_def d_gchain_def[of _ n f])
apply (simp add:jointfun_def sliden_def,
frule_tac m = l and n = "Suc (n + m)" and l = "Suc n" in diff_le_mono,
thin_tac "l ≤ Suc (n + m)", simp add:d_gchain_def[of _ m g])
apply (case_tac "m = 0", simp, simp)
apply (rule allI, rule impI)
apply (case_tac "Suc la ≤ n")
apply (simp add:jointfun_def)
apply (rule_tac l = la and j = "Suc la" in d_gchainTr2[of n f],
simp+)
apply (simp add:jointfun_def)
apply (cut_tac y = "Suc la" and x = n in not_less [symmetric], simp)
apply (frule_tac m = n and n = "Suc la" in Suc_leI,
thin_tac "n < Suc la", simp)
apply (case_tac "la = n", simp add:sliden_def)
apply (frule not_sym, thin_tac "la ≠ n",
frule_tac x = n and y = la in le_imp_less_or_eq,
thin_tac "n ≤ la", simp,
frule_tac m = n and n = la in Suc_leI, simp add:sliden_def)
apply (simp add:d_gchain_def[of _ m g])
apply (cut_tac m = la and n = "n + m" and l = "Suc n" in diff_le_mono,
assumption, simp)
apply (frule_tac a = m in forall_spec, simp,
thin_tac "∀l≤m. G » g l ∧ (∀l≤m - Suc 0. g (Suc l) ⊆ g l)",
erule conjE) apply (
frule_tac a = "la - Suc n" in forall_spec, assumption,
thin_tac "∀l≤m - Suc 0. g (Suc l) ⊆ g l")
apply (cut_tac n1 = n and i1 = la in jointgd_tool4[THEN sym], simp+)
done
lemma (in Group) joint_D_gchains:"⟦D_gchain G n f; D_gchain G m g;
g 0 ⊂ f n ⟧ ⟹ D_gchain G (Suc (n + m)) (jointfun n f m g)"
apply (simp add:D_gchain_def [of "G" "Suc (n + m)" _])
apply (rule conjI)
apply (rule joint_d_gchains[of n f m g],
simp add:D_gchain_is_d_gchain,
simp add:D_gchain_is_d_gchain,
simp add:psubset_imp_subset)
apply (rule allI, rule impI)
apply (case_tac "Suc l ≤ n")
apply (simp add:jointfun_def)
apply (rule_tac i = l and j = "Suc l" in D_gchain0[of n f], assumption,
cut_tac x = l and y = "Suc l" and z = n in less_le_trans)
apply simp+
apply (simp add:nat_not_le_less,
frule_tac m = n and n = "Suc l" in Suc_leI, thin_tac "n < Suc l", simp)
apply (case_tac "l = n", simp add:jointfun_def sliden_def)
apply (frule not_sym, thin_tac "l ≠ n",
frule_tac x = n and y = l in le_imp_less_or_eq,
thin_tac "n ≤ l", simp)
apply (simp add:jointfun_def sliden_def)
apply (frule_tac m = l and n = "n + m" and l = n in diff_le_mono)
apply (simp add:diff_add_assoc)
apply (rule_tac i = "l - Suc n" and j = "l - n" in D_gchain0[of m g],
assumption)
apply (arith, assumption, arith)
done
lemma (in Group) w_cmpser_is_d_gchain:"w_cmpser G n f ⟹ d_gchain G n f"
apply (simp add:w_cmpser_def)
apply (case_tac "n=0") apply (rotate_tac -1) apply simp
apply (rotate_tac -1) apply simp
done
lemma (in Group) joint_w_cmpser:"⟦w_cmpser G n f; w_cmpser G m g;
Gp G (f n) ▹ (g 0)⟧ ⟹ w_cmpser G (Suc (n + m)) (jointfun n f m g)"
apply (simp add:w_cmpser_def [of _ "Suc (n + m)" _])
apply (rule conjI)
apply (frule w_cmpser_is_d_gchain[of "n" "f"],
frule w_cmpser_is_d_gchain[of "m" "g"])
apply (rule joint_d_gchains, assumption+)
apply (frule d_gchain_mem_sg[of "n" "f"],
cut_tac n_in_Nsetn[of "n"],
frule_tac a = n in forall_spec, simp,
thin_tac "∀i ≤ n. G » f i")
apply (frule Group_Gp[of "f n"],
frule Group.nsg_sg[of "Gp G (f n)" "g 0"], assumption,
frule Group.sg_subset[of "Gp G (f n)" "g 0"], assumption,
simp add:Gp_carrier)
apply (rule allI, rule impI)
apply (case_tac "n = 0") apply simp
apply (simp add:jointfun_def)
apply (case_tac "l = 0")
apply simp apply (simp add:sliden_def)
apply simp
apply (simp add:w_cmpser_def [of _ "m" "g"])
apply (case_tac "m = 0") apply (simp add:sliden_def)
apply (erule conjE)
apply (simp add:sliden_def)
apply (frule_tac x = 0 and y = l and z = m in less_le_trans, assumption+)
apply (frule_tac m = l and n = m and l = "Suc 0" in diff_le_mono)
apply (frule_tac a = "l - Suc 0" in forall_spec, assumption,
thin_tac "∀l≤(m - Suc 0). (♮(g l)) ▹ (g (Suc l))")
apply simp
apply (case_tac "l ≤ n - Suc 0", simp)
apply (frule less_pre_n [of "n"])
apply (frule_tac x = l in le_less_trans[of _ "n - Suc 0" "n"], assumption+)
apply (simp add:jointfun_def w_cmpser_def [of _ "n"])
apply (simp add:nat_not_le_less)
apply (frule_tac n = l in Suc_leI [of "n - Suc 0" _], simp)
apply (case_tac "n = l")
apply (frule sym) apply (thin_tac "n = l")
apply simp
apply (simp add:jointfun_def sliden_def)
apply (frule_tac m = n and n = l in noteq_le_less, assumption+)
apply (frule_tac m = n and n = l in Suc_leI)
apply (simp add:jointfun_def)
apply (frule_tac m = l and n = "n + m" and l = "Suc n" in diff_le_mono)
apply simp
apply (simp add:sliden_def w_cmpser_def [of _ "m" _])
apply (erule conjE)
apply (simp add:jointgd_tool4)
done
lemma (in Group) W_cmpser_is_D_gchain:"W_cmpser G n f ⟹ D_gchain G n f"
apply (simp add:W_cmpser_def)
apply (case_tac "n = 0") apply (rotate_tac -1) apply simp
apply (simp add:D_gchain_def d_gchain_def)
apply (rotate_tac -1) apply simp
done
lemma (in Group) W_cmpser_is_w_cmpser:"W_cmpser G n f ⟹ w_cmpser G n f"
apply (simp add:W_cmpser_def)
apply (case_tac "n = 0") apply (rotate_tac -1)
apply simp
apply (simp add:w_cmpser_def)
apply (rotate_tac -1)
apply simp apply (erule conjE)
apply (frule D_gchain_is_d_gchain)
apply (simp add:w_cmpser_def)
done
lemma (in Group) tw_cmpser_is_w_cmpser:"tw_cmpser G n f ⟹ w_cmpser G n f"
apply (simp add:tw_cmpser_def)
apply (case_tac "n = 0")
apply (rotate_tac -1) apply simp
apply (simp add:td_gchain_def w_cmpser_def)
apply (simp add:d_gchain_def) apply (simp add:special_sg_G)
apply (rotate_tac -1) apply simp
apply (erule conjE) apply (simp add:td_gchain_def)
apply (erule conjE)+
apply (simp add:w_cmpser_def)
done
lemma (in Group) tW_cmpser_is_W_cmpser:"tW_cmpser G n f ⟹ W_cmpser G n f"
apply (simp add:tW_cmpser_def)
apply (case_tac "n = 0") apply (rotate_tac -1)
apply simp
apply (simp add:td_gchain_def)
apply (simp add:W_cmpser_def d_gchain_def) apply (simp add:special_sg_G)
apply (rotate_tac -1) apply simp
apply (erule conjE)
apply (simp add:tD_gchain_def)
apply (erule conjE)+
apply (simp add:W_cmpser_def)
done
lemma (in Group) joint_W_cmpser:"⟦W_cmpser G n f; W_cmpser G m g;
(Gp G (f n)) ▹ (g 0); g 0 ⊂ f n⟧ ⟹
W_cmpser G (Suc (n + m)) (jointfun n f m g)"
apply (simp add:W_cmpser_def [of _ "Suc (n + m)" _])
apply (frule W_cmpser_is_D_gchain [of "n" "f"],
frule W_cmpser_is_D_gchain [of "m" "g"])
apply (simp add:joint_D_gchains)
apply (frule W_cmpser_is_w_cmpser [of "n" _],
frule W_cmpser_is_w_cmpser [of "m" _])
apply (frule joint_w_cmpser [of "n" "f" "m" "g"], assumption+)
apply (simp add:w_cmpser_def [of _ "Suc (n + m)" _])
done
lemma (in Group) joint_d_gchain_n0:"⟦d_gchain G n f; d_gchain G 0 g;
g 0 ⊆ f n ⟧ ⟹ d_gchain G (Suc n) (jointfun n f 0 g)"
apply (frule joint_d_gchains [of "n" "f" "0" "g"], assumption+)
apply simp
done
lemma (in Group) joint_D_gchain_n0:"⟦D_gchain G n f; D_gchain G 0 g;
g 0 ⊂ f n ⟧ ⟹ D_gchain G (Suc n) (jointfun n f 0 g)"
apply (frule joint_D_gchains [of "n" "f" "0" "g"], assumption+)
apply simp
done
lemma (in Group) joint_w_cmpser_n0:"⟦w_cmpser G n f; w_cmpser G 0 g;
(Gp G (f n)) ▹ (g 0)⟧ ⟹ w_cmpser G (Suc n) (jointfun n f 0 g)"
apply (frule joint_w_cmpser [of "n" "f" "0" "g"], assumption+)
apply simp
done
lemma (in Group) joint_W_cmpser_n0:"⟦W_cmpser G n f; W_cmpser G 0 g;
(Gp G (f n)) ▹ (g 0); g 0 ⊂ f n ⟧ ⟹
W_cmpser G (Suc n) (jointfun n f 0 g)"
apply (frule joint_W_cmpser [of "n" "f" "0" "g"], assumption+)
apply simp
done
definition
simple_Group :: "_ ⇒ bool" where
"simple_Group G ⟷ {N. G » N} = {carrier G, {𝟭⇘G⇙}}"
definition
compseries:: "[_ , nat, nat ⇒ 'a set] ⇒ bool" where
"compseries G n f ⟷ tW_cmpser G n f ∧ (if n = 0 then f 0 = {𝟭⇘G⇙} else
(∀i ≤ (n - 1). (simple_Group ((Gp G (f i))/(f (Suc i))))))"
definition
length_twcmpser :: "[_ , nat, nat ⇒ 'a set] ⇒ nat" where
"length_twcmpser G n f = card (f `{i. i ≤ n}) - Suc 0"
lemma (in Group) compseriesTr0:"⟦compseries G n f; i ≤ n⟧ ⟹
G » (f i)"
apply (simp add:compseries_def)
apply (frule conjunct1)
apply (fold compseries_def)
apply (frule tW_cmpser_is_W_cmpser,
frule W_cmpser_is_w_cmpser,
frule w_cmpser_is_d_gchain)
apply (frule d_gchain_mem_sg[of "n" "f"])
apply simp
done
lemma (in Group) compseriesTr1:"compseries G n f ⟹ tW_cmpser G n f"
apply (simp add:compseries_def)
done
lemma (in Group) compseriesTr2:"compseries G n f ⟹ f 0 = carrier G"
apply (frule compseriesTr1, simp add:tW_cmpser_def)
apply (case_tac "n = 0")
apply (simp add:td_gchain_def)
apply simp
apply (erule conjE, simp add:tD_gchain_def)
done
lemma (in Group) compseriesTr3:"compseries G n f ⟹ f n = {𝟭}"
apply (frule compseriesTr1)
apply (simp add:tW_cmpser_def)
apply (case_tac "n = 0")
apply (simp add:td_gchain_def)
apply (auto del:equalityI)
apply (simp add:tD_gchain_def)
done
lemma (in Group) compseriesTr4:"compseries G n f ⟹ w_cmpser G n f"
apply (frule compseriesTr1,
frule tW_cmpser_is_W_cmpser)
apply (rule W_cmpser_is_w_cmpser, assumption)
done
lemma (in Group) im_jointfun1Tr1:"∀l ≤ n. G » (f l) ⟹
f ∈ {i. i ≤ n} → Collect (sg G)"
apply (simp add:Pi_def)
done
lemma (in Group) Nset_Suc_im:"∀l ≤ (Suc n). G » (f l) ⟹
insert (f (Suc n)) (f ` {i. i ≤ n}) = f ` {i. i ≤ (Suc n)}"
apply (rule equalityI)
apply (rule subsetI)
apply (simp add:image_def)
apply (erule disjE) apply blast
apply (erule exE, erule conjE)
apply (frule_tac x = xa and y = n and z = "Suc n" in le_less_trans,
simp,
frule_tac x = xa and y = "Suc n" in less_imp_le, blast)
apply (cut_tac Nset_Suc [of "n"], simp)
done
definition
NfuncPair_neq_at::"[nat ⇒ 'a set, nat ⇒ 'a set, nat] ⇒ bool" where
"NfuncPair_neq_at f g i ⟷ f i ≠ g i"
lemma LeastTr0:"⟦ (i::nat) < (LEAST l. P (l))⟧ ⟹ ¬ P (i)"
apply (rule not_less_Least)
apply simp
done
lemma (in Group) funeq_LeastTr1:"⟦∀l≤ n. G » f l; ∀l ≤ n. G » g l;
(l :: nat) < (LEAST k. (NfuncPair_neq_at f g k)) ⟧ ⟹ f l = g l"
apply (rule contrapos_pp, simp+)
apply (frule LeastTr0 [of "l" "NfuncPair_neq_at f g"])
apply (simp add:NfuncPair_neq_at_def)
done
lemma (in Group) funeq_LeastTr1_1:"⟦∀l ≤ (n::nat). G » f l; ∀l ≤ n. G » g l;
(l :: nat) < (LEAST k. (f k ≠ g k)) ⟧ ⟹ f l = g l"
apply (rule funeq_LeastTr1[of "n" "f" "g" "l"], assumption+)
apply (simp add:NfuncPair_neq_at_def)
done
lemma (in Group) Nfunc_LeastTr2_1:"⟦i ≤ n; ∀l ≤ n. G » f l; ∀l ≤ n. G » g l;
NfuncPair_neq_at f g i⟧ ⟹
NfuncPair_neq_at f g (LEAST k. (NfuncPair_neq_at f g k))"
apply (simp add: LeastI [of "NfuncPair_neq_at f g" "i"])
done
lemma (in Group) Nfunc_LeastTr2_2:"⟦i ≤ n; ∀l ≤ n. G » f l; ∀l ≤ n. G » g l;
NfuncPair_neq_at f g i⟧ ⟹
(LEAST k. (NfuncPair_neq_at f g k)) ≤ i"
apply (simp add: Least_le [of "NfuncPair_neq_at f g" "i"])
done
lemma (in Group) Nfunc_LeastTr2_2_1:"⟦i ≤ (n::nat); ∀l ≤ n. G » f l;
∀l ≤ n. G » g l; f i ≠ g i⟧ ⟹ (LEAST k. (f k ≠ g k)) ≤ i"
apply (rule contrapos_pp, simp+)
apply (simp add:nat_not_le_less)
apply (frule Nfunc_LeastTr2_2 [of "i" "n" "f" "g"], assumption+)
apply (simp add:NfuncPair_neq_at_def)+
done
lemma (in Group) Nfunc_LeastTr2_3:"⟦∀l ≤ (n::nat). G » f l; ∀l ≤ n. G » g l;
i ≤ n; f i ≠ g i⟧ ⟹
f (LEAST k. (f k ≠ g k)) ≠ g (LEAST k. (f k ≠ g k))"
apply (frule Nfunc_LeastTr2_1 [of "i" "n" "f" "g"], assumption+)
apply (simp add:NfuncPair_neq_at_def)+
done
lemma (in Group) Nfunc_LeastTr2_4:"⟦∀l ≤ (n::nat). G » f l; ∀l ≤ n. G » g l;
i ≤ n; f i ≠ g i⟧ ⟹(LEAST k. (f k ≠ g k)) ≤ n"
apply (frule_tac i = i in Nfunc_LeastTr2_2 [of _ "n" "f" "g"],
assumption+)
apply (simp add:NfuncPair_neq_at_def)
apply (frule le_trans [of "(LEAST k. NfuncPair_neq_at f g k)" "i" "n"],
assumption+)
apply (simp add:NfuncPair_neq_at_def)
done
lemma (in Group) Nfunc_LeastTr2_5:"⟦∀l≤ (n::nat). G » f l; ∀l ≤ n. G » g l;
∃i ≤ n. (f i ≠ g i)⟧ ⟹
f (LEAST k. (f k ≠ g k)) ≠ g ((LEAST k. f k ≠ g k))"
apply (erule exE)
apply (rule_tac i = i in Nfunc_LeastTr2_3[of n f g], assumption+, simp+)
done
lemma (in Group) Nfunc_LeastTr2_6:"⟦∀l ≤ (n::nat). G » f l; ∀l ≤ n. G » g l;
∃i ≤ n. (f i ≠ g i)⟧ ⟹ (LEAST k. (f k ≠ g k)) ≤ n"
apply (erule exE)
apply (rule_tac i = i in Nfunc_LeastTr2_4, assumption+, simp+)
done
lemma (in Group) Nfunc_Least_sym:"⟦∀l ≤ (n::nat). G » f l; ∀l ≤ n. G » g l;
∃i ≤ n. (f i ≠ g i)⟧ ⟹
(LEAST k. (f k ≠ g k)) = (LEAST k. (g k ≠ f k))"
apply (erule exE)
apply (frule_tac i = i in Nfunc_LeastTr2_4 [of n f g], assumption+,
simp+,
frule_tac i = i in Nfunc_LeastTr2_3 [of n f g _], assumption+,
simp+,
frule_tac i = i in Nfunc_LeastTr2_4 [of n g f], assumption+,
simp+, rule not_sym, simp,
frule_tac i = i in Nfunc_LeastTr2_3 [of n g f _], assumption+,
simp+, rule not_sym, simp)
apply (frule_tac i = "(LEAST k. f k ≠ g k)" in
Nfunc_LeastTr2_2_1 [of _ "n" "g" "f"], assumption+,
rule not_sym, simp) apply (
frule_tac i = "(LEAST k. g k ≠ f k)" in
Nfunc_LeastTr2_2_1 [of _ n f g], assumption+,
rule not_sym, simp)
apply (rule le_antisym, assumption+)
done
lemma Nfunc_iNJTr:"⟦inj_on g {i. i ≤ (n::nat)}; i ≤ n; j ≤ n; i < j ⟧ ⟹ g i ≠ g j"
apply (unfold inj_on_def)
apply (simp add:CollectI)
apply (rule contrapos_pp, simp+)
apply (frule_tac a = i in forall_spec)
apply (frule_tac x = i and y = j and z = n in less_le_trans, assumption+,
simp add:less_imp_le,
thin_tac "∀x≤n. ∀y≤n. g x = g y ⟶ x = y",
rotate_tac -1,
frule_tac a = j in forall_spec, assumption,
thin_tac "∀y≤n. g i = g y ⟶ i = y")
apply simp
done
lemma (in Group) Nfunc_LeastTr2_7:"⟦∀l ≤ (n::nat). G » f l; ∀l ≤ n. G » g l;
inj_on g {i. i ≤ n}; ∃i ≤ n. (f i ≠ g i);
f k = g (LEAST k.(f k ≠ g k))⟧ ⟹(LEAST k.(f k ≠ g k)) < k"
apply (rule contrapos_pp, simp+)
apply (simp add:nat_not_le_less[THEN sym, of "LEAST k. f k ≠ g k" "k"])
apply (frule le_imp_less_or_eq)
apply (case_tac "k = (LEAST k. f k ≠ g k)")
apply simp
apply (frule Nfunc_LeastTr2_5 [of "n" "f" "g"], assumption+)
apply simp
apply (frule funeq_LeastTr1_1 [of "n" "f" "g" "k"], assumption+)
apply simp
apply (frule Nfunc_LeastTr2_6 [of "n" "f" "g"], assumption+)
apply simp
apply (frule_tac le_trans[of "k" "LEAST k. f k ≠ g k" "n"], assumption+)
apply (frule mem_of_Nset[of "k" "n"])
apply (simp add:inj_on_def[of "g"])
done
lemma (in Group) Nfunc_LeastTr2_8:"⟦∀l ≤ n. G » f l; ∀l ≤ n. G » g l;
inj_on g {i. i ≤ n}; ∃i ≤ n. f i ≠ g i; f `{i. i ≤ n} = g `{i. i ≤ n}⟧
⟹
∃ k ∈(nset (Suc (LEAST i. (f i ≠ g i))) n). f k = g (LEAST i. (f i ≠ g i))"
apply (frule_tac Nfunc_LeastTr2_6 [of "n" "f" "g"], assumption+)
apply (cut_tac mem_in_image2[of "LEAST k. f k ≠ g k" "{i. i ≤ n}" "g"])
apply (frule sym, thin_tac "f ` {i. i ≤ n} = g ` {i. i ≤ n}", simp)
apply (thin_tac "g ` {i. i ≤ n} = f ` {i. i ≤ n}")
apply (simp add:image_def)
apply (rotate_tac -1, erule exE)
apply (frule_tac k = x in Nfunc_LeastTr2_7[of "n" "f" "g"], assumption+)
apply (erule conjE) apply (rule sym, assumption)
apply (frule_tac m = "(LEAST k. f k ≠ g k)" and n = x in Suc_leI)
apply (simp add:nset_def)
apply blast apply simp
done
lemma (in Group) ex_redchainTr1:"⟦d_gchain G n f;
D_gchain G (card (f ` {i. i ≤ n}) - Suc 0) g;
g ` {i. i ≤ (card (f ` {i. i ≤ n}) - Suc 0)} = f ` {i. i ≤ n}⟧ ⟹
g (card (f ` {i. i ≤ n}) - Suc 0) = f n"
apply (case_tac "n = 0", simp, simp)
apply (rule contrapos_pp, simp+)
apply (cut_tac n_in_Nsetn[of "card (f ` {i. i ≤ n}) - Suc 0"])
apply (frule mem_in_image2[of "card (f ` {i. i ≤ n}) - Suc 0"
"{i. i ≤ (card (f ` {i. i ≤ n}) - Suc 0)}" "g"])
apply (cut_tac n_in_Nsetn[of "n"])
apply (frule mem_in_image2[of "n" "{i. i ≤ n}" "f"])
apply simp
apply (simp add:image_def[of "f" "{i. i ≤ n}"])
apply (erule exE)
apply (frule_tac l = x in d_gchainTr2[of "n" "f" _ "n"], assumption+)
apply simp+
apply (erule conjE)
apply (rotate_tac -1, frule sym,
thin_tac "g (card {y. ∃x≤n. y = f x} - Suc 0) = f x",
simp,
thin_tac "f x = g (card {y. ∃x≤n. y = f x} - Suc 0)")
apply (cut_tac mem_in_image2[of "n" "{i. i ≤ n}" "f"],
unfold image_def)
apply (frule sym,
thin_tac "{y. ∃x∈{i. i ≤ card {y. ∃x≤n. y = f x} - Suc 0}. y = g x} =
{y. ∃x≤n. y = f x}")
apply (cut_tac eq_set_inc[of "f n" "{y. ∃x ≤ n. y = f x}"
"{y. ∃x∈{i. i ≤ card {y. ∃x≤n. y = f x} - Suc 0}. y = g x}"])
apply (thin_tac "{y. ∃x≤n. y = f x} =
{y. ∃x∈{i. i ≤ card {y. ∃x≤n. y = f x} - Suc 0}. y = g x}",
thin_tac "f n ∈ {y. ∃x∈{i. i ≤ n}. y = f x}")
apply (simp, erule exE, erule conjE)
apply (case_tac "xa ≤ card {y. ∃x≤n. y = f x} - Suc 0", simp)
apply (frule D_gchain_is_d_gchain[of "card {y. ∃x≤n. y = f x} - Suc 0" g])
apply (case_tac "card {y. ∃x ≤ n. y = f x} - Suc 0 = 0",
simp)
apply (frule nat_nonzero_pos[of "card {y. ∃x ≤ n. y = f x} - Suc 0"],
thin_tac "card {y. ∃x≤n. y = f x} - Suc 0 ≠ 0")
apply (frule_tac l = xa in d_gchainTr2[of
"card {y. ∃x ≤ n. y = f x} - Suc 0" "g" _
"card {y. ∃x ≤ n. y = f x} - Suc 0"], assumption+)
apply simp apply simp
apply (frule_tac A = "g xa" and
B = "g (card {y. ∃x ≤ n. y = f x} - Suc 0)" in equalityI,
assumption+, simp) apply simp+
done
lemma (in Group) ex_redchainTr1_1:"⟦d_gchain G (n::nat) f;
D_gchain G (card (f ` {i. i ≤ n}) - Suc 0) g;
g ` {i. i ≤ (card (f ` {i. i ≤ n}) - Suc 0)} = f ` {i. i ≤ n}⟧ ⟹
g 0 = f 0"
apply (cut_tac Nset_inc_0[of "n"],
frule mem_in_image2[of "0" "{i. i ≤ n}" "f"]) apply (
frule sym) apply (
thin_tac "g ` {i. i ≤ card (f ` {i. i ≤ n}) - Suc 0} = f ` {i. i ≤ n}")
apply (
frule eq_set_inc[of "f 0" "f ` {i. i ≤ n}"
"g ` {i. i ≤ card (f ` {i. i ≤ n}) - Suc 0}"], assumption)
apply (
thin_tac "f 0 ∈ f ` {i. i ≤ n}",
thin_tac "0 ∈ {i. i ≤ n}")
apply (cut_tac Nset_inc_0[of "card (f ` {i. i ≤ n}) - Suc 0"],
frule mem_in_image2[of "0" "{i. i ≤ (card (f ` {i. i ≤ n}) - Suc 0)}"
"g"],
frule sym) apply (
frule eq_set_inc[of "g 0" "g ` {i. i ≤ card (f ` {i. i ≤ n}) - Suc 0}"
"f ` {i. i ≤ n}"], assumption) apply (
thin_tac "f ` {i. i ≤ n} = g ` {i. i ≤ card (f ` {i. i ≤ n}) - Suc 0}")
apply (
thin_tac "0 ∈ {i. i ≤ card (f ` {i. i ≤ n}) - Suc 0}") apply (
thin_tac "g ` {i. i ≤ card (f ` {i. i ≤ n}) - Suc 0} = f ` {i. i ≤ n}")
apply (
thin_tac "g 0 ∈ g ` {i. i ≤ card (f ` {i. i ≤ n}) - Suc 0}")
apply (case_tac "n = 0", simp)
apply (simp)
apply (cut_tac mem_in_image3[of "f 0" "g"
"{i. i ≤ card (f ` {i. i ≤ n}) - Suc 0}"],
frule mem_in_image3[of "g 0" "f"
"{i. i ≤ n}"]) apply (
thin_tac "f 0 ∈ g ` {i. i ≤ card (f ` {i. i ≤ n}) - Suc 0}",
thin_tac "g 0 ∈ f ` {i. i ≤ n}") apply (erule bexE)+ apply (
frule_tac j = aa in d_gchainTr2[of "n" "f" "0"], assumption+)
apply simp+
apply (rotate_tac -2, frule sym, thin_tac "g 0 = f aa", simp)
apply (case_tac "a = 0", simp)
apply (simp,
frule_tac j = a in D_gchain0[of "card (f ` {i. i ≤ n}) - Suc 0" g 0],
simp add:Nset_inc_0, assumption+,
simp add:psubset_contr)
apply simp
done
lemma (in Group) ex_redchainTr2:"d_gchain G (Suc n) f
⟹ D_gchain G 0 (constmap {0::nat} {f (Suc n)})"
apply (simp add:D_gchain_def constmap_def)
apply (simp add:d_gchain_def)
done
lemma (in Group) last_mem_excluded:"⟦d_gchain G (Suc n) f; f n ≠ f (Suc n)⟧ ⟹
f (Suc n) ∉ f ` {i. i ≤ n}"
apply (rule contrapos_pp, simp+)
apply (frule mem_in_image3[of "f (Suc n)" "f" "{i. i ≤ n}"], erule bexE)
apply (cut_tac zero_less_Suc[of "n"])
apply (frule_tac l = a in d_gchainTr2[of "Suc n" "f" _ "n"], assumption+)
apply simp+
apply (frule sym, thin_tac "f (Suc n) = f a", simp)
apply (cut_tac l = n and j = "Suc n" in d_gchainTr2[of "Suc n" "f"])
apply simp+
done
lemma (in Group) ex_redchainTr4:"⟦d_gchain G (Suc n) f; f n ≠ f (Suc n)⟧ ⟹
card (f ` {i. i ≤ (Suc n)}) = Suc (card (f ` {i. i ≤ n}))"
apply (cut_tac image_Nset_Suc [of "f" "n"])
apply simp
apply (rule card_insert_disjoint)
apply (simp)
apply (simp add:last_mem_excluded)
done
lemma (in Group) ex_redchainTr5:"d_gchain G n f ⟹ 0 < card (f ` {i. i≤ n})"
apply (simp add:image_Nsetn_card_pos)
done
lemma (in Group) ex_redchainTr6:"∀f. d_gchain G n f ⟶
(∃g. D_gchain G (card (f `{i. i ≤ n}) - 1) g ∧
(g ` {i. i ≤ (card (f `{i. i ≤ n}) - 1)} = f `{i. i ≤ n}))"
apply (induct_tac n)
apply (rule allI, rule impI)
apply (simp add:image_def)
apply (simp add:D_gchain_def d_gchain_def)
apply blast
apply (rule allI, rule impI)
apply (case_tac "f (Suc n) = f n")
apply (cut_tac n = n in Nset_Suc)
apply (cut_tac n = n in n_in_Nsetn,
frule_tac a = n and A = "{i. i ≤ n}" and f = f in mem_in_image2)
apply (frule sym) apply (thin_tac "f (Suc n) = f n", simp)
apply (subst insert_absorb, assumption)+
apply (frule_tac n = n and f = f in d_gchain_pre, blast)
apply (frule_tac n = n and f = f in d_gchain_pre)
apply (frule_tac a = f in forall_spec, assumption,
thin_tac "∀f. d_gchain G n f ⟶
(∃g. D_gchain G (card (f ` {i. i ≤ n}) - 1) g ∧
g ` {i. i ≤ card (f ` {i. i ≤ n}) - 1} =
f ` {i. i ≤ n})")
apply (erule exE, erule conjE)
apply (simp add:image_Nset_Suc)
apply (frule_tac n = n and f = f in ex_redchainTr2)
apply (frule_tac n = "card (f ` {i. i ≤ n}) - Suc 0" and f = g and
g = "constmap {0} {f (Suc n)}" in joint_D_gchain_n0, assumption+)
apply (simp add: ex_redchainTr1)
apply (simp add: constmap_def Nset_inc_0)
apply (cut_tac n = n in zero_less_Suc)
apply (frule_tac n = "Suc n" and f = f and l = n and j = "Suc n" in
d_gchainTr2, assumption+)
apply simp apply simp apply simp
apply (simp add:psubset_eq)
apply (cut_tac f = f and n = n in image_Nsetn_card_pos,
cut_tac k = n in finite_Collect_le_nat,
frule_tac F = "{i. i ≤ n}" and h = f in finite_imageI,
frule_tac n = n and f = f in last_mem_excluded,
rule not_sym, assumption)
apply simp+
apply (cut_tac n = "card (f ` {i. i ≤ n}) - Suc 0" and f = g and m = 0 and
g = "constmap {0} {f (Suc n)}" in im_jointfun1)
apply simp
apply (simp add:Nset_0 constmap_def)
apply blast
done
lemma (in Group) ex_redchain:"d_gchain G n f ⟹
(∃g. D_gchain G (card (f ` {i. i ≤ n}) - 1) g ∧
g ` {i. i ≤ (card (f ` {i. i ≤ n}) - 1)} = f ` {i. i ≤ n})"
apply (cut_tac ex_redchainTr6 [of "n"])
apply simp
done
lemma (in Group) const_W_cmpser:"d_gchain G (Suc n) f ⟹
W_cmpser G 0 (constmap {0::nat} {f (Suc n)})"
apply (simp add:W_cmpser_def d_gchain_def constmap_def)
done
lemma (in Group) ex_W_cmpserTr0m:"∀f. w_cmpser G m f ⟶
(∃g. (W_cmpser G (card (f `{i. i ≤ m}) - 1) g ∧
g `{i. i ≤ (card (f `{i. i ≤ m}) - 1)} = f `{i. i ≤ m}))"
apply (induct_tac m)
apply (rule allI, rule impI)
apply simp
apply (simp add:w_cmpser_def W_cmpser_def)
apply blast
apply (rule allI, rule impI)
apply (case_tac "f (Suc n) = f n")
apply (cut_tac n = n in Nset_Suc)
apply (cut_tac n = n in n_in_Nsetn,
frule_tac a = n and A = "{i. i ≤ n}" and f = f in mem_in_image2)
apply (frule sym) apply (thin_tac "f (Suc n) = f n", simp)
apply (subst insert_absorb, assumption)+
apply (frule_tac n = n and f = f in w_cmpser_pre, blast)
apply (frule_tac n = n and f = f in w_cmpser_pre)
apply (frule_tac a = f in forall_spec, assumption,
thin_tac "∀f. w_cmpser G n f ⟶
(∃g. W_cmpser G (card (f ` {i. i ≤ n}) - 1) g ∧
g ` {i. i ≤ card (f ` {i. i ≤ n}) - 1} =
f ` {i. i ≤ n})")
apply (erule exE, erule conjE)
apply (simp add:image_Nset_Suc,
frule_tac n = "Suc n" and f = f in w_cmpser_is_d_gchain,
frule_tac n = n and f = f in const_W_cmpser)
apply (frule_tac n = "card (f ` {i. i ≤ n}) - Suc 0" and f = g and
g = "constmap {0::nat} {f (Suc n)}" in joint_W_cmpser_n0, assumption+)
apply (frule_tac n = "card (f ` {i. i ≤ n}) - Suc 0" and f = g in
W_cmpser_is_D_gchain)
apply (frule d_gchain_pre)
apply (subst ex_redchainTr1, assumption+)
apply (simp add:constmap_def Nset_inc_0)
apply (simp add:w_cmpser_def)
apply (frule d_gchain_pre)
apply (frule_tac n = "card (f ` {i. i ≤ n}) - Suc 0" and f = g in
W_cmpser_is_D_gchain)
apply (frule_tac n = n and f = f and g = g in ex_redchainTr1, assumption+)
apply simp
apply (simp add:constmap_def Nset_inc_0,
thin_tac "d_gchain G n f", simp add:d_gchain_def)
apply (cut_tac n = "Suc n" in n_in_Nsetn,
frule_tac x = "Suc n" in spec, simp,
simp add:psubset_eq)
apply (cut_tac f = f and n = n in image_Nsetn_card_pos,
cut_tac k = n in finite_Collect_le_nat,
frule_tac F = "{i. i ≤ n}" and h = f in finite_imageI,
frule_tac n = n and f = f in last_mem_excluded,
rule not_sym, assumption)
apply simp+
apply (cut_tac n = "card (f ` {i. i ≤ n}) - Suc 0" and f = g and m = 0 and
g = "constmap {0::nat} {f (Suc n)}" in im_jointfun1)
apply simp
apply (simp add:Nset_0 constmap_def)
apply blast
done
lemma (in Group) ex_W_cmpser:"w_cmpser G m f ⟹
∃g. W_cmpser G (card (f ` {i. i ≤ m}) - 1) g ∧
g ` {i. i ≤ (card (f ` {i. i ≤ m}) - 1)} = f ` {i. i ≤ m}"
apply (cut_tac ex_W_cmpserTr0m [of "m"])
apply simp
done
section "Existence of reduced chain and composition series"
lemma (in Group) ex_W_cmpserTr3m1:"⟦tw_cmpser G (m::nat) f;
W_cmpser G ((card (f ` {i. i ≤ m})) - 1) g;
g ` {i. i ≤ ((card (f ` {i. i ≤ m})) - 1)} = f `{i. i ≤ m}⟧ ⟹
tW_cmpser G ((card (f ` {i. i ≤ m})) - 1) g"
apply (frule_tac tw_cmpser_is_w_cmpser [of "m" "f"],
frule_tac w_cmpser_is_d_gchain [of "m" "f"],
frule_tac W_cmpser_is_D_gchain [of "(card (f ` {i. i ≤ m}) - 1)" "g"])
apply (frule ex_redchainTr1 [of "m" "f" "g"])
apply simp+
apply (frule_tac ex_redchainTr1_1 [of "m" "f" "g"])
apply (simp add:tW_cmpser_def tw_cmpser_def)
apply (case_tac "m = 0") apply simp
apply (cut_tac card_image_le [of "{0::nat}" "f"])
apply (simp, simp)
apply (simp add:tW_cmpser_def)
apply (case_tac "card (f ` {i. i ≤ m}) ≤ Suc 0") apply simp
apply (simp add:td_gchain_def tw_cmpser_def)
apply (case_tac "m = 0")
apply (thin_tac "f 0 = f m", thin_tac "g 0 = f m") apply simp
apply ( simp add:td_gchain_def) apply ( erule conjE, simp)
apply simp
apply (simp add:td_gchain_def[of "G" "m" "f"], (erule conjE)+, simp)
apply simp
apply (simp add:tD_gchain_def tw_cmpser_def td_gchain_def [of _ "m" "f"])
apply (case_tac "m = 0", simp add:card1)
apply (simp, erule conjE, simp add:td_gchain_def)
apply (simp add:W_cmpser_def)
done
lemma (in Group) ex_W_cmpserTr3m:"tw_cmpser G m f ⟹
∃g. tW_cmpser G ((card (f ` {i. i ≤ m})) - 1) g ∧
g `{ i. i ≤ (card (f `{i. i ≤ m}) - 1)} = f ` {i. i ≤ m}"
apply (frule tw_cmpser_is_w_cmpser[of "m" "f"])
apply (frule ex_W_cmpser [of "m" "f"])
apply (auto del:equalityI)
apply (frule_tac g = g in ex_W_cmpserTr3m1 [of "m" "f"])
apply simp+ apply blast
done
definition
red_ch_cd :: "[_ , nat ⇒ 'a set, nat, nat ⇒ 'a set ] ⇒ bool" where
"red_ch_cd G f m g ⟷ tW_cmpser G (card (f ` {i. i ≤ m}) - 1) g ∧
(g `{i . i ≤ (card (f ` {i. i ≤ m}) - 1)} = f` {i. i ≤ m})"
definition
red_chain :: "[_ , nat, nat ⇒ 'a set] ⇒ (nat ⇒ 'a set)" where
"red_chain G m f = (SOME g. g ∈ {h. red_ch_cd G f m h})"
lemma (in Group) red_chainTr0m1_1:"tw_cmpser G m f ⟹
(SOME g. g ∈ {h. red_ch_cd G f m h}) ∈ {h. red_ch_cd G f m h}"
apply (rule nonempty_some [of "{h. red_ch_cd G f m h}"])
apply (frule ex_W_cmpserTr3m [of "m" "f"])
apply simp
apply (simp add:red_ch_cd_def)
done
lemma (in Group) red_chain_m:"tw_cmpser G m f ⟹
tW_cmpser G (card (f ` {i. i ≤ m}) - 1) (red_chain G m f) ∧
(red_chain G m f) `{i. i ≤ (card (f `{i. i ≤ m}) - 1)} = f ` {i. i ≤ m}"
apply (frule red_chainTr0m1_1 [of "m" "f"])
apply simp
apply (simp add:red_ch_cd_def)
apply (simp add:red_chain_def)
done
section "Chain of groups II"
definition
Gchain :: "[nat, nat ⇒ (('a set), 'more) Group_scheme] ⇒ bool" where
"Gchain n g ⟷ (∀l ≤ n. Group (g l))"
definition
isom_Gchains :: "[nat, nat ⇒ nat, nat ⇒ (('a set), 'more) Group_scheme,
nat ⇒ (('a set), 'more) Group_scheme] ⇒ bool" where
"isom_Gchains n f g h ⟷ (∀i ≤ n. (g i) ≅ (h (f i)))"
definition
Gch_bridge :: "[nat, nat ⇒ (('a set), 'more) Group_scheme, nat ⇒
(('a set), 'more) Group_scheme, nat ⇒ nat] ⇒ bool" where
"Gch_bridge n g h f ⟷ (∀l ≤ n. f l ≤ n) ∧ inj_on f {i. i ≤ n} ∧
isom_Gchains n f g h"
lemma Gchain_pre:"Gchain (Suc n) g ⟹ Gchain n g"
apply (simp add:Gchain_def)
done
lemma (in Group) isom_unit:"⟦G » H; G » K; H = {𝟭}⟧ ⟹
Gp G H ≅ Gp G K ⟶ K = {𝟭}"
apply (simp add:isomorphic_def)
apply (rule impI)
apply (erule exE)
apply (simp add:gbijec_def)
apply (erule conjE)
apply (simp add:gsurjec_def ginjec_def)
apply (erule conjE)
apply (simp add:Gp_carrier)
apply (simp add:surj_to_def)
apply (cut_tac a = "f 𝟭" in finite1)
apply (frule sg_unit_closed [of "K"])
apply (frule singleton_sub[of "𝟭" "K"])
apply (rotate_tac 4, frule sym, thin_tac "{f 𝟭} = K")
apply (rule card_seteq[THEN sym, of "K" "{𝟭}"])
apply (simp add:finite1) apply assumption
apply (simp add:card1)
done
lemma isom_gch_unitsTr4:"⟦Group F; Group G; Ugp E; F ≅ G; F ≅ E⟧ ⟹
G ≅ E"
apply (simp add:Ugp_def)
apply (erule conjE)
apply (frule isomTr1 [of "F" "G"], assumption+)
apply (rule isomTr2 [of "G" "F" "E"], assumption+)
done
lemma isom_gch_cmp:"⟦Gchain n g; Gchain n h; f1 ∈ {i. i ≤ n} → {i. i ≤ n};
f2 ∈ {i. i ≤ n} → {i. i ≤ n}; isom_Gchains n (cmp f2 f1) g h⟧ ⟹
isom_Gchains n f1 g (cmp h f2)"
apply (simp add:isom_Gchains_def)
apply (simp add:cmp_def)
done
lemma isom_gch_transp:"⟦Gchain n f; i ≤ n; j ≤ n; i < j⟧ ⟹
isom_Gchains n (transpos i j) f (cmp f (transpos i j))"
apply (rule isom_gch_cmp [of "n" "f" _ "transpos i j" "transpos i j"],
assumption+)
apply (rule transpos_hom, assumption+) apply simp
apply (rule transpos_hom, assumption+) apply simp
apply (simp add:isom_Gchains_def)
apply (rule allI, rule impI)
apply (frule less_le_trans [of "i" "j" "n"], assumption+)
apply (frule less_imp_le [of "i" "n"])
apply (frule_tac k = ia in cmp_transpos1 [of "i" "n" "j"], assumption+)
apply simp+
apply (simp add:Gchain_def)
done
lemma isom_gch_units_transpTr0:"⟦Ugp E; Gchain n g; Gchain n h; i ≤ n; j ≤ n;
i < j; isom_Gchains n (transpos i j) g h⟧ ⟹
{i. i ≤ n ∧ g i ≅ E} - {i, j} ={i. i ≤ n ∧ h i ≅ E} - {i, j}"
apply (simp add:isom_Gchains_def)
apply (rule equalityI)
apply (rule subsetI, simp add:CollectI)
apply (erule conjE)+
apply (cut_tac x = x in transpos_id_1 [of "i" "n" "j"], simp+)
apply (subgoal_tac "g x ≅ h (transpos i j x)",
thin_tac "∀ia≤n. g ia ≅ h (transpos i j ia)", simp)
apply (subgoal_tac "Group (g x)", subgoal_tac "Group (h x)")
apply (simp add:Ugp_def) apply (erule conjE)
apply (frule_tac F = "g x" and G = "h x" in isomTr1, assumption+)
apply (rule_tac F = "h x" and G = "g x" and H = E in isomTr2, assumption+)
apply (simp add:Gchain_def, simp add:Gchain_def)
apply (thin_tac "transpos i j x = x")
apply simp
apply (rule subsetI, simp add:CollectI)
apply (erule conjE)+
apply (cut_tac x = x in transpos_id_1 [of "i" "n" "j"], simp+)
apply (subgoal_tac "g x ≅ h (transpos i j x)",
thin_tac "∀ia≤n. g ia ≅ h (transpos i j ia)")
apply simp
apply (subgoal_tac "Group (g x)",
subgoal_tac "Group (h x)")
apply (simp add:Ugp_def) apply (erule conjE)
apply (rule_tac F = "g x" and G = "h x" and H = E in isomTr2, assumption+)
apply (simp add:Gchain_def, simp add:Gchain_def)
apply (thin_tac "transpos i j x = x")
apply simp
done
lemma isom_gch_units_transpTr1:"⟦Ugp E; Gchain n g; i ≤ n; j ≤ n; g j ≅ E;
i ≠ j⟧ ⟹
insert j ({i. i ≤ n ∧ g i ≅ E} - {i, j}) = {i. i ≤ n ∧ g i ≅ E} - {i}"
apply (rule equalityI)
apply (rule subsetI) apply (simp add:CollectI)
apply blast
apply (rule subsetI) apply (simp add:CollectI)
done
lemma isom_gch_units_transpTr2:"⟦Ugp E; Gchain n g; i ≤ n; j ≤ n; i < j;
g i ≅ E⟧ ⟹
{i. i ≤ n ∧ g i ≅ E} = insert i ({i. i ≤ n ∧ g i ≅ E} - {i})"
apply (rule equalityI)
apply (rule subsetI, simp add:CollectI)
apply (rule subsetI, simp add:CollectI)
apply (erule disjE, simp)
apply simp
done
lemma isom_gch_units_transpTr3:"⟦Ugp E; Gchain n g; i ≤ n⟧
⟹ finite ({i. i ≤ n ∧ g i ≅ E} - {i})"
apply (rule finite_subset[of "{i. i ≤ n ∧ g i ≅ E} - {i}" "{i. i ≤ n}"])
apply (rule subsetI, simp+)
done
lemma isom_gch_units_transpTr4:"⟦Ugp E; Gchain n g; i ≤ n⟧
⟹ finite ({i. i ≤ n ∧ g i ≅ E} - {i, j})"
apply (rule finite_subset[of "{i. i ≤ n ∧ g i ≅ E} - {i, j}" "{i. i ≤ n}"])
apply (rule subsetI, simp+)
done
lemma isom_gch_units_transpTr5_1:"⟦Ugp E; Gchain n g; Gchain n h; i ≤ (n::nat);
j ≤ n; i < j; isom_Gchains n (transpos i j) g h⟧ ⟹ g i ≅ h j"
apply (simp add:isom_Gchains_def)
apply (frule_tac a = i in forall_spec,
frule_tac x = i and y = j and z = n in less_le_trans,
assumption+, simp,
thin_tac "∀ia ≤ n. g ia ≅ h (transpos i j ia)")
apply (simp add:transpos_ij_1 [of "i" "n" "j"])
done
lemma isom_gch_units_transpTr5_2:"⟦Ugp E; Gchain n g; Gchain n h; i ≤ n;
j ≤ n; i < j; isom_Gchains n (transpos i j) g h⟧ ⟹ g j ≅ h i"
apply (simp add:isom_Gchains_def)
apply (frule_tac x = j in spec,
thin_tac "∀ia≤ n. g ia ≅ h (transpos i j ia)")
apply (simp add:transpos_ij_2 [of "i" "n" "j"])
done
lemma isom_gch_units_transpTr6:"⟦Gchain n g; i ≤ n⟧ ⟹ Group (g i)"
apply (simp add:Gchain_def)
done
lemma isom_gch_units_transpTr7:"⟦Ugp E; i ≤ n; j ≤ n; g j ≅ h i;
Group (h i); Group (g j); ¬ g j ≅ E⟧ ⟹ ¬ h i ≅ E"
apply (rule contrapos_pp, simp+)
apply (frule isomTr2 [of "g j" "h i" "E"], assumption+)
apply (simp add:Ugp_def)
apply assumption+
apply simp
done
lemma isom_gch_units_transpTr8_1:"⟦Ugp E; Gchain n g; i ≤ n; j ≤ n;
g i ≅ E; ¬ g j ≅ E⟧ ⟹
{i. i ≤ n ∧ g i ≅ E} = {i. i ≤ n ∧ g i ≅ E} - { j }"
by auto
lemma isom_gch_units_transpTr8_2:"⟦Ugp E; Gchain n g; i ≤ n; j ≤ n;
¬ g i ≅ E; ¬ g j ≅ E⟧ ⟹
{i. i ≤ n ∧ g i ≅ E} = {i. i ≤ n ∧ g i ≅ E} - {i, j }"
by auto
lemma isom_gch_units_transp:"⟦Ugp E; Gchain n g; Gchain n h; i ≤ n; j ≤ n;
i < j; isom_Gchains n (transpos i j) g h⟧ ⟹
card {i. i ≤ n ∧ g i ≅ E} = card {i. i ≤ n ∧ h i ≅ E}"
apply (frule isom_gch_units_transpTr0 [of "E" "n" "g" "h" "i" "j"],
assumption+)
apply (frule isom_gch_units_transpTr6 [of "n" "g" "i"], assumption+)
apply (frule isom_gch_units_transpTr6 [of "n" "h" "i"], assumption+)
apply (frule isom_gch_units_transpTr6 [of "n" "g" "j"], assumption+)
apply (frule isom_gch_units_transpTr6 [of "n" "h" "j"], assumption+)
apply (unfold Ugp_def) apply (frule conjunct1) apply (fold Ugp_def)
apply (frule isom_gch_units_transpTr5_1 [of "E" "n" "g" "h" "i" "j"],
assumption+)
apply (frule isom_gch_units_transpTr5_2 [of "E" "n" "g" "h" "i" "j"],
assumption+)
apply (case_tac "g i ≅ E")
apply (case_tac "g j ≅ E")
apply (subst isom_gch_units_transpTr2 [of "E" "n" "g" "i" "j"], assumption+)
apply (subst isom_gch_units_transpTr2 [of "E" "n" "h" "i" "j"], assumption+)
apply (rule isom_gch_unitsTr4 [of "g j" "h i" "E"], assumption+)
apply (subst card_insert_disjoint)
apply (rule isom_gch_units_transpTr3, assumption+)
apply simp
apply (subst card_insert_disjoint)
apply (rule isom_gch_units_transpTr3, assumption+)
apply simp
apply (subst isom_gch_units_transpTr1[THEN sym, of "E" "n" "g" "i" "j"], assumption+) apply simp
apply (subst isom_gch_units_transpTr1[THEN sym, of "E" "n" "h" "i" "j"], assumption+)
apply (rule isom_gch_unitsTr4 [of "g i" "h j" "E"], assumption+)
apply simp
apply simp
apply (subst isom_gch_units_transpTr8_1 [of "E" "n" "g" "i" "j"], assumption+)
apply (subst isom_gch_units_transpTr8_1 [of "E" "n" "h" "j" "i"], assumption+)
apply (rule isom_gch_unitsTr4 [of "g i" "h j" "E"], assumption+)
apply (rule isom_gch_units_transpTr7 [of "E" "i" "n" "j" "g" "h"],
assumption+)
apply (subst isom_gch_units_transpTr1 [THEN sym, of "E" "n" "g" "j" "i"], assumption+) apply simp
apply (subst card_insert_disjoint)
apply (rule isom_gch_units_transpTr4, assumption+)
apply simp
apply (subst isom_gch_units_transpTr1 [THEN sym, of "E" "n" "h" "i" "j"],
assumption+)
apply (rule isom_gch_unitsTr4 [of "g i" "h j" "E"], assumption+)
apply simp
apply (subst card_insert_disjoint)
apply (rule isom_gch_units_transpTr4, assumption+)
apply simp
apply (insert Nset_2 [of "j" "i"])
apply simp
apply (case_tac "g j ≅ E")
apply (subst isom_gch_units_transpTr8_1 [of "E" "n" "g" "j" "i"], assumption+)
apply (subst isom_gch_units_transpTr8_1 [of "E" "n" "h" "i" "j"], assumption+)
apply (rule isom_gch_unitsTr4 [of "g j" "h i" "E"], assumption+)
apply (rule isom_gch_units_transpTr7 [of "E" "j" "n" "i" "g" "h"], assumption+)
apply (subst isom_gch_units_transpTr1 [THEN sym, of "E" "n" "g" "i" "j"],
assumption+)
apply simp
apply (subst isom_gch_units_transpTr1 [THEN sym, of "E" "n" "h" "j" "i"],
assumption+)
apply (rule isom_gch_unitsTr4 [of "g j" "h i" "E"], assumption+)
apply simp apply simp
apply (subst isom_gch_units_transpTr8_2 [of "E" "n" "g" "i" "j"], assumption+)
apply (subst isom_gch_units_transpTr8_2 [of "E" "n" "h" "i" "j"], assumption+)
apply (rule isom_gch_units_transpTr7[of "E" "i" "n" "j" "g" "h"], assumption+)
apply (rule isom_gch_units_transpTr7[of "E" "j" "n" "i" "g" "h"], assumption+)
apply simp
done
lemma TR_isom_gch_units:"⟦Ugp E; Gchain n f; i ≤ n; j ≤ n; i < j⟧ ⟹
card {k. k ≤ n ∧ f k ≅ E} = card {k. k ≤ n ∧
(cmp f (transpos i j)) k ≅ E}"
apply (frule isom_gch_transp [of "n" "f" "i" "j"], assumption+)
apply (rule isom_gch_units_transp [of "E" "n" "f" _ "i" "j"], assumption+)
apply (simp add:Gchain_def)
apply (rule allI, rule impI)
apply (simp add:cmp_def)
apply (cut_tac l = l in transpos_mem [of "i" "n" "j"],
frule_tac x = i and y = j and z = n in less_le_trans, assumption+,
simp)
apply simp+
done
lemma TR_isom_gch_units_1:"⟦Ugp E; Gchain n f; i ≤ n; j ≤ n; i < j⟧ ⟹
card {k. k ≤ n ∧ f k ≅ E} = card {k. k ≤ n ∧ f (transpos i j k) ≅ E}"
apply (frule TR_isom_gch_units [of "E" "n" "f" "i" "j"], assumption+)
apply (simp add:cmp_def)
done
lemma isom_tgch_unitsTr0_1:"⟦Ugp E; Gchain (Suc n) g; g (Suc n) ≅ E⟧ ⟹
{i. i ≤ (Suc n) ∧ g i ≅ E} = insert (Suc n) {i. i ≤ n ∧ g i ≅ E}"
apply (rule equalityI)
apply (rule subsetI)
apply (simp add:CollectI)
apply (case_tac "x = Suc n") apply simp
apply (erule conjE) apply simp
apply (rule subsetI)
apply (simp add:CollectI)
apply (erule disjE) apply simp
apply simp
done
lemma isom_tgch_unitsTr0_2:"Ugp E ⟹ finite ({i. i ≤ (n::nat) ∧ g i ≅ E})"
apply (rule finite_subset[of "{i. i ≤ n ∧ g i ≅ E}" "{i. i ≤ n}"])
apply (rule subsetI, simp+)
done
lemma isom_tgch_unitsTr0_3:"⟦Ugp E; Gchain (Suc n) g; ¬ g (Suc n) ≅ E⟧
⟹ {i. i ≤ (Suc n) ∧ g i ≅ E} = {i. i ≤ n ∧ g i ≅ E}"
apply (rule equalityI)
apply (rule subsetI, simp add:CollectI)
apply (case_tac "x = Suc n", simp, erule conjE)
apply arith
apply (rule subsetI, simp add:CollectI)
done
lemma isom_tgch_unitsTr0:"⟦Ugp E;
card {i. i ≤ n ∧ g i ≅ E} = card {i. i ≤ n ∧ h i ≅ E};
Gchain (Suc n) g ∧ Gchain (Suc n) h ∧ Gch_bridge (Suc n) g h f;
f (Suc n) = Suc n⟧ ⟹
card {i. i ≤ (Suc n) ∧ g i ≅ E} =
card {i. i ≤ (Suc n) ∧ h i ≅ E}"
apply (erule conjE)+
apply (frule isom_gch_units_transpTr6 [of "Suc n" "g" "Suc n"])
apply (simp add:n_in_Nsetn)
apply (frule isom_gch_units_transpTr6 [of "Suc n" "h" "Suc n"])
apply (simp add:n_in_Nsetn)
apply (simp add:Gch_bridge_def isom_Gchains_def)
apply (erule conjE)+
apply (rotate_tac -1,
frule_tac a = "Suc n" in forall_spec,
thin_tac "∀i≤Suc n. g i ≅ h (f i)", simp+,
thin_tac "∀i≤Suc n. g i ≅ h (f i)")
apply (case_tac "g (Suc n) ≅ E")
apply (subst isom_tgch_unitsTr0_1 [of "E" "n" "g"], assumption+)
apply (subst isom_tgch_unitsTr0_1 [of "E" "n" "h"], assumption+)
apply (frule isom_gch_unitsTr4 [of "g (Suc n)" "h (Suc n)" "E"], assumption+)
apply (subst card_insert_disjoint)
apply (rule finite_subset[of "{i. i ≤ n ∧ g i ≅ E}" "{i. i ≤ n}"])
apply (rule subsetI, simp) apply (simp)
apply simp
apply (subst card_insert_disjoint)
apply (rule finite_subset[of "{i. i ≤ n ∧ h i ≅ E}" "{i. i ≤ n}"])
apply (rule subsetI, simp) apply simp apply simp
apply simp
apply (cut_tac isom_gch_units_transpTr7[of E "Suc n" "Suc n" "Suc n" g h])
apply (subgoal_tac "{i. i ≤ Suc n ∧ g i ≅ E} = {i. i ≤ n ∧ g i ≅ E}",
subgoal_tac "{i. i ≤ Suc n ∧ h i ≅ E} = {i. i ≤ n ∧ h i ≅ E}",
simp)
apply (rule equalityI, rule subsetI, simp,
erule conjE, case_tac "x = Suc n", simp,
frule_tac x = x and y = "Suc n" in le_imp_less_or_eq,
thin_tac "x ≤ Suc n", simp,
rule subsetI, simp)
apply (rule equalityI, rule subsetI, simp,
erule conjE, case_tac "x = Suc n", simp,
frule_tac m = x and n = "Suc n" in noteq_le_less, assumption+,
simp,
rule subsetI, simp)
apply simp+
done
lemma isom_gch_unitsTr1_1:" ⟦Ugp E; Gchain (Suc n) g ∧ Gchain (Suc n) h
∧ Gch_bridge (Suc n) g h f; f (Suc n) = Suc n⟧ ⟹
Gchain n g ∧ Gchain n h ∧ Gch_bridge n g h f"
apply (erule conjE)+
apply (frule Gchain_pre [of "n" "g"])
apply (frule Gchain_pre [of "n" "h"])
apply simp
apply (simp add:Gch_bridge_def) apply (erule conjE)+
apply (rule conjI)
apply (rule Nset_injTr2, assumption+)
apply (rule conjI)
apply (rule Nset_injTr1, assumption+)
apply (simp add:isom_Gchains_def)
done
lemma isom_gch_unitsTr1_2:"⟦Ugp E; f (Suc n) ≠ Suc n; inj_on f {i. i≤(Suc n)};
∀l ≤ (Suc n). f l ≤ (Suc n)⟧ ⟹
(cmp (transpos (f (Suc n)) (Suc n)) f) (Suc n) = Suc n"
apply (simp add:cmp_def)
apply (cut_tac n_in_Nsetn[of "Suc n"], simp)
apply (frule_tac a = "Suc n" in forall_spec,
simp,
thin_tac "∀l≤Suc n. f l ≤ Suc n")
apply (rule transpos_ij_1, assumption+, simp+)
done
lemma isom_gch_unitsTr1_3:"⟦Ugp E; f (Suc n) ≠ Suc n;
∀l ≤ (Suc n). f l ≤ (Suc n); inj_on f {i. i ≤ (Suc n)}⟧ ⟹
inj_on (cmp (transpos (f (Suc n)) (Suc n)) f) {i. i ≤ (Suc n)}"
apply (cut_tac n_in_Nsetn[of "Suc n"], simp)
apply (frule_tac a = "Suc n" in forall_spec, simp)
apply (frule transpos_hom [of "f (Suc n)" "Suc n" "Suc n"], simp+)
thm transpos_inj
apply (cut_tac transpos_inj [of "f (Suc n)" "Suc n" "Suc n"])
apply (cut_tac cmp_inj_1 [of f "{i. i ≤ (Suc n)}" "{i. i ≤ (Suc n)}"
"transpos (f (Suc n)) (Suc n)" "{i. i ≤ (Suc n)}"])
apply simp+
done
lemma isom_gch_unitsTr1_4:"⟦Ugp E; f (Suc n) ≠ Suc n; inj_on f {i. i≤(Suc n)};
∀l ≤ (Suc n). f l ≤ (Suc n)⟧ ⟹
inj_on (cmp (transpos (f (Suc n)) (Suc n)) f) {i. i ≤ n}"
apply (frule isom_gch_unitsTr1_3 [of "E" "f" "n"], assumption+)
apply (frule isom_gch_unitsTr1_2 [of "E" "f" "n"], assumption+)
apply (rule Nset_injTr1 [of "n" "(cmp (transpos (f (Suc n)) (Suc n)) f)"])
apply (rule allI, rule impI)
apply (simp add:cmp_def)
apply (cut_tac l = "f l" in transpos_mem[of "f (Suc n)" "Suc n" "Suc n"],
simp+)
done
lemma isom_gch_unitsTr1_5:"⟦Ugp E; Gchain (Suc n) g ∧ Gchain (Suc n) h ∧
Gch_bridge (Suc n) g h f; f (Suc n) ≠ Suc n ⟧ ⟹
Gchain n g ∧ Gchain n (cmp h (transpos (f (Suc n)) (Suc n))) ∧
Gch_bridge n g (cmp h (transpos (f (Suc n)) (Suc n)))
(cmp (transpos (f (Suc n)) (Suc n)) f)"
apply (erule conjE)+
apply (simp add:Gchain_pre [of "n" "g"])
apply (rule conjI)
apply (simp add:Gchain_def) apply (rule allI, rule impI)
apply (simp add:Gch_bridge_def) apply (frule conjunct1)
apply (fold Gch_bridge_def)
apply (cut_tac n_in_Nsetn[of "Suc n"])
apply (cut_tac l = l in transpos_mem [of "f (Suc n)" "Suc n" "Suc n"])
apply simp+
apply (simp add:cmp_def)
apply (simp add:Gch_bridge_def)
apply (erule conjE)+
apply (rule conjI)
apply (cut_tac n_in_Nsetn[of "Suc n"])
apply (rule allI, rule impI, simp add:cmp_def)
apply (frule isom_gch_unitsTr1_2 [of "E" "f" "n"], assumption+)
apply (frule isom_gch_unitsTr1_3 [of "E" "f" "n"], assumption+)
apply (cut_tac l = "f l" in transpos_mem[of "f (Suc n)" "Suc n" "Suc n"])
apply simp+
apply (simp add:inj_on_def[of "cmp (transpos (f (Suc n)) (Suc n)) f"])
apply (rotate_tac -2,
frule_tac a = "Suc n" in forall_spec, simp) apply (
thin_tac "∀x≤Suc n.
∀y≤Suc n.
cmp (transpos (f (Suc n)) (Suc n)) f x =
cmp (transpos (f (Suc n)) (Suc n)) f y ⟶
x = y") apply (
rotate_tac -1,
frule_tac x = l in spec) apply (
thin_tac "∀y≤Suc n.
cmp (transpos (f (Suc n)) (Suc n)) f (Suc n) =
cmp (transpos (f (Suc n)) (Suc n)) f y ⟶
Suc n = y")
apply (metis Nfunc_iNJTr comp_transpos_1 le_SucE le_SucI le_refl less_Suc_eq_le transpos_ij_2)
apply (simp add:isom_gch_unitsTr1_4)
apply (simp add:isom_Gchains_def[of "n"])
apply (rule allI, rule impI)
apply (simp add:cmp_def)
apply (cut_tac l = "f i" in transpos_mem[of "f (Suc n)" "Suc n" "Suc n"])
apply simp+
apply (cut_tac k = "f i" in cmp_transpos1 [of "f (Suc n)" "Suc n" "Suc n"])
apply simp+
apply (simp add:cmp_def)
apply (thin_tac "transpos (f (Suc n)) (Suc n) (transpos (f (Suc n)) (Suc n) (f i)) = f i")
apply (simp add:isom_Gchains_def)
done
lemma isom_gch_unitsTr1_6:"⟦Ugp E; f (Suc n) ≠ Suc n; Gchain (Suc n) g ∧
Gchain (Suc n) h ∧ Gch_bridge (Suc n) g h f⟧ ⟹ Gchain (Suc n) g ∧
Gchain (Suc n) (cmp h (transpos (f (Suc n)) (Suc n))) ∧
Gch_bridge (Suc n) g (cmp h (transpos (f (Suc n)) (Suc n)))
(cmp (transpos (f (Suc n)) (Suc n)) f)"
apply (erule conjE)+
apply simp
apply (simp add:Gch_bridge_def, frule conjunct1)
apply (frule conjunct2, fold Gch_bridge_def, erule conjE)
apply (rule conjI)
apply (thin_tac "Gchain (Suc n) g")
apply (simp add:Gchain_def, rule allI, rule impI)
apply (simp add:cmp_def)
apply (cut_tac n_in_Nsetn[of "Suc n"])
apply (cut_tac l = l in transpos_mem [of "f (Suc n)" "Suc n" "Suc n"],
simp+)
apply (simp add:Gch_bridge_def)
apply (cut_tac n_in_Nsetn[of "Suc n"])
apply (rule conjI)
apply (rule allI, rule impI)
apply (simp add:cmp_def)
apply (rule_tac l = "f l" in transpos_mem [of "f (Suc n)" "Suc n" "Suc n"],
simp+)
apply (rule conjI)
apply (rule isom_gch_unitsTr1_3 [of "E" "f" "n"], assumption+)
apply (simp add:isom_Gchains_def, rule allI, rule impI)
apply (simp add:cmp_def)
apply (cut_tac k = "f i" in cmp_transpos1 [of "f (Suc n)" "Suc n" "Suc n"],
simp+)
apply (simp add:cmp_def)
done
lemma isom_gch_unitsTr1_7_0:"⟦Gchain (Suc n) h; k ≠ Suc n; k ≤ (Suc n)⟧
⟹ Gchain (Suc n) (cmp h (transpos k (Suc n)))"
apply (simp add:Gchain_def)
apply (rule allI, rule impI)
apply (simp add:cmp_def)
apply (insert n_in_Nsetn [of "Suc n"])
apply (cut_tac l = l in transpos_mem [of "k" "Suc n" "Suc n"])
apply simp+
done
lemma isom_gch_unitsTr1_7_1:"⟦Ugp E; Gchain (Suc n) h; k ≠ Suc n; k ≤ (Suc n)⟧
⟹ {i. i ≤ (Suc n) ∧ cmp h (transpos k (Suc n)) i ≅ E} - {k , Suc n} =
{i. i ≤ (Suc n) ∧ h i ≅ E} - {k , Suc n}"
apply (cut_tac n_in_Nsetn[of "Suc n"])
apply auto
apply (frule_tac x = x in transpos_id_1 [of "k" "Suc n" "Suc n"], simp+)
apply (simp add:cmp_def)
apply (simp add:cmp_def)
apply (cut_tac x = x in transpos_id_1 [of "k" "Suc n" "Suc n"], simp+)
done
lemma isom_gch_unitsTr1_7_2:"⟦Ugp E; Gchain (Suc n) h; k ≠ Suc n;
k ≤ (Suc n); h (Suc n) ≅ E⟧ ⟹
cmp h (transpos k (Suc n)) k ≅ E"
apply (simp add:cmp_def)
apply (subst transpos_ij_1 [of "k" "Suc n" "Suc n"], simp+)
done
lemma isom_gch_unitsTr1_7_3:"⟦Ugp E; Gchain (Suc n) h; k ≠ Suc n;
k ≤ (Suc n); h k ≅ E⟧ ⟹ cmp h (transpos k (Suc n)) (Suc n) ≅ E"
apply (simp add:cmp_def)
apply (subst transpos_ij_2 [of "k" "Suc n" "Suc n"], assumption+)
apply simp apply assumption+
done
lemma isom_gch_unitsTr1_7_4:"⟦Ugp E; Gchain (Suc n) h; k ≠ Suc n;
k ≤ (Suc n); ¬ h (Suc n) ≅ E⟧ ⟹
¬ cmp h (transpos k (Suc n)) k ≅ E"
apply (rule contrapos_pp, simp+)
apply (simp add:cmp_def)
apply (insert n_in_Nsetn [of "Suc n"])
apply (simp add: transpos_ij_1 [of "k" "Suc n" "Suc n"])
done
lemma isom_gch_unitsTr1_7_5:"⟦Ugp E; Gchain (Suc n) h; k ≠ Suc n;
k ≤ (Suc n); ¬ h k ≅ E⟧ ⟹
¬ cmp h (transpos k (Suc n)) (Suc n) ≅ E"
apply (rule contrapos_pp, simp+)
apply (simp add:cmp_def)
apply (insert n_in_Nsetn [of "Suc n"])
apply (simp add:transpos_ij_2 [of "k" "Suc n" "Suc n"])
done
lemma isom_gch_unitsTr1_7_6:"⟦Ugp E; Gchain (Suc n) h; k ≠ Suc n;
k ≤ (Suc n); h (Suc n) ≅ E; h k ≅ E⟧ ⟹
{i. i ≤ (Suc n) ∧ h i ≅ E} =
insert k (insert (Suc n) ({i. i ≤ (Suc n) ∧ h i ≅ E} - {k, Suc n}))"
apply auto
done
lemma isom_gch_unitsTr1_7_7:"⟦Ugp E; Gchain (Suc n) h; k ≠ Suc n;
k ≤ (Suc n); h (Suc n) ≅ E; ¬ h k ≅ E⟧ ⟹
{i. i ≤ (Suc n) ∧ h i ≅ E} =
insert (Suc n) ({i. i ≤ (Suc n) ∧ h i ≅ E} - {k, Suc n})"
apply auto
done
lemma isom_gch_unitsTr1_7_8:"⟦Ugp E; Gchain (Suc n) h; k ≠ Suc n;
k ≤ (Suc n); ¬ h (Suc n) ≅ E; h k ≅ E⟧ ⟹
{i. i ≤ (Suc n) ∧ h i ≅ E} =
insert k ({i. i ≤ (Suc n) ∧ h i ≅ E} - {k, Suc n})"
apply auto
done
lemma isom_gch_unitsTr1_7_9:"⟦Ugp E; Gchain (Suc n) h; k ≠ Suc n;
k ≤ (Suc n); ¬ h (Suc n) ≅ E; ¬ h k ≅ E⟧ ⟹
{i. i ≤ (Suc n) ∧ h i ≅ E} =
{i. i ≤ (Suc n) ∧ h i ≅ E} - {k, Suc n}"
apply auto
done
lemma isom_gch_unitsTr1_7:"⟦Ugp E; Gchain (Suc n) h; k ≠ Suc n;
k ≤ (Suc n)⟧ ⟹ card {i. i ≤ (Suc n) ∧
cmp h (transpos k (Suc n)) i ≅ E} = card {i. i ≤ (Suc n) ∧ h i ≅ E}"
apply (cut_tac finite_Collect_le_nat[of "Suc n"])
apply (frule isom_gch_unitsTr1_7_1 [of "E" "n" "h" "k"], assumption+)
apply (cut_tac n_in_Nsetn[of "Suc n"])
apply (case_tac "h (Suc n) ≅ E")
apply (case_tac "h k ≅ E")
apply (subst isom_gch_unitsTr1_7_6 [of "E" "n" "h" "k"], assumption+)
apply (frule isom_gch_unitsTr1_7_2 [of "E" "n" "h" "k"], assumption+)
apply (frule isom_gch_unitsTr1_7_3 [of "E" "n" "h" "k"], assumption+)
apply (frule isom_gch_unitsTr1_7_0 [of "n" "h" "k" ], assumption+)
apply (subst isom_gch_unitsTr1_7_6 [of "E" "n" "cmp h (transpos k (Suc n))" "k"], assumption+)
apply (subst card_insert_disjoint)
apply (rule finite_subset[of "insert (Suc n)
({i. i ≤ (Suc n) ∧ cmp h (transpos k (Suc n)) i ≅ E} -
{k, Suc n})" "{i. i ≤ (Suc n)}"])
apply (rule subsetI, simp)
apply (erule disjE)
apply simp apply simp apply assumption
apply simp
apply (subst card_insert_disjoint)+
apply (rule finite_subset[of "{i. i ≤ (Suc n) ∧ cmp h (transpos k (Suc n)) i ≅ E} - {k, Suc n}" "{i. i ≤ (Suc n)}"])
apply (rule subsetI, simp) apply assumption
apply simp
apply (subst card_insert_disjoint)+
apply (rule finite_subset[of "insert (Suc n) ({i. i ≤ (Suc n) ∧ h i ≅ E} - {k, Suc n})" "{i. i ≤ (Suc n)}"])
apply (rule subsetI, simp) apply (erule disjE, simp add:n_in_Nsetn) apply simp
apply assumption apply simp
apply (subst card_insert_disjoint)
apply (rule finite_subset[of "{i. i ≤ (Suc n) ∧ h i ≅ E} - {k, Suc n}"
"{i. i ≤ (Suc n)}"])
apply (rule subsetI, simp) apply assumption apply simp
apply simp
apply (subst isom_gch_unitsTr1_7_7[of "E" "n" "h" "k"], assumption+)
apply (frule isom_gch_unitsTr1_7_0[of "n" "h" "k"], assumption+)
apply (subst isom_gch_unitsTr1_7_8[of "E" "n" "cmp h (transpos k (Suc n))"
"k"], assumption+)
apply (subst cmp_def)
apply (subst transpos_ij_2[of "k" "Suc n" "Suc n"], assumption+, simp+)
apply (simp add:cmp_def, simp add:transpos_ij_1)
apply (subst card_insert_disjoint)
apply (rule finite_subset[of "{i. i ≤ (Suc n) ∧
cmp h (transpos k (Suc n)) i ≅ E} - {k, Suc n}" "{i. i ≤ (Suc n)}"])
apply (rule subsetI, simp) apply assumption apply simp
apply (subst card_insert_disjoint)
apply (rule finite_subset[of "{i. i ≤ (Suc n) ∧ h i ≅ E} - {k, Suc n}"
"{i. i ≤ (Suc n)}"])
apply (rule subsetI, simp) apply assumption apply simp
apply simp
apply (case_tac "h k ≅ E")
apply (subst isom_gch_unitsTr1_7_8 [of "E" "n" "h" "k"], assumption+)
apply (frule isom_gch_unitsTr1_7_3 [of "E" "n" "h" "k"], assumption+)
apply (frule isom_gch_unitsTr1_7_4 [of "E" "n" "h" "k"], assumption+)
apply (frule isom_gch_unitsTr1_7_0 [of "n" "h" "k" ], assumption+)
apply (subst isom_gch_unitsTr1_7_7 [of "E" "n" "cmp h (transpos k (Suc n))"
"k"], assumption+)
apply (subst card_insert_disjoint)
apply (rule isom_gch_units_transpTr4, assumption+) apply simp
apply (subst card_insert_disjoint)
apply (rule isom_gch_units_transpTr4, assumption+) apply simp apply simp
apply (subst isom_gch_unitsTr1_7_9 [of "E" "n" "h" "k"], assumption+)
apply (frule_tac isom_gch_unitsTr1_7_4 [of "E" "n" "h" "k"], assumption+)
apply (frule_tac isom_gch_unitsTr1_7_5 [of "E" "n" "h" "k"], assumption+)
apply (frule isom_gch_unitsTr1_7_0 [of "n" "h" "k" ], assumption+)
apply (subst isom_gch_unitsTr1_7_9 [of "E" "n" " cmp h (transpos k (Suc n))" "k"], assumption+) apply simp
done
lemma isom_gch_unitsTr1:"Ugp E ⟹ ∀g. ∀h. ∀f. Gchain n g ∧
Gchain n h ∧ Gch_bridge n g h f ⟶ card {i. i ≤ n ∧ g i ≅ E} =
card {i. i ≤ n ∧ h i ≅ E}"
apply (induct_tac n)
apply (clarify)
apply (simp add:Gch_bridge_def isom_Gchains_def Collect_conv_if)
apply rule
apply (simp add:Gchain_def)
apply(metis isom_gch_unitsTr4)
apply (simp add:Gchain_def)
apply (metis Ugp_def isomTr2)
apply (rule allI)+ apply (rule impI)
apply (case_tac "f (Suc n) = Suc n")
apply (subgoal_tac "card {i. i ≤ n ∧ g i ≅ E} = card {i. i ≤ n ∧ h i ≅ E}")
apply (thin_tac " ∀g h f.
Gchain n g ∧ Gchain n h ∧ Gch_bridge n g h f ⟶
card {i. i ≤ n ∧ g i ≅ E} =
card {i. i ≤ n ∧ h i ≅ E}")
apply (rule isom_tgch_unitsTr0, assumption+)
apply (frule_tac n = n and g = g and h = h and f = f in
isom_gch_unitsTr1_1 [of "E"], assumption+)
apply (rotate_tac -1)
apply (thin_tac "Gchain (Suc n) g ∧ Gchain (Suc n) h ∧ Gch_bridge (Suc n) g h f")
apply blast
apply (frule_tac n = n and g = g and h = h and f = f in isom_gch_unitsTr1_5 [of "E"], assumption+)
apply (subgoal_tac "card {i. i ≤ n ∧ g i ≅ E} = card {i. i ≤ n ∧
(cmp h (transpos (f (Suc n)) (Suc n))) i ≅ E}")
prefer 2 apply blast
apply (thin_tac "∀g h f.
Gchain n g ∧ Gchain n h ∧ Gch_bridge n g h f ⟶
card {i. i ≤ n ∧ g i ≅ E} =
card {i. i ≤ n ∧ h i ≅ E}")
apply (thin_tac "Gchain n g ∧
Gchain n (cmp h (transpos (f (Suc n)) (Suc n))) ∧
Gch_bridge n g (cmp h (transpos (f (Suc n)) (Suc n)))
(cmp (transpos (f (Suc n)) (Suc n)) f)")
apply (subgoal_tac "cmp (transpos (f (Suc n)) (Suc n)) f (Suc n) = Suc n")
apply (frule_tac n = n and g = g and h = "cmp h (transpos (f (Suc n)) (Suc n))" and f = "cmp (transpos (f (Suc n)) (Suc n)) f" in isom_tgch_unitsTr0 [of "E"], assumption+)
apply (rule isom_gch_unitsTr1_6, assumption+)
apply (thin_tac "card {i. i ≤ n ∧ g i ≅ E} = card {i. i ≤ n ∧
cmp h (transpos (f (Suc n)) (Suc n)) i ≅ E}")
prefer 2
apply (erule conjE)+
apply (simp add:Gch_bridge_def) apply (erule conjE)+
apply (rule isom_gch_unitsTr1_2, assumption+)
apply simp
apply (erule conjE)+
apply (rule isom_gch_unitsTr1_7, assumption+)
apply (simp add:Gch_bridge_def)
done
lemma isom_gch_units:"⟦Ugp E; Gchain n g; Gchain n h; Gch_bridge n g h f⟧ ⟹
card {i. i ≤ n ∧ g i ≅ E} = card {i. i ≤ n ∧ h i ≅ E}"
apply (simp add:isom_gch_unitsTr1)
done
lemma isom_gch_units_1:"⟦Ugp E; Gchain n g; Gchain n h; ∃f. Gch_bridge n g h f⟧
⟹ card {i. i ≤ n ∧ g i ≅ E} = card {i. i ≤ n ∧ h i ≅ E}"
apply (auto del:equalityI)
apply (simp add:isom_gch_units)
done
section "Jordan Hoelder theorem"
subsection ‹‹Rfn_tools›. Tools to treat refinement of a cmpser, rtos.›
lemma rfn_tool1:"⟦ 0 < (r::nat); (k::nat) = i * r + j; j < r ⟧
⟹ (k div r) = i"
proof -
assume p1: "0 < r" and p2: "k = i * r + j" and p3: "j < r"
from p1 and p2 have q1: "(j + i * r) div r = i + j div r"
apply (simp add:div_mult_self1 [of "r" "j" "i" ]) done
from p1 and p3 have q2: "j div r = 0"
apply (simp add:div_if) done
from q1 and q2 have q3:"(j + i * r) div r = i"
apply simp done
from q3 have q4: "(i * r + j) div r = i" apply (simp add:add.commute)
done
from p2 and q4 show ?thesis
apply simp
done
qed
lemma pos_mult_pos:"⟦ 0 < (r::nat); 0 < s⟧ ⟹ 0 < r * s"
by simp
lemma rfn_tool1_1:"⟦ 0 < (r::nat); j < r ⟧
⟹ (i * r + j) div r = i"
apply (rule rfn_tool1 [of "r" "i * r + j" "i" "j"], assumption+)
apply simp+
done
lemma rfn_tool2:"(a::nat) < s ⟹ a ≤ s - Suc 0"
apply (rule less_le_diff) apply simp+
done
lemma rfn_tool3:"(0::nat) ≤ m ⟹ (m + n) - n = m"
apply auto
done
lemma rfn_tool11:"⟦0 < b; (a::nat) ≤ b - Suc 0⟧ ⟹ a < b"
apply (frule le_less_trans [of "a" "b - Suc 0" "b"])
apply simp+
done
lemma rfn_tool12:"⟦0 < (s::nat); (i::nat) mod s = s - 1 ⟧ ⟹
Suc (i div s) = (Suc i) div s "
proof -
assume p1:"0 < s" and p2:"i mod s = s - 1"
have q1:"i div s * s + i mod s = i"
apply (insert div_mult_mod_eq [of "i" "s"])
apply simp done
have q2:"Suc (i div s * s + i mod s) = i div s * s + Suc (i mod s)"
apply (insert add_Suc_right [THEN sym, of "i div s * s" "i mod s"])
apply assumption done
from p1 and p2 and q2 have q3:"Suc (i div s * s + i mod s) = i div s * s + s"
apply simp done
from q3 have q4:"Suc (i div s * s + i mod s) = Suc (i div s) * s "
apply simp done
from p1 and q1 and q4 show ?thesis
apply auto
done
qed
lemma rfn_tool12_1:"⟦0 < (s::nat); (l::nat) mod s < s - 1 ⟧ ⟹
Suc (l mod s) = (Suc l) mod s "
apply (insert div_mult_mod_eq [of "l" "s"])
apply (insert add_Suc_right [THEN sym, of "l div s * s" "l mod s"])
apply (insert mod_mult_self1 [of "Suc (l mod s)" "l div s" "s"])
apply (frule Suc_mono [of "l mod s" "s - 1"]) apply simp
done
lemma rfn_tool12_2:"⟦0 < (s::nat); (i::nat) mod s = s - Suc 0⟧ ⟹
(Suc i) mod s = 0"
apply (insert div_mult_mod_eq [THEN sym, of "i" "s"])
apply (insert add_Suc_right [THEN sym, of "i div s * s" "i mod s"])
apply simp
done
lemma rfn_tool13:"⟦ (0::nat) < r; a = b ⟧ ⟹ a mod r = b mod r"
apply simp
done
lemma rfn_tool13_1:"⟦ (0::nat) < r; a = b ⟧ ⟹ a div r = b div r"
apply simp
done
lemma div_Tr1:"⟦ (0::nat) < r; 0 < s; l ≤ s * r⟧ ⟹ l div s ≤ r"
apply (frule_tac m = l and n = "s * r" and k = s in div_le_mono)
apply simp
done
lemma div_Tr2:"⟦(0::nat) < r; 0 < s; l < s * r⟧ ⟹ l div s ≤ r - Suc 0"
apply (rule contrapos_pp, simp+)
apply (simp add: not_less [symmetric, of "l div s" "r - Suc 0"])
apply (frule Suc_leI [of "r - Suc 0" "l div s"])
apply simp
apply (frule less_imp_le [of "l" "s * r"])
apply (frule div_le_mono [of "l" "s * r" "s"]) apply simp
apply (insert div_mult_mod_eq [THEN sym, of "l" "s"])
apply (frule sym) apply (thin_tac "r = l div s")
apply simp apply (simp add:mult.commute [of "r" "s"])
done
lemma div_Tr3:"⟦(0::nat) < r; 0 < s; l < s * r⟧ ⟹ Suc (l div s) ≤ r"
apply (frule_tac div_Tr2[of "r" "s"], assumption+,
cut_tac n1 = "l div s" and m1 = "r - Suc 0" in Suc_le_mono[THEN sym])
apply simp
done
lemma div_Tr3_1:"⟦(0::nat) < r; 0 < s; l mod s = s - 1⟧ ⟹ Suc l div s = Suc (l div s)"
apply (frule rfn_tool12 [of "s" "l"], assumption+)
apply (rotate_tac -1) apply simp
done
lemma div_Tr3_2:"⟦(0::nat) < r; 0 < s; l mod s < s - 1⟧ ⟹
l div s = Suc l div s"
apply (frule Suc_mono [of "l mod s" "s - 1"]) apply simp
apply (cut_tac div_mult_mod_eq [of "l" "s"])
apply (cut_tac add_Suc_right [THEN sym, of "l div s * s" "l mod s"])
apply (cut_tac zero_less_Suc[of "l mod s"],
frule less_trans[of "0" "Suc (l mod s)" "s"], assumption+)
apply (frule rfn_tool13_1 [of "s" "Suc (l div s * s + l mod s)" "l div s * s + Suc (l mod s)"], assumption+)
apply (subgoal_tac "s ≠ 0")
apply (frule div_mult_self1 [of "s" "Suc (l mod s)" "l div s"])
apply simp_all
done
lemma mod_div_injTr:"⟦(0::nat) < r; x mod r = y mod r; x div r = y div r⟧
⟹ x = y"
apply (cut_tac div_mult_mod_eq[of "x" "r"])
apply simp
done
definition
rtos :: "[nat, nat] ⇒ (nat ⇒ nat)" where
"rtos r s i = (if i < r * s then (i mod s) * r + i div s else r * s)"
lemma rtos_hom0:"⟦(0::nat) < r; (0::nat) < s; i ≤ (r * s - Suc 0)⟧ ⟹
i div s < r"
apply (frule div_Tr2 [of "r" "s" "i"], assumption+)
apply (simp add:mult.commute [of "r" "s"])
apply (rule le_less_trans, assumption+) apply simp
apply (rule le_less_trans, assumption+) apply simp
done
lemma rtos_hom1:"⟦(0::nat) < r; 0 < s; l ≤ (r * s - Suc 0)⟧ ⟹
(rtos r s) l ≤ (s * r - Suc 0)"
apply (simp add:rtos_def)
apply (frule le_less_trans [of "l" "r * s - Suc 0" "r * s"])
apply simp
apply simp
apply (frule mod_less_divisor [of "s" "l"])
apply (frule less_le_diff [of "l mod s" "s"])
apply (frule_tac i = "l mod s" and j = "s - Suc 0" and k = r and l = r in
mult_le_mono, simp)
apply (frule_tac i = "l mod s * r" and j = "(s - Suc 0) * r" and k = "l div s" and l = "r - Suc 0" in add_le_mono)
apply (rule div_Tr2, assumption+, simp add:mult.commute)
apply (simp add:diff_mult_distrib)
done
lemma rtos_hom2:"⟦(0::nat) < r; (0::nat) < s; l ≤ (r * s - Suc 0)⟧ ⟹
rtos r s l ≤ (r * s - Suc 0)"
apply (insert rtos_hom1 [of "r" "s"]) apply simp
apply (simp add:mult.commute)
done
lemma rtos_hom3:"⟦(0::nat) < r; 0 < s; i ≤ (r * s - Suc 0) ⟧ ⟹
(rtos r s i div r) = i mod s"
apply (simp add:rtos_def)
apply (frule le_less_trans [of "i" "r * s - Suc 0" "r * s"])
apply simp apply simp
apply (auto simp add: div_mult2_eq [symmetric] mult.commute)
done
lemma rtos_hom3_1:"⟦(0::nat) < r; (0::nat) < s; i ≤ (r * s - Suc 0) ⟧ ⟹
(rtos r s i mod r) = i div s"
apply (simp add:rtos_def)
apply (simp add:rfn_tool11 [of "r * s" "i"])
apply (frule rtos_hom0 [of "r" "s" "i"], assumption+)
apply (simp add:mem_of_Nset)
done
lemma rtos_hom5:"⟦(0::nat) < r; (0::nat) < s; i ≤ (r *s - Suc 0);
i div s = r - Suc 0 ⟧ ⟹ Suc (rtos r s i) div r = Suc (i mod s)"
apply (frule mult_less_mono2[of "0" "s" "r"],
simp only:mult.commute,
simp only:mult_0_right)
apply (frule rfn_tool11 [of "r * s" "i"], assumption+)
apply (simp add: rtos_def)
done
lemma rtos_hom7:"⟦(0::nat) < r; (0::nat) < s; i ≤ (r * s - Suc 0);
i div s = r - Suc 0 ⟧ ⟹ Suc (rtos r s i) mod r = 0"
apply (frule rtos_hom0 [of "r" "s" "i"], assumption+)
apply (simp add: rtos_def)
apply (frule mult_less_mono2[of "0" "s" "r"],
simp only:mult.commute,
simp only:mult_0_right)
apply (simp add: rfn_tool11 [of "r * s" "i"])
done
lemma rtos_inj:"⟦ (0::nat) < r; (0::nat) < s ⟧ ⟹
inj_on (rtos r s) {i. i ≤ (r * s - Suc 0)}"
apply (simp add:inj_on_def)
apply ((rule allI, rule impI)+, rule impI)
apply (frule_tac i1 = x in rtos_hom3_1[THEN sym, of "r" "s"], assumption+,
frule_tac i1 = x in rtos_hom3[THEN sym, of "r" "s"], assumption+,
frule_tac i = y in rtos_hom3_1[of "r" "s"], assumption+,
frule_tac i = y in rtos_hom3[of "r" "s"], assumption+)
apply simp
apply (rule_tac x = x and y = y in mod_div_injTr[of "s"], assumption+)
done
lemma rtos_rs_Tr1:"⟦(0::nat) < r; 0 < s ⟧ ⟹ rtos r s (r * s) = r * s"
apply (simp add:rtos_def)
done
lemma rtos_rs_Tr2:"⟦(0::nat) < r; 0 < s ⟧ ⟹
∀l ≤ (r * s). rtos r s l ≤ (r * s)"
apply (rule allI, rule impI)
apply (case_tac "l = r * s", simp add:rtos_rs_Tr1)
apply (frule le_imp_less_or_eq)
apply (thin_tac "l ≤ r * s", simp)
apply (frule mult_less_mono2[of "0" "s" "r"],
simp only:mult.commute,
simp only:mult_0_right)
apply (frule_tac r = r and s = s and l = l in rtos_hom2, assumption+)
apply (rule less_le_diff)
apply simp
apply (metis le_pre_le)
done
lemma rtos_rs_Tr3:"⟦(0::nat) < r; 0 < s ⟧ ⟹
inj_on (rtos r s) {i. i ≤ (r * s)}"
apply (frule rtos_inj [of "r" "s"], assumption+)
apply (simp add:inj_on_def [of _ "{i. i ≤ (r * s)}"])
apply ((rule allI, rule impI)+, rule impI)
apply (case_tac "x = r * s")
apply (rule contrapos_pp, simp+)
apply (frule not_sym)
apply (frule mult_less_mono2[of "0" "s" "r"],
simp only:mult.commute, simp only:mult_0_right)
apply (cut_tac x = y and n = "r * s - Suc 0" in Nset_pre, simp+)
apply (frule_tac l = y in rtos_hom1[of "r" "s"], assumption+)
apply (simp only: rtos_rs_Tr1)
apply (frule sym, thin_tac "r * s = rtos r s y", simp)
apply (simp add:mult.commute[of "s" "r"])
apply (simp add: not_less [symmetric, of "r * s" "r * s - Suc 0"])
apply (frule mult_less_mono2[of "0" "s" "r"],
simp only:mult.commute, simp only:mult_0_right,
cut_tac x = x in Nset_pre[of _ "r * s - Suc 0"], simp+)
apply (case_tac "y = r * s")
apply (simp add: rtos_rs_Tr1)
apply (frule_tac l = x in rtos_hom1[of "r" "s"], assumption+)
apply (simp add:mult.commute[of "s" "r"])
apply (simp add: not_less [symmetric, of "r * s" "r * s - Suc 0"])
apply (cut_tac x = y in Nset_pre[of _ "r * s - Suc 0"], simp+)
apply (frule rtos_inj[of "r" "s"], assumption+)
apply (simp add:inj_on_def)
done
lemma Qw_cmpser:"⟦Group G; w_cmpser G (Suc n) f ⟧ ⟹
Gchain n (Qw_cmpser G f)"
apply (simp add:Gchain_def)
apply (rule allI, rule impI)
apply (simp add:Qw_cmpser_def)
apply (simp add:w_cmpser_def)
apply (erule conjE)
apply (simp add:d_gchain_def)
apply (cut_tac c = l in subsetD[of "{i. i ≤ n}" "{i. i ≤ (Suc n)}"],
rule subsetI, simp, simp)
apply (frule_tac H = "f l" in Group.Group_Gp[of "G"],
frule_tac a = l in forall_spec, simp+)
apply (frule_tac G = "Gp G (f l)" and N = "f (Suc l)" in Group.Group_Qg)
apply blast apply assumption
done
definition
wcsr_rfns :: "[_ , nat, nat ⇒ 'a set, nat] ⇒ (nat ⇒ 'a set) set" where
"wcsr_rfns G r f s = {h. tw_cmpser G (s * r) h ∧
(∀i ≤ r. h (i * s) = f i)}"
definition
trivial_rfn :: "[_ , nat, nat ⇒ 'a set, nat] ⇒ (nat ⇒ 'a set)" where
"trivial_rfn G r f s k == if k < (s * r) then f (k div s) else f r"
lemma (in Group) rfn_tool8:"⟦compseries G r f; 0 < r⟧ ⟹ d_gchain G r f"
apply (simp add:compseries_def tW_cmpser_def)
apply (erule conjE)+
apply (simp add:tD_gchain_def) apply (erule conjE)+
apply (simp add:D_gchain_is_d_gchain)
done
lemma (in Group) rfn_tool16:"⟦0 < r; 0 < s; i ≤ (s * r - Suc 0);
G » f (i div s); (Gp G (f (i div s))) ▹ f (Suc (i div s));
(Gp G (f (i div s))) » (f (i div s) ∩ g (s - Suc 0))⟧ ⟹
(Gp G ((f (Suc (i div s)) ⋄⇘G⇙ (f (i div s) ∩ g (s - Suc 0))))) ▹
(f (Suc (i div s)))"
apply (rule ZassenhausTr4_1 [of "f (i div s)" "f (Suc (i div s))" "g (s - Suc 0)"], assumption+)
done
text‹Show existence of the trivial refinement. This is not necessary
to prove JHS›
lemma rfn_tool30:"⟦0 < r; 0 < s; l div s * s + s < s * r⟧
⟹ Suc (l div s) < r"
apply (simp add:mult.commute[of "s" "r"])
apply (cut_tac add_mult_distrib[THEN sym, of "l div s" "s" "1"])
apply (simp only:nat_mult_1)
apply (thin_tac "l div s * s + s = (l div s + 1) * s")
apply (cut_tac mult_less_cancel2[of "l div s + 1" "s" "r"])
apply simp
done
lemma (in Group) simple_grouptr0:"⟦G » H; G ▹ K; K ⊆ H; simple_Group (G / K)⟧
⟹ H = carrier G ∨ H = K"
apply (simp add:simple_Group_def)
apply (frule subg_Qsubg[of "H" "K"], assumption+)
apply (rotate_tac -1)
apply (frule in_set_with_P[of _ "carrier ((Gp G H) / K)"])
apply simp
apply (thin_tac "{N. G / K » N } = {carrier (G / K), {𝟭⇘G / K⇙}}")
apply (erule disjE)
apply (frule sg_subset[of "H"])
apply (frule equalityI[of "H" "carrier G"])
apply (rule subsetI)
apply (simp add:Qg_carrier)
apply (frule nsg_sg[of "K"])
apply (frule_tac a = x in rcs_in_set_rcs[of "K"], assumption+)
apply (frule sym, thin_tac "carrier ((♮H)/ K) = set_rcs G K", simp,
thin_tac "set_rcs G K = carrier ((♮H) / K)")
apply (frule Group_Gp[of "H"], simp add:Group.Qg_carrier[of "Gp G H" "K"],
simp add:set_rcs_def, erule bexE, simp add:Gp_carrier)
apply (simp add:rcs_in_Gp[THEN sym])
apply (frule_tac a = x in a_in_rcs[of "K"], assumption+, simp,
thin_tac "K ∙ x = K ∙ a",
thin_tac "G / K » {C. ∃a∈H. C = K ∙ a}",
simp add:rcs_def, erule bexE,
frule_tac c = h in subsetD[of "K" "H"], assumption+)
apply (frule_tac x = h and y = a in sg_mult_closed[of "H"], assumption+, simp)
apply simp
apply (frule equalityI[THEN sym, of "K" "H"])
apply (rule subsetI)
apply (frule Group_Gp[of "H"], simp add:Group.Qg_carrier)
apply (simp add:Qg_one)
apply (frule nsg_sg[of "K"])
apply (frule_tac a = x in Group.rcs_in_set_rcs[of "Gp G H" "K"])
apply (simp add:sg_sg) apply (simp add:Gp_carrier)
apply simp
apply (frule_tac a = x in Group.rcs_fixed[of "Gp G H" "K"])
apply (simp add:sg_sg) apply (simp add:Gp_carrier) apply assumption+
apply simp
done
lemma (in Group) compser_nsg:"⟦0 < n; compseries G n f; i ≤ (n - 1)⟧
⟹ Gp G (f i) ▹ (f (Suc i))"
apply (simp add:compseries_def tW_cmpser_def)
done
lemma (in Group) compseriesTr5:"⟦0 < n; compseries G n f; i ≤ (n - Suc 0)⟧
⟹ (f (Suc i)) ⊆ (f i)"
apply (frule compseriesTr4[of "n" "f"])
apply (frule w_cmpser_is_d_gchain[of "n" "f"])
apply (simp add:d_gchain_def,
cut_tac n_in_Nsetn[of "n"],
frule_tac a = n in forall_spec, simp,
thin_tac "∀l ≤ n. G » f l ∧ (∀l ≤ (n - Suc 0). f (Suc l) ⊆ f l)",
erule conjE, blast)
done
lemma (in Group) refine_cmpserTr0:"⟦0 < n; compseries G n f; i ≤ (n - 1);
G » H; f (Suc i) ⊆ H ∧ H ⊆ f i⟧ ⟹ H = f (Suc i) ∨ H = f i"
apply (frule compseriesTr0 [of "n" "f" "i"])
apply (cut_tac lessI[of "n - Suc 0"], simp only:Suc_pred, simp)
apply (frule Group_Gp [of "f i"])
apply (erule conjE)
apply (frule compseriesTr4[of "n" "f"])
apply (frule w_cmpser_ns[of "n" "f" "i"], simp+)
apply (unfold compseries_def, frule conjunct2, fold compseries_def, simp)
apply (frule_tac x = i in spec,
thin_tac "∀i≤n - Suc 0. simple_Group ((♮f i) / f (Suc i))",
simp)
apply (frule Group.simple_grouptr0 [of "Gp G (f i)" "H" "f (Suc i)"])
apply (simp add:sg_sg) apply assumption+
apply (simp add:Gp_carrier)
apply blast
done
lemma div_Tr4:"⟦ (0::nat) < r; 0 < s; j < s * r ⟧ ⟹ j div s * s + s ≤ r * s"
apply (frule div_Tr2 [of "r" "s" "j"], assumption+)
apply (frule mult_le_mono [of "j div s" "r - Suc 0" "s" "s"])
apply simp
apply (frule add_le_mono [of "j div s * s" "(r - Suc 0) * s" "s" "s"])
apply simp
apply (thin_tac "j div s * s ≤ (r - Suc 0) * s")
apply (cut_tac add_mult_distrib[THEN sym, of "r - Suc 0" "s" "1"])
apply (simp only:nat_mult_1)
apply simp
done
lemma (in Group) compseries_is_tW_cmpser:"⟦0 < r; compseries G r f⟧ ⟹
tW_cmpser G r f"
by (simp add:compseries_def)
lemma (in Group) compseries_is_td_gchain:"⟦0 < r; compseries G r f⟧ ⟹
td_gchain G r f"
apply (frule compseries_is_tW_cmpser, assumption+)
apply (simp add:tW_cmpser_def, erule conjE)
apply (thin_tac "∀l≤(r - Suc 0). (♮f l) ▹ (f (Suc l))")
apply (simp add:tD_gchain_def, (erule conjE)+)
apply (frule D_gchain_is_d_gchain)
apply (simp add:td_gchain_def)
done
lemma (in Group) compseries_is_D_gchain:"⟦0 < r; compseries G r f⟧ ⟹
D_gchain G r f"
apply (frule compseriesTr1)
apply (frule tW_cmpser_is_W_cmpser)
apply (rule W_cmpser_is_D_gchain, assumption)
done
lemma divTr5:"⟦0 < r; 0 < s; l < (r * s)⟧ ⟹
l div s * s ≤ l ∧ l ≤ (Suc (l div s)) * s"
apply (insert div_mult_mod_eq [THEN sym, of "l" "s"])
apply (rule conjI)
apply (insert le_add1 [of "l div s * s" "l mod s"])
apply simp
apply (frule mod_less_divisor [of "s" "l"])
apply (frule less_imp_le [of "l mod s" "s"])
apply (insert self_le [of "l div s * s"])
apply (frule add_le_mono [of "l div s * s" "l div s * s" "l mod s" "s"])
apply assumption+
apply (thin_tac "l div s * s ≤ l div s * s + l mod s")
apply (thin_tac "l div s * s ≤ l div s * s")
apply simp
done
lemma (in Group) rfn_compseries_iMTr1:"⟦0 < r; 0 < s; compseries G r f;
h ∈ wcsr_rfns G r f s⟧ ⟹ f ` {i. i ≤ r} ⊆ h ` {i. i ≤ (s * r)}"
apply (simp add:wcsr_rfns_def) apply (rule subsetI)
apply (simp add:image_def)
apply (auto del:equalityI)
apply (frule_tac i = xa in mult_le_mono [of _ "r" "s" "s"])
apply simp
apply (simp add:mult.commute [of "r" "s"])
apply (frule_tac a = xa in forall_spec, assumption,
thin_tac "∀i≤r. h (i * s) = f i")
apply (frule sym, thin_tac "h (xa * s) = f xa")
apply (cut_tac a = xa in mult_mono[of _ r s s], simp, simp, simp, simp)
apply (simp only:mult.commute[of r s], blast)
done
lemma rfn_compseries_iMTr2:"⟦0 < r; 0 < s; xa < s * r ⟧ ⟹
xa div s * s ≤ r * s ∧ Suc (xa div s) * s ≤ r * s"
apply (frule div_Tr1 [of "r" "s" "xa"], assumption+)
apply (simp add:less_imp_le)
apply (rule conjI)
apply (simp add:mult_le_mono [of "xa div s" "r" "s" "s"])
apply (thin_tac "xa div s ≤ r")
apply (frule div_Tr2[of "r" "s" "xa"], assumption+)
apply (thin_tac "xa < s * r")
apply (frule le_less_trans [of "xa div s" "r - Suc 0" "r"])
apply simp
apply (frule Suc_leI [of "xa div s" "r"])
apply (rule mult_le_mono [of "Suc (xa div s)" "r" "s" "s"], assumption+)
apply simp
done
lemma (in Group) rfn_compseries_iMTr3:"⟦0 < r; 0 < s; compseries G r f;
j ≤ r; ∀i ≤ r. h (i * s) = f i⟧ ⟹ h (j * s) = f j"
apply blast
done
lemma (in Group) rfn_compseries_iM:"⟦0 < r; 0 < s; compseries G r f;
h ∈ wcsr_rfns G r f s⟧ ⟹ card (h `{i. i ≤ (s * r)}) = r + 1"
apply (frule compseries_is_D_gchain, assumption+)
apply (frule D_gchain1)
apply simp
apply (subst card_Collect_le_nat[THEN sym, of "r"])
apply (subst card_image[THEN sym, of "f" "{i. i ≤ r}"], assumption+)
apply (rule card_eq[of "h ` {i. i ≤ (s * r)}" "f ` {i. i ≤ r}"])
apply (frule rfn_compseries_iMTr1[of "r" "s" "f" "h"], assumption+)
apply (rule equalityI[of "h ` {i. i ≤ (s * r)}" "f ` {i. i ≤ r}"])
prefer 2 apply simp
apply (rule subsetI,
thin_tac "f ` {i. i ≤ r} ⊆ h ` {i. i ≤ s * r}")
apply (frule_tac b = x and f = h and A = "{i. i ≤ (s * r)}" in mem_in_image3,
erule bexE) apply (simp add:mult.commute[of "s" "r"])
apply (simp add:wcsr_rfns_def, (erule conjE)+)
apply (frule rfn_compseries_iMTr3[of "r" "s" "f" "r" "h"], assumption+,
simp add:n_in_Nsetn, assumption+, subst image_def, simp)
apply (case_tac "a = s * r", simp add:mult.commute[of "s" "r"],
cut_tac n_in_Nsetn[of "r"], blast)
apply (simp add:mult.commute[of "s" "r"])
apply (frule_tac m = a and n = "r * s" in noteq_le_less, assumption+)
apply (frule tw_cmpser_is_w_cmpser, frule w_cmpser_is_d_gchain)
apply (frule_tac xa = a in rfn_compseries_iMTr2[of "r" "s"], assumption+)
apply (simp add:mult.commute)
apply (erule conjE)
apply (frule_tac l = a in divTr5[of "r" "s"], assumption+)
apply (frule pos_mult_pos[of "r" "s"], assumption+)
apply (erule conjE,
frule_tac l = "a div s * s" and j = a in d_gchainTr2[of "r * s" "h"],
assumption+)
apply (frule_tac l = a and j = "Suc (a div s) * s" in d_gchainTr2[of "r * s"
"h"], assumption+)
apply (frule_tac i = a in rtos_hom0[of "r" "s"], assumption+)
apply (rule less_le_diff)
apply simp
apply (frule_tac x = "a div s" and y = r in less_imp_le,
frule_tac a = "a div s" in forall_spec, assumption,
frule_tac a = "Suc (a div s)" in forall_spec)
apply (cut_tac m = "Suc (a div s)" and k = s and n = r in mult_le_cancel2)
apply simp
apply (thin_tac "∀i ≤ r. h (i * s) = f i") apply simp
apply (cut_tac i = "a div s" and H = "h a"in refine_cmpserTr0[of "r" "f"],
simp, assumption+,
cut_tac x = "a div s" and n = r in less_le_diff, assumption, simp)
apply (simp add:d_gchain_mem_sg[of "r * s" "h"])
apply blast
apply (erule disjE)
apply (frule_tac m = "a div s" and n = r in Suc_leI, blast)
apply (frule_tac x = "a div s" and y = r in less_imp_le, blast)
done
definition
cmp_rfn :: "[_ , nat, nat ⇒ 'a set, nat, nat ⇒ 'a set] ⇒ (nat ⇒ 'a set)" where
"cmp_rfn G r f s g = (λi. (if i < s * r then
f (Suc (i div s)) ⋄⇘G⇙ (f (i div s) ∩ g (i mod s)) else {𝟭⇘G⇙}))"
lemma (in Group) cmp_rfn0:"⟦0 < r; 0 < s; compseries G r f; compseries G s g;
i ≤ (r - 1); j ≤ (s - 1)⟧ ⟹ G » f (Suc i) ⋄⇘G⇙ ((f i ) ∩ (g j))"
apply (rule ZassenhausTr2_1[of "f i" "f (Suc i)" "g j"], simp,
rule compseriesTr0[of "r" "f" "i"], assumption+,
frule_tac le_less_trans[of i "r - Suc 0" r], simp+)
apply (rule compseriesTr0[of "r" "f" "Suc i"], assumption+, arith)
apply(rule compseriesTr0[of "s" "g" "j"], assumption+, simp)
apply (frule compseries_is_tW_cmpser[of "r" "f"], assumption+,
simp add:tW_cmpser_def)
done
lemma (in Group) cmp_rfn1:"⟦0 < r; 0 < s; compseries G r f; compseries G s g⟧
⟹ f (Suc 0) ⋄⇘G⇙ ((f 0 ) ∩ (g 0)) = carrier G"
apply (frule compseriesTr2 [of "r" "f"])
apply (frule compseriesTr2 [of "s" "g"])
apply (frule compseriesTr0 [of _ "f" "Suc 0"])
apply simp
apply simp
apply (rule K_absorb_HK[of "f (Suc 0)" "carrier G"], assumption+,
simp add:special_sg_G)
apply (rule sg_subset, assumption)
done
lemma (in Group) cmp_rfn2:"⟦0 < r; 0 < s; compseries G r f; compseries G s g;
l ≤ (s * r)⟧ ⟹ G » cmp_rfn G r f s g l"
apply (simp add:cmp_rfn_def)
apply (case_tac "l < s * r")
apply simp
apply (frule_tac i = "l div s" and j = "l mod s" in cmp_rfn0 [of "r" "s"],
assumption+)
apply (simp add:div_Tr2)
apply (frule_tac m = l in mod_less_divisor [of "s"])
apply (frule_tac x = "l mod s" and n = s in less_le_diff)
apply simp apply assumption
apply simp
apply (rule special_sg_e)
done
lemma (in Group) cmp_rfn3:"⟦0 < r; 0 < s; compseries G r f; compseries G s g⟧
⟹ cmp_rfn G r f s g 0 = carrier G ∧ cmp_rfn G r f s g (s * r) = {𝟭}"
apply (rule conjI)
apply (simp add:cmp_rfn_def)
apply (rule cmp_rfn1 [of "r" "s" "f" "g"], assumption+)
apply (simp add:cmp_rfn_def)
done
lemma rfn_tool20:"⟦(0::nat) < m; a = b * m + c; c < m ⟧ ⟹ a mod m = c"
apply (simp add:add.commute)
done
lemma Suci_mod_s_2:"⟦0 < r; 0 < s; i ≤ r * s - Suc 0; i mod s < s - Suc 0⟧
⟹ (Suc i) mod s = Suc (i mod s)"
apply (insert div_mult_mod_eq [of "i" "s", THEN sym])
apply (subgoal_tac "Suc i = i div s * s + Suc (i mod s)")
apply (subgoal_tac "Suc i mod s = (i div s * s + Suc (i mod s)) mod s")
apply (subgoal_tac "Suc (i mod s) < s")
apply (frule_tac m = s and a = "Suc i" and b = "i div s" and c = "Suc (i mod s)" in rfn_tool20, assumption+)
apply (subgoal_tac "Suc (i mod s) < Suc (s - Suc 0)") apply simp
apply (simp del:Suc_pred)
apply simp+
done
lemma (in Group) inter_sgsTr1:"⟦0 < r; 0 < s; compseries G r f; compseries G s g; i < r * s⟧ ⟹ G » f (i div s) ∩ g (s - Suc 0)"
apply (rule inter_sgs)
apply (rule compseriesTr0, assumption+)
apply (frule less_imp_le [of "i" "r * s"])
apply (frule div_Tr1 [of "r" "s" "i"], assumption+)
apply (simp add:mult.commute, simp)
apply (rule compseriesTr0, simp+)
done
lemma (in Group) JHS_Tr0_2:"⟦0 < r; 0 < s; compseries G r f; compseries G s g⟧
⟹ ∀i ≤ (s * r - Suc 0). Gp G (cmp_rfn G r f s g i) ▹
cmp_rfn G r f s g (Suc i)"
apply (frule compseriesTr4 [of "r" "f"], frule compseriesTr4 [of "s" "g"])
apply (rule allI, rule impI)
apply (frule pos_mult_pos [of "s" "r"], assumption+,
frule_tac a = i in rfn_tool11 [of "s * r"], assumption+,
frule_tac l = i in div_Tr1 [of "r" "s"], assumption+,
simp add:less_imp_le)
apply (frule_tac x = "i div s" in mem_of_Nset [of _ "r"],
thin_tac "i div s ≤ r", thin_tac "i ≤ s * r - Suc 0",
frule_tac l = i in div_Tr2 [of "r" "s"], assumption+,
frule_tac x = "i div s" in mem_of_Nset [of _ "r - Suc 0"],
frule_tac a = "i div s" in rfn_tool11 [of "r"], assumption+,
frule_tac m = "i div s" in Suc_leI [of _ "r"],
frule_tac x = "Suc (i div s)" in mem_of_Nset [of _ "r"],
thin_tac "i div s < r", thin_tac "Suc (i div s) ≤ r")
apply (simp add:cmp_rfn_def)
apply (case_tac "Suc i < s * r", simp,
case_tac "i mod s = s - 1",
cut_tac l = i in div_Tr3_1 [of "r" "s"],
simp+,
cut_tac l = "Suc i" in div_Tr2 [of "r" "s"], simp+,
cut_tac x = "Suc i div s" in mem_of_Nset [of _ "r - Suc 0"],
simp,
cut_tac a = "Suc i div s" in rfn_tool11 [of "r"], simp+,
cut_tac x = "Suc i div s" in less_mem_of_Nset [of _ "r"], simp,
cut_tac m = "Suc i div s" in Suc_leI [of _ "r"], simp,
frule_tac x = "Suc (Suc i div s)" in mem_of_Nset [of _ "r"],
frule w_cmpser_is_d_gchain [of"r" "f"],
frule_tac rfn_tool12_2 [of "s"], assumption+,
thin_tac "i mod s = s - Suc 0",
thin_tac "Suc i div s ∈ {i. i ≤ r}",
thin_tac "Suc (Suc i div s) ≤ r")
apply (simp,
cut_tac l = "i div s" and j = "Suc (i div s)" in
d_gchainTr2 [of "r" "f"], simp, assumption+,
cut_tac x = "i div s" and y = "Suc (i div s)" and z = r in
less_trans, simp, assumption, simp add:less_imp_le,
simp add:less_imp_le, simp,
cut_tac l = "Suc (i div s)" and j = "Suc (Suc (i div s))" in
d_gchainTr2 [of "r" "f"], simp+,
thin_tac "Suc i div s = Suc (i div s)", thin_tac "Suc i mod s = 0",
cut_tac i = "i div s" in compseriesTr0 [of "r" "f"], assumption,
simp,
cut_tac i = "Suc (i div s)" in compseriesTr0 [of "r" "f"],
assumption, simp add:less_imp_le,
cut_tac i = "Suc (Suc (i div s))" in compseriesTr0 [of "r" "f"],
assumption, simp)
apply (subst compseriesTr2 [of "s" "g"], assumption,
frule_tac H = "f (i div s)" in sg_subset,
frule_tac H = "f (Suc (i div s))" in sg_subset,
frule_tac A = "f (Suc (i div s))" in Int_absorb2 [of _ "carrier G"],
simp,
thin_tac "f (Suc (i div s)) ∩ carrier G = f (Suc (i div s))",
frule_tac H = "f (Suc (Suc (i div s)))" and K = "f (Suc (i div s))" in
K_absorb_HK, assumption+,
simp,
thin_tac "f (Suc (Suc (i div s))) ⋄⇘G⇙ (f (Suc (i div s))) =
f (Suc (i div s))")
apply (rule rfn_tool16 [of "r" "s" _], simp+,
cut_tac x = "Suc i" and y = "s * r" and z = "Suc (s *r)" in
less_trans, assumption, simp,
thin_tac "Suc i < s * r", simp)
apply (rule compser_nsg[of r f], simp+)
apply (rule_tac H = "f (i div s) ∩ g (s - Suc 0)" and K = "f (i div s)" in
sg_sg, assumption+,
cut_tac i = i in inter_sgsTr1 [of r s f g], simp+,
cut_tac x = i and y = "Suc i" and z = "s * r" in less_trans,
simp+,
cut_tac x = i and y = "Suc i" and z = "r * s" in less_trans,
simp+,
simp add:mult.commute, assumption+,
simp add:Int_lower1)
apply (frule_tac m = i in mod_less_divisor [of "s"],
frule_tac x = "i mod s" in less_le_diff [of _ "s"],
simp,
frule_tac m = "i mod s" in noteq_le_less [of _ "s - Suc 0"],
assumption+,
thin_tac "i mod s ≠ s - Suc 0", thin_tac "i mod s ≤ s - Suc 0")
apply (frule_tac x = "i mod s" and y = "s - Suc 0" and z = s in
less_trans, simp,
frule_tac k = "i mod s" in nat_pos2 [of _ s],
cut_tac l1 = i in div_Tr3_2 [THEN sym, of "r" "s"], simp+,
frule_tac i = "i mod s" in compser_nsg [of "s" "g"], assumption+,
simp,
frule_tac i = "Suc (i div s)" in compseriesTr0 [of "r" "f"],
assumption+,
frule_tac m = "i mod s" in Suc_mono [of _ "s - Suc 0"],
simp only:Suc_pred)
apply (frule_tac x = "Suc (i mod s)" in less_mem_of_Nset [of _ "s"],
cut_tac i = "Suc (i mod s)" in compseriesTr0 [of "s" "g"], simp+,
cut_tac H = "f (i div s)" and ?H1.0 = "f (Suc (i div s))" and
K = "g (i mod s)" and ?K1.0 = "g (Suc (i mod s))" in ZassenhausTr3,
rule_tac i = "i div s" in compseriesTr0 [of "r" "f"], assumption+,
frule_tac x = "i div s" and y = "r - Suc 0" and z = r in
le_less_trans, simp, simp, assumption+,
frule_tac i = "i mod s" in compseriesTr0 [of "s" "g"],
simp, simp, simp)
apply (rule_tac i = "i div s" in compser_nsg[of r f], simp+,
cut_tac i = i in Suci_mod_s_2[of r s], simp+,
cut_tac x = "Suc i" and y = "s * r" and z = "Suc (s *r)" in
less_trans, assumption, simp,
thin_tac "Suc i < s * r", simp,
frule_tac x = i and n = "s * r" in less_le_diff,
simp add:mult.commute[of s r], simp+)
apply (cut_tac a = "i mod s" in rfn_tool11 [of "s"], simp+,
frule_tac m = i in mod_less_divisor [of "s"],
frule_tac x = "i mod s" in less_le_diff [of _ "s"], simp,
rule special_nsg_e,
cut_tac i = "i div s" and j = "i mod s" in cmp_rfn0[of r s f g],
simp+)
done
lemma (in Group) cmp_rfn4:"⟦0 < r; 0 < s; compseries G r f;
compseries G s g; l ≤ (s * r - Suc 0)⟧ ⟹
cmp_rfn G r f s g (Suc l) ⊆ cmp_rfn G r f s g l"
apply (frule JHS_Tr0_2 [of "r" "s" "f" "g"], assumption+)
apply (frule_tac a = l in forall_spec, simp,
thin_tac "∀i ≤ (s * r - Suc 0).
(♮(cmp_rfn G r f s g i)) ▹ (cmp_rfn G r f s g (Suc i))")
apply (frule cmp_rfn2 [of "r" "s" "f" "g" "l"], assumption+,
frule le_less_trans [of "l" "s * r - Suc 0" "s* r"], simp,
simp add:less_imp_le)
apply (frule Group_Gp [of "cmp_rfn G r f s g l"],
frule Group.nsg_subset [of "Gp G (cmp_rfn G r f s g l)" ],
assumption+, simp add:Gp_carrier)
done
lemma (in Group) cmp_rfn5:"⟦0 < r; 0 < s; compseries G r f; compseries G s g⟧
⟹ ∀i ≤ r. cmp_rfn G r f s g (i * s) = f i"
apply (rule allI, rule impI)
apply (simp add:cmp_rfn_def)
apply (case_tac "i < r", simp,
frule_tac x = i in less_imp_le [of _ "r"],
frule_tac x = i in mem_of_Nset[of _ "r"],
frule_tac i = i in compseriesTr0 [of "r" "f"], assumption+,
thin_tac "i ≤ r",
frule_tac m = i in Suc_leI [of _ "r"],
frule_tac x = "Suc i" in mem_of_Nset[of _ "r"],
frule_tac i = "Suc i" in compseriesTr0 [of "r" "f"], assumption+)
apply (subst compseriesTr2 [of "s" "g"], assumption+,
frule_tac H = "f i" in sg_subset,
subst Int_absorb2, assumption+,
frule rfn_tool8, assumption+, simp)
apply (cut_tac n = i in zero_less_Suc,
frule_tac x = 0 and y = "Suc i" and z = r in less_le_trans, assumption+,
frule_tac l = i and j = "Suc i" in d_gchainTr2 [of "r" "f"],
frule compseries_is_D_gchain[of "r" "f"], assumption,
rule D_gchain_is_d_gchain, assumption+,
cut_tac x = i and y = "Suc i" and z = r in less_le_trans, simp+,
rule_tac K = "f i" and H = "f (Suc i)" in K_absorb_HK, assumption+,
simp, frule compseries_is_td_gchain, assumption+,
simp add:td_gchain_def)
done
lemma (in Group) JHS_Tr0:"⟦(0::nat) < r; 0 < s; compseries G r f;
compseries G s g⟧ ⟹ cmp_rfn G r f s g ∈ wcsr_rfns G r f s"
apply (simp add:wcsr_rfns_def,
frule cmp_rfn5 [of "r" "s" "f" "g"], assumption+,
simp,
thin_tac "∀i≤r. cmp_rfn G r f s g (i * s) = f i")
apply (simp add:tw_cmpser_def, rule conjI)
prefer 2 apply (rule JHS_Tr0_2 [of "r" "s" "f" "g"], assumption+)
apply (simp add:td_gchain_def, rule conjI)
prefer 2
apply (rule cmp_rfn3, assumption+)
apply (simp add:d_gchain_def,
rule allI, rule impI, rule conjI, rule cmp_rfn2, assumption+,
rule allI, rule impI, rule cmp_rfn4, assumption+)
done
lemma rfn_tool17:"(a::nat) = b ⟹ a - c = b - c"
by simp
lemma isom4b:"⟦Group G; G ▹ N; G » H⟧ ⟹
(Gp G (N ⋄⇘G⇙ H) / N) ≅ (Gp G H / (H ∩ N))"
apply (frule isom4 [of "G" "N" "H"], assumption+)
apply (rule isomTr1)
apply (simp add:Group.homom4_2)
apply (frule Group.smult_sg_nsg[of "G" "H" "N"], assumption+)
apply (simp add:Group.smult_commute_sg_nsg[THEN sym, of "G" "H" "N"])
apply (rule Group.homom4Tr1, assumption+)
done
lemma Suc_rtos_div_r_1:"⟦ 0 < r; 0 < s; i ≤ r * s - Suc 0;
Suc (rtos r s i) < r * s; i mod s = s - Suc 0;
i div s < r - Suc 0⟧ ⟹ Suc (rtos r s i) div r = i mod s"
apply (simp add:rtos_def,
frule le_less_trans [of "i" "r * s - Suc 0" "r * s"], simp)
apply simp
apply (subgoal_tac "Suc ((s - Suc 0) * r + i div s) div r =
((s - Suc 0) * r + Suc (i div s)) div r",
simp del: add_Suc add_Suc_right)
apply (subgoal_tac "Suc (i div s) < Suc (r - Suc 0)")
apply simp_all
done
lemma Suc_rtos_mod_r_1:"⟦0 < r; 0 < s; i ≤ r * s - Suc 0; Suc (rtos r s i) < r * s; i mod s = s - Suc 0; i div s < r - Suc 0⟧
⟹ Suc (rtos r s i) mod r = Suc (i div s)"
apply (simp add:rtos_def)
done
lemma i_div_s_less:"⟦0 < r; 0 < s; i ≤ r * s - Suc 0; Suc (rtos r s i) < r * s;
i mod s = s - Suc 0; Suc i < s * r ⟧ ⟹ i div s < r - Suc 0"
apply (frule le_less_trans [of "i" "r * s - Suc 0" "r * s"], simp)
apply (frule_tac r = r and s = s and l = i in div_Tr2, assumption+)
apply (simp add:mult.commute)
apply (rule contrapos_pp, simp+,
subgoal_tac "i div s = r - Suc 0",
thin_tac "i div s = r - Suc 0")
apply (simp add:rtos_def,
subgoal_tac "(s - Suc 0) * r + r = r * s", simp)
apply (thin_tac "(s - Suc 0) * r + r < r * s")
apply (simp add:mult.commute, simp add:diff_mult_distrib2)
apply simp
done
lemma rtos_mod_r_1:"⟦ 0 < r; 0 < s; i ≤ r * s - Suc 0; rtos r s i < r * s;
i mod s = s - Suc 0 ⟧ ⟹ rtos r s i mod r = i div s"
apply (simp add:rtos_def)
apply (frule le_less_trans [of "i" "r * s - Suc 0" "r * s"], simp)
apply simp
apply (rule rfn_tool20, assumption+, simp)
apply (frule_tac r = r and s = s and l = i in div_Tr2, assumption+)
apply (rule le_less_trans, assumption+, simp add:mult.commute)
apply (rule le_less_trans, assumption+, simp)
done
lemma Suc_i_mod_s_0_1:"⟦0 < r; 0 < s; i ≤ r * s - Suc 0; i mod s = s - Suc 0⟧
⟹ Suc i mod s = 0"
apply (insert div_mult_mod_eq [of "i" "s", THEN sym])
apply simp
apply (thin_tac "i mod s = s - Suc 0")
apply (subgoal_tac "Suc i mod s = Suc (i div s * s + s - Suc 0) mod s")
apply (thin_tac "i = i div s * s + s - Suc 0", simp del: add_Suc)
apply (subgoal_tac "Suc (i div s * s + s - Suc 0) mod s = (i div s * s + s) mod s")
apply (simp del: add_Suc)
apply (subgoal_tac "Suc (i div s * s + s - Suc 0) = i div s * s + s")
apply (simp del: add_Suc)
apply (rule Suc_pred [of "i div s * s + s"], simp)
done
lemma Suci_div_s_2:"⟦0 < r; 0 < s; i ≤ r * s - Suc 0; i mod s < s - Suc 0⟧
⟹ Suc i div s = i div s"
apply (rule div_Tr3_2 [THEN sym], assumption+)
apply simp
done
lemma rtos_i_mod_r_2:"⟦0 < r; 0 < s; i ≤ r * s - Suc 0⟧ ⟹ rtos r s i mod r = i div s"
apply (simp add:rtos_def)
apply (frule le_less_trans [of "i" "r * s - Suc 0" "r * s"], simp)
apply simp
apply (frule_tac r = r and s = s and l = i in div_Tr2, assumption+)
apply (simp add:mult.commute)
apply (subgoal_tac "i div s < r")
apply (rule rfn_tool20, assumption+, simp)
apply assumption
apply (rule le_less_trans, assumption+, simp)
done
lemma Suc_rtos_i_mod_r_2:"⟦0 < r; 0 < s; i ≤ r * s - Suc 0;
i div s = r - Suc 0⟧ ⟹ Suc (rtos r s i) mod r = 0"
apply (frule le_less_trans [of "i" "r * s - Suc 0" "r * s"], simp)
apply (simp add:rtos_def)
done
lemma Suc_rtos_i_mod_r_3:"⟦0 < r; 0 < s; i ≤ r * s - Suc 0;
i div s < r - Suc 0⟧ ⟹ Suc (rtos r s i) mod r = Suc (i div s)"
apply (frule le_less_trans [of "i" "r * s - Suc 0" "r * s"], simp)
apply (simp add:rtos_def)
done
lemma Suc_rtos_div_r_3:"⟦0 < r; 0 < s; i mod s < s - Suc 0; i ≤ r * s - Suc 0;
Suc (rtos r s i) < r * s; i div s < r - Suc 0⟧ ⟹
Suc (rtos r s i) div r = i mod s"
apply (simp add:rtos_def)
apply (frule le_less_trans [of "i" "r * s - Suc 0" "r * s"])
apply simp
apply simp
apply (subst add_Suc_right[THEN sym, of "i mod s * r" "i div s"])
apply (subst add.commute[of "i mod s * r" "Suc (i div s)"])
apply (frule Suc_leI[of "i div s" "r - Suc 0"])
apply (frule le_less_trans[of "Suc (i div s)" "r - Suc 0" "r"], simp)
apply (subst div_mult_self1 [of "r" "Suc (i div s)" "i mod s"])
apply auto
done
lemma r_s_div_s:"⟦0 < r; 0 < s⟧ ⟹ (r * s - Suc 0) div s = r - Suc 0"
apply (frule rfn_tool1_1 [of "s" "s - Suc 0" "r - Suc 0"])
apply simp
apply (simp add:diff_mult_distrib)
done
lemma r_s_mod_s:"⟦0 < r; 0 < s⟧ ⟹ (r * s - Suc 0) mod s = s - Suc 0"
apply (frule rfn_tool20 [of "s" "(r - Suc 0) * s + (s - Suc 0)" "r - Suc 0"
"s - Suc 0"], simp, simp)
apply (simp add:diff_mult_distrib)
done
lemma rtos_r_s:"⟦0 < r; 0 < s⟧ ⟹ rtos r s (r * s - Suc 0) = r * s - Suc 0"
apply (simp add:rtos_def)
apply (frule r_s_div_s [of "r" "s"], assumption+)
apply (frule r_s_mod_s [of "r" "s"], assumption+)
apply (simp, simp add:diff_mult_distrib, simp add:mult.commute)
done
lemma rtos_rs_1:"⟦ 0 < r; 0 < s; rtos r s i < r * s;
¬ Suc (rtos r s i) < r * s⟧ ⟹ rtos r s i = r * s - Suc 0"
apply (frule pos_mult_pos [of "r" "s"], assumption+)
apply (frule less_le_diff [of "rtos r s i" "r * s"])
apply (simp add:nat_not_le_less[THEN sym, of "Suc (rtos r s i)" "r * s"])
done
lemma rtos_rs_i_rs:"⟦ 0 < r; 0 < s; i ≤ r * s - Suc 0;
rtos r s i = r * s - Suc 0⟧ ⟹ i = r * s - Suc 0"
apply (frule mem_of_Nset [of "i" "r * s - Suc 0"])
apply (frule rtos_r_s [of "r" "s"], assumption+)
apply (frule rtos_inj[of "r" "s"], assumption+)
apply (cut_tac n_in_Nsetn[of "r * s - Suc 0"])
apply (simp add:inj_on_def)
done
lemma JHS_Tr1_1:"⟦Group G; 0 < r; 0 < s; compseries G r f; compseries G s g⟧ ⟹ f (Suc ((r * s - Suc 0) div s)) ⋄⇘G⇙ (f ((r * s - Suc 0) div s) ∩ g ((r * s - Suc 0) mod s)) = f (r - Suc 0) ∩ g (s - Suc 0)"
apply (frule r_s_div_s [of "r" "s"], assumption+)
apply (frule r_s_mod_s [of "r" "s"], assumption+)
apply simp
apply (subst Group.compseriesTr3 [of "G" "r" "f"], assumption+)
apply (frule Group.compseriesTr0 [of "G" "r" "f" "r - Suc 0"], assumption+)
apply (simp add:less_mem_of_Nset)
apply (frule Group.compseriesTr0 [of "G" "s" "g" "s - Suc 0"], assumption+)
apply (simp add:less_mem_of_Nset)
apply (frule Group.inter_sgs [of "G" "f (r - (Suc 0))" "g (s - Suc 0)"],
assumption+)
apply (rule Group.s_top_l_unit, assumption+)
done
lemma JHS_Tr1_2:"⟦Group G; 0 < r; 0 < s; compseries G r f; compseries G s g;
k < r - Suc 0⟧ ⟹ ((Gp G (f (Suc k) ⋄⇘G⇙ (f k ∩ g (s - Suc 0)))) /
(f (Suc (Suc k)) ⋄⇘G⇙ (f (Suc k) ∩ g 0))) ≅
((Gp G (g s ⋄⇘G⇙ (g (s - Suc 0) ∩ f k))) /
(g s ⋄⇘G⇙ (g (s - Suc 0) ∩ f (Suc k))))"
apply (frule Group.compseriesTr0 [of "G" "r" "f" "k"], assumption+)
apply (frule less_trans [of "k" "r - Suc 0" "r"]) apply simp
apply simp
apply (frule Suc_leI [of "k" "r - Suc 0"])
apply (frule le_less_trans [of "Suc k" "r - Suc 0" "r"]) apply simp
apply (frule Group.compseriesTr0 [of "G" "r" "f" "Suc k"], assumption+)
apply simp
apply (thin_tac "Suc k ≤ r - Suc 0")
apply (frule Suc_leI[of "Suc k" "r"])
apply (frule Group.compseriesTr0 [of "G" "r" "f" "Suc (Suc k)"], assumption+)
apply (frule Group.compseriesTr0 [of "G" "s" "g" "s - Suc 0"], assumption+)
apply simp
apply (subst Group.compseriesTr2 [of "G" "s" "g"], assumption+)
apply (subst Group.compseriesTr3 [of "G" "s" "g"], assumption+)
apply (subst Int_absorb2 [of "f (Suc k)" "carrier G"])
apply (rule Group.sg_subset, assumption+)
apply (subst Group.K_absorb_HK[of "G" "f (Suc (Suc k))" "f (Suc k)"], assumption+)
apply (rule Group.compseriesTr5 [of "G" "r" "f" "Suc k"], assumption+)
apply (frule Suc_leI [of "k" "r - Suc 0"])
apply simp
apply (subst Group.s_top_l_unit[of "G" "g (s - Suc 0) ∩ f k"], assumption+)
apply (simp add:Group.inter_sgs)
apply (subst Group.compseriesTr3[of "G" "s" "g"], assumption+)
apply (subst Group.s_top_l_unit[of "G" "g (s - Suc 0) ∩ f (Suc k)"], assumption+)
apply (simp add:Group.inter_sgs)
apply (frule Group.Group_Gp [of "G" "f k"], assumption+)
apply (frule Group.compser_nsg [of "G" "r" "f" "k"], assumption+)
apply (simp add:less_mem_of_Nset [of "k" "r - Suc 0"])
apply (frule isom4b [of "Gp G (f k)" "f (Suc k)" "f k ∩ g (s - Suc 0)"],
assumption+)
apply (rule Group.sg_sg, assumption+)
apply (rule Group.inter_sgs, assumption+)
apply (simp add:Int_lower1)
apply (frule Group.compseriesTr5[of "G" "r" "f" "k"], assumption+)
apply simp
apply (frule Group.s_top_induced[of "G" "f k" "f (Suc k)" "f k ∩ g (s - Suc 0)"], assumption+)
apply (simp add:Int_lower1) apply simp
apply (thin_tac "f (Suc k) ⋄⇘♮⇘G⇙(f k)⇙ (f k ∩ g (s - Suc 0)) =
f (Suc k) ⋄⇘G⇙ (f k ∩ g (s - Suc 0))")
apply (frule Suc_pos [of "Suc k" "r"])
apply (frule Group.cmp_rfn0 [of "G" "r" "s" "f" "g" "k" "s - Suc 0"], assumption+)
apply simp
apply simp
apply (frule Group.sg_inc_set_mult[of "G" "f k" "f (Suc k)" "f k ∩ g (s - Suc 0)"], assumption+) apply (simp add:Int_lower1)
apply (simp add:Group.Gp_inherited [of "G" "f (Suc k) ⋄⇘G⇙ (f k ∩ g (s - Suc 0))" "f k"])
apply (frule Group.inter_sgs [of "G" "f k" "g (s - Suc 0)"], assumption+)
apply (frule Group.Gp_inherited [of "G" "f k ∩ g (s - Suc 0)" "f k"], assumption+)
apply (rule Int_lower1) apply simp
apply (thin_tac "(Gp (Gp G (f k)) ((f k) ∩ (g (s - Suc 0)))) =
(Gp G ((f k) ∩ (g (s - Suc 0))))")
apply (thin_tac "f (Suc k) ⋄⇘G⇙ f k ∩ g (s - Suc 0) ⊆ f k")
apply (thin_tac "G » f (Suc k) ⋄⇘G⇙ f k ∩ g (s - Suc 0)")
apply (simp add:Int_assoc [of "f k" "g (s - Suc 0)" "f (Suc k)"])
apply (simp add:Int_commute [of "g (s - Suc 0)" "f (Suc k)"])
apply (simp add:Int_assoc [of "f k" "f (Suc k)" "g (s - Suc 0)", THEN sym])
apply (simp add:Int_absorb1[of "f (Suc k)" "f k"])
apply (simp add:Int_commute)
done
lemma JHS_Tr1_3:"⟦Group G; 0 < r; 0 < s; compseries G r f; compseries G s g;
i ≤ s * r - Suc 0; Suc (rtos r s i) < s * r; Suc i < s * r;
i mod s < s - Suc 0; Suc i div s ≤ r - Suc 0; i div s = r - Suc 0⟧
⟹ Group (Gp G (f r ⋄⇘G⇙ (f (r - Suc 0) ∩ g (i mod s))) /
(f r ⋄⇘G⇙ (f (r - Suc 0) ∩ g (Suc (i mod s)))))"
apply (frule nat_eq_le[of "i div s" "r - Suc 0"])
apply (frule Group.compser_nsg [of "G" "r" "f" "i div s"], assumption+)
apply simp
apply (frule Group.compser_nsg [of "G" "s" "g" "i mod s"], assumption+)
apply simp
apply (frule Group.compseriesTr0 [of "G" "r" "f" "r - Suc 0"], assumption+)
apply simp
apply (frule Group.compseriesTr0 [of "G" "r" "f" "r"], assumption+)
apply simp
apply (frule Group.compseriesTr0 [of "G" "s" "g" "i mod s"], assumption+)
apply (simp add:less_imp_le)
apply (frule Group.compseriesTr0 [of "G" "s" "g" "Suc (i mod s)"], assumption+)
apply (frule Suc_mono [of "i mod s" "s - (Suc 0)"],
simp add:less_mem_of_Nset)
apply (frule Group.cmp_rfn0 [of "G" "r" "s" "f" "g" "i div s" "i mod s"],
assumption+, simp, simp)
apply (frule Group.ZassenhausTr3 [of "G" "f (r - Suc 0)" "f r" "g (i mod s)"
"g (Suc (i mod s))"], assumption+, simp, simp)
apply (cut_tac Group.Group_Gp [of "G" "f r ⋄⇘G⇙ (f (r - Suc 0) ∩ g (i mod s))"])
apply (rule Group.Group_Qg, assumption+)
apply simp
done
lemma JHS_Tr1_4:"⟦Group G; 0 < r; 0 < s; compseries G r f; compseries G s g;
i ≤ s * r - Suc 0; Suc (rtos r s i) < s * r; Suc i < s * r;
i mod s < s - Suc 0; Suc i div s ≤ r - Suc 0; i div s = r - Suc 0⟧ ⟹
Group (Gp G (g (Suc (i mod s)) ⋄⇘G⇙ (g (i mod s) ∩ f (r - Suc 0))) /
(g (Suc (Suc (i mod s))) ⋄⇘G⇙ (g (Suc (i mod s)) ∩ f 0)))"
apply (subst Group.compseriesTr2 [of "G" "r" "f"], assumption+)
apply (frule Group.compseriesTr0 [of "G" "s" "g" "Suc (i mod s)"], assumption+)
apply (frule Suc_mono [of "i mod s" "s - Suc 0"], simp)
apply (frule Group.sg_subset [of "G" "g (Suc (i mod s))"], assumption+)
apply (subst Int_absorb2, assumption+)
apply (frule Suc_mono [of "i mod s" "s - Suc 0"])
apply (frule less_mem_of_Nset [of "i mod s" "s - Suc 0"], simp)
apply (frule Suc_leI [of "Suc (i mod s)" "s"])
apply (frule Group.compseriesTr0 [of "G" "s" "g" "Suc (Suc (i mod s))"],
assumption+)
apply (frule less_le_diff [of "Suc (i mod s)" "s"])
apply (frule Suc_pos [of "Suc (i mod s)" "s"])
apply (frule Group.compseriesTr5[of "G" "s" "g" "Suc (i mod s)"], assumption+)
apply (subst Group.K_absorb_HK[of "G" "g (Suc (Suc (i mod s)))"
"g (Suc (i mod s))"], assumption+)
apply (frule Group.compseriesTr0 [of "G" "s" "g" "i mod s"], assumption+)
apply (frule mod_less_divisor [of "s" "i"], simp)
apply (frule Group.cmp_rfn0 [of "G" "s" "r" "g" "f" "i mod s" "r - Suc 0"],
assumption+, simp, simp, simp)
apply (cut_tac Group.compser_nsg [of "G" "s" "g" "i mod s"])
apply (frule Group.ZassenhausTr4_1 [of "G" "g (i mod s)" "g (Suc (i mod s))"
"f (r - Suc 0)"], assumption+)
apply (rule Group.sg_sg, assumption+)
apply (rule Group.inter_sgs, assumption+)
apply (rule Group.compseriesTr0 [of "G" "r" "f" "r - Suc 0"], assumption+)
apply simp
apply (rule Int_lower1)
apply (rule Group.Group_Qg)
apply (rule Group.Group_Gp, assumption+, simp+)
done
lemma JHS_Tr1_5:"⟦Group G; 0 < r; 0 < s; compseries G r f; compseries G s g;
i ≤ s * r - Suc 0; Suc (rtos r s i) < s * r; Suc i < s * r;
i mod s < s - Suc 0; i div s < r - Suc 0⟧
⟹ (Gp G (f (Suc (i div s)) ⋄⇘G⇙ (f (i div s) ∩ g (i mod s))) /
(f (Suc (i div s)) ⋄⇘G⇙ (f (i div s) ∩ g (Suc (i mod s))))) ≅
(Gp G (g (Suc (i mod s)) ⋄⇘G⇙ (g (i mod s) ∩ f (i div s))) /
(g (Suc (Suc (rtos r s i) div r)) ⋄⇘G⇙
(g (Suc (rtos r s i) div r) ∩ f (Suc (rtos r s i) mod r))))"
apply (frule Group.compseriesTr0 [of "G" "s" "g" "i mod s"], assumption+)
apply simp
apply (frule Group.compseriesTr0 [of "G" "s" "g" "Suc (i mod s)"], assumption+)
apply (frule Suc_mono [of "i mod s" "s - Suc 0"], simp)
apply (frule Group.compseriesTr0 [of "G" "r" "f" "i div s"], assumption+)
apply (frule less_trans [of "i div s" "r - Suc 0" "r"], simp)
apply simp
apply (frule Group.compseriesTr0 [of "G" "r" "f" "Suc (i div s)"], assumption+)
apply (frule Suc_mono [of "i div s" "r - Suc 0"])
apply simp
apply (frule Group.compser_nsg [of "G" "r" "f" "i div s"], assumption+)
apply simp
apply (frule Group.compser_nsg [of "G" "s" "g" "i mod s"], assumption+, simp)
apply (subst Suc_rtos_i_mod_r_3 [of "r" "s" "i"], assumption+)
apply (simp add:mult.commute, assumption)
apply (subst Suc_rtos_div_r_3 [of "r" "s" "i" ], assumption+)+
apply (simp add:mult.commute)+
apply (subst Suc_rtos_div_r_3[of "r" "s" "i"], assumption+)
apply (rule Zassenhaus [of "G" "f (i div s)" "f (Suc (i div s))" "g (i mod s)"
"g (Suc (i mod s))"], assumption+)
done
lemma JHS_Tr1_6:" ⟦Group G; 0 < r; 0 < s; compseries G r f; compseries G s g;
i ≤ r * s - Suc 0; Suc (rtos r s i) < r * s⟧ ⟹
((Gp G (cmp_rfn G r f s g i)) / (cmp_rfn G r f s g (Suc i))) ≅
((Gp G (g (Suc (rtos r s i div r)) ⋄⇘G⇙
(g (rtos r s i div r) ∩ f (rtos r s i mod r)))) /
(g (Suc (Suc (rtos r s i) div r)) ⋄⇘G⇙
(g (Suc (rtos r s i) div r) ∩ f (Suc (rtos r s i) mod r))))"
apply (simp add:cmp_rfn_def)
apply (frule le_less_trans [of "i" "r * s - Suc 0" "r * s"], simp)
apply (simp add:mult.commute [of "r" "s"])
apply (frule Suc_leI [of "i" "s * r"], thin_tac "i < s * r")
apply (case_tac "¬ Suc i < s * r", simp)
apply (frule rfn_tool17 [of "Suc i" "s * r" "Suc 0"])
apply (thin_tac " Suc i = s * r")
apply simp
apply (frule rtos_r_s [of "r" "s"], assumption+)
apply (simp add:mult.commute [of "r" "s"])
apply simp
apply (frule mod_less_divisor [of "s" "i"])
apply (frule less_le_diff [of "i mod s" "s"], thin_tac "i mod s < s")
apply (case_tac "i mod s = s - Suc 0", simp)
apply (frule_tac div_Tr2 [of "r" "s" "Suc i"], assumption+)
apply (simp add:le_imp_less_or_eq)
apply (subst div_Tr3_1[of "r" "s" "i"], assumption+, simp)
apply (subst rtos_hom3 [of "r" "s" "i"], assumption+)
apply (simp add:mult.commute)
apply (subst rtos_hom3_1 [of "r" "s" "i"], assumption+)
apply (simp add:mult.commute)
apply (frule div_Tr3_1 [of "r" "s" "i"], assumption+, simp)
apply (simp, thin_tac "Suc i div s = Suc (i div s)")
apply (insert n_less_Suc [of "i div s"])
apply (frule less_le_trans [of "i div s" "Suc (i div s)" "r - Suc 0"],
assumption+)
apply (subst Suc_rtos_div_r_1 [of "r" "s" "i"], assumption+)
apply (simp add:mult.commute[of "s" "r"])+
apply (subst Suc_rtos_mod_r_1 [of "r" "s" "i"], assumption+)
apply (subst Suc_i_mod_s_0_1 [of "r" "s" "i"], assumption+)
apply (simp only:Suc_rtos_div_r_1 [of "r" "s" "i"])
apply (subst rtos_hom3[of "r" "s" "i"], assumption+, simp)
apply (frule JHS_Tr1_2 [of "G" "r" "s" "f" "g" "i div s"], assumption+,
simp)
apply (frule noteq_le_less [of "i mod s" "s - Suc 0"], assumption+)
apply (thin_tac "i mod s ≤ s - Suc 0")
apply (thin_tac "i mod s ≠ s - Suc 0")
apply (frule div_Tr2 [of "r" "s" "Suc i"], assumption+,
rule noteq_le_less, assumption+)
apply (subst div_Tr3_2 [THEN sym, of "r" "s" "i"], assumption+)
apply simp
apply (subst rfn_tool12_1 [THEN sym, of "s" "i"], assumption+)
apply simp
apply (subst rtos_hom3 [of "r" "s" "i"], assumption+)
apply (simp add:mult.commute)
apply (subst rtos_hom3_1 [of "r" "s" "i"], assumption+)
apply (simp add:mult.commute)
apply (case_tac "i div s = r - Suc 0")
apply (subst rtos_hom5 [of "r" "s" "i"], assumption+)
apply (simp add:mult.commute)
apply assumption
apply (subst rtos_hom7 [of "r" "s" "i"], assumption+)
apply (simp add:mult.commute)
apply (assumption, simp)
apply (frule JHS_Tr1_3 [of "G" "r" "s" "f" "g" "i"], assumption+,
simp only:noteq_le_less, assumption+)
apply (frule JHS_Tr1_4 [of "G" "r" "s" "f" "g" "i"], assumption+,
simp only:noteq_le_less, assumption+)
apply (subst rtos_hom3 [of "r" "s" "i"], assumption+,
simp only:mult.commute[of "s" "r"])
apply (subst rtos_hom5 [of "r" "s" "i"], assumption+,
simp only:mult.commute[of "s" "r"],
simp add:mem_of_Nset)
apply (rule isomTr1, assumption+)
apply (frule Suci_div_s_2[of "r" "s" "i"], assumption+,
simp only:mult.commute, assumption)
apply simp
apply (frule Suci_div_s_2[of "r" "s" "i"], assumption+,
simp only:mult.commute, assumption, simp)
apply (rule JHS_Tr1_2 [of "G" "s" "r" "g" "f" "i mod s"], assumption+)
apply (frule div_Tr2 [of "r" "s" "i"], assumption+)
apply (rule le_less_trans [of "i" "s * r - Suc 0" "s * r"], assumption+)
apply simp
apply (frule noteq_le_less [of "i div s" "r - Suc 0"], assumption+)
apply (frule Suci_div_s_2[of "r" "s" "i"], assumption+,
simp only:mult.commute[of "s" "r"], assumption, simp)
apply (frule JHS_Tr1_5[of "G" "r" "s" "f" "g" "i"], assumption+)
apply (simp add:noteq_le_less[of "Suc i"], assumption+)
apply (frule mem_of_Nset[of "i" "s*r - Suc 0"],
simp add:mult.commute[of "s" "r"])
apply (simp add:rtos_hom3 [of "r" "s" "i"])
done
lemma JHS_Tr1:"⟦ Group G; 0 < r; 0 < s; compseries G r f; compseries G s g⟧
⟹ isom_Gchains (r * s - 1) (rtos r s) (Qw_cmpser G (cmp_rfn G r f s g)) (Qw_cmpser G (cmp_rfn G s g r f))"
apply (simp add:isom_Gchains_def)
apply (rule allI, rule impI)
apply (frule pos_mult_pos [of "r" "s"], assumption+)
apply (frule_tac b = "r * s" and a = i in rfn_tool11, assumption+)
apply (simp add:Qw_cmpser_def)
apply (simp only:cmp_rfn_def [of "G" "s" "g"])
apply (frule_tac l = i in rtos_hom1 [of "r" "s"], assumption+)
apply (frule_tac x = "rtos r s i" and y = "s * r - Suc 0" and z = "s * r" in
le_less_trans, simp)
apply (simp add:mult.commute [of "s" "r"])
apply (case_tac "Suc (rtos r s i) < r * s", simp)
prefer 2 apply simp
apply (frule_tac i = i in rtos_rs_1 [of "r" "s"], assumption+)
apply (frule_tac i = i in rtos_rs_i_rs [of "r" "s"], assumption+)
apply (rule less_le_diff, assumption+)
apply (simp add:cmp_rfn_def)
apply (simp add:mult.commute)
apply (subst JHS_Tr1_1 [of "G" "r" "s" "f" "g"], assumption+)
apply (frule JHS_Tr1_1 [of "G" "s" "r" "g" "f"], assumption+)
apply (simp add:mult.commute [of "r" "s"])
apply (simp add:Int_commute)
apply (frule Group.compseriesTr0 [of "G" "r" "f" "r - Suc 0"], assumption+,
simp)
apply (frule Group.compseriesTr0 [of "G" "s" "g" "s - Suc 0"], assumption+,
simp)
apply (frule Group.inter_sgs [of "G" "f (r - (Suc 0))" "g (s - Suc 0)"],
assumption+)
apply (frule Group.special_sg_e [of "G"])
apply (frule Group.special_nsg_e [of "G" "f (r - Suc 0) ∩ g (s - Suc 0)"],
assumption+)
apply (frule Group.Group_Gp [of "G" "f (r - Suc 0) ∩ g (s - Suc 0)"], assumption+)
apply (frule Group.Group_Qg[of "Gp G (f (r - Suc 0) ∩ g (s - Suc 0))" "{𝟭⇘G⇙}"],
assumption+)
apply (simp add:isomTr0[of "(♮⇘G⇙(f (r - Suc 0) ∩ g (s - Suc 0))) / {𝟭⇘G⇙}"])
apply (rule JHS_Tr1_6, assumption+)
done
lemma abc_SucTr0:"⟦(0::nat) < a; c ≤ b; a - Suc 0 = b - c⟧ ⟹ a = (Suc b) - c"
apply (subgoal_tac "Suc 0 ≤ a")
apply (frule le_add_diff_inverse2 [of "Suc 0" "a", THEN sym])
apply auto
done
lemma length_wcmpser0_0:"⟦Group G; Ugp E; w_cmpser G (Suc 0) f⟧ ⟹
f ` {i. i ≤ (Suc 0)} = {f 0, f (Suc 0)}"
apply (simp add:Nset_1)
done
lemma length_wcmpser0_1:"⟦Group G; Ugp E; w_cmpser G (Suc n) f; i∈{i. i ≤ n};
(Qw_cmpser G f) i ≅ E⟧ ⟹ f i = f (Suc i)"
apply (subgoal_tac "0 < Suc n")
apply (frule Group.w_cmpser_gr [of "G" "Suc n" "f" "i"], assumption+)
prefer 2 apply simp
apply (frule Group.w_cmpser_gr [of "G" "Suc n" "f" "Suc i"], simp+)
apply (frule Group.w_cmpser_ns [of "G" "Suc n" "f" "i"], simp+)
apply (simp add:Qw_cmpser_def)
apply (rule QgrpUnit_3 [of "G" "E" "f i" "f (Suc i)"], assumption+, simp+)
done
lemma length_wcmpser0_2:"⟦Group G; Ugp E; w_cmpser G (Suc n) f; i ≤ n;
¬ (Qw_cmpser G f) i ≅ E⟧ ⟹ f i ≠ f (Suc i)"
apply (cut_tac zero_less_Suc[of "n"])
apply (frule Group.w_cmpser_gr [of "G" "Suc n" "f" "i"], assumption+)
apply simp
apply (frule Group.w_cmpser_gr [of "G" "Suc n" "f" "Suc i"], assumption+)
apply simp
apply (frule Group.w_cmpser_ns [of "G" "Suc n" "f" "i"], assumption+, simp)
apply (simp add:Qw_cmpser_def)
apply (rule QgrpUnit_4 [of "G" "E" "f i" "f (Suc i)"], assumption+)
done
lemma length_wcmpser0_3:"⟦Group G; Ugp E; w_cmpser G (Suc (Suc n)) f;
f (Suc n) ≠ f (Suc (Suc n))⟧ ⟹ f (Suc (Suc n)) ∉ f ` {i. i ≤ (Suc n)}"
apply (frule Group.w_cmpser_is_d_gchain, assumption+)
apply (thin_tac "w_cmpser G (Suc (Suc n)) f")
apply (rule contrapos_pp, simp+)
apply (frule Group.d_gchainTr2 [of "G" "Suc ((Suc n))" "f" "Suc n" "Suc (Suc n)"])
apply simp apply assumption+ apply simp+
apply (frule psubsetI [of "f (Suc (Suc n))" "f (Suc n)"])
apply (rule not_sym, assumption+)
apply (thin_tac "f (Suc (Suc n)) ⊆ f (Suc n)")
apply (simp add:image_def)
apply (erule exE)
apply (cut_tac zero_less_Suc[of "Suc n"])
apply (frule_tac f = f and l = x in Group.d_gchainTr2 [of "G" "Suc ((Suc n))"
_ _ "Suc (Suc n)"], assumption+)
apply simp+
apply (frule_tac f = f and l = x in Group.d_gchainTr2 [of "G" "Suc (Suc n)"
_ _ "Suc n"], simp+)
done
lemma length_wcmpser0_4:"⟦Group G; Ugp E; w_cmpser G (Suc 0) f⟧ ⟹
card (f ` {i. i ≤ Suc 0}) - 1 = Suc 0 - card {i. i = 0 ∧
Qw_cmpser G f i ≅ E}"
apply (auto simp add: length_wcmpser0_0 Collect_conv_if)
apply (frule_tac n = 0 and f = f and i = 0 in length_wcmpser0_1 [of "G" "E"], assumption+, simp+)
apply (frule_tac f = f and i = 0 in length_wcmpser0_2 [of "G" "E" "0"],
(assumption | simp)+)
done
lemma length_wcmpser0_5:" ⟦Group G; Ugp E; w_cmpser G (Suc (Suc n)) f;
w_cmpser G (Suc n) f;
card (f ` {i. i ≤ (Suc n)}) - 1 = Suc n -
card {i. i ≤ n ∧ Qw_cmpser G f i ≅ E};
Qw_cmpser G f (Suc n) ≅ E⟧ ⟹
card (f ` {i . i ≤ (Suc (Suc n))}) - 1 =
Suc (Suc n) - card {i. i ≤ (Suc n) ∧ Qw_cmpser G f i ≅ E}"
apply (frule_tac n = "Suc n" and f = f and i = "Suc n" in
length_wcmpser0_1 [of "G" "E"], assumption+)
apply (simp, assumption)
apply (subgoal_tac "f ` {i. i ≤ (Suc (Suc n))} = f ` {i. i ≤ (Suc n)}")
apply simp
prefer 2 apply (rule equalityI)
apply (simp add:image_def)
apply (auto del:equalityI)
apply (case_tac "xa = Suc (Suc n)", simp)
apply (thin_tac " xa = Suc (Suc n)", rotate_tac -2)
apply (frule sym, thin_tac "f (Suc n) = f (Suc (Suc n))",
simp, thin_tac "f (Suc (Suc n)) = f (Suc n)")
apply (cut_tac n_in_Nsetn[of "Suc n"], blast)
apply (frule_tac m = xa and n = "Suc (Suc n)" in noteq_le_less, assumption,
frule_tac x = xa in Suc_less_le[of _ "Suc n"], blast)
apply (subgoal_tac "{i. i ≤ (Suc n) ∧ Qw_cmpser G f i ≅ E} =
insert (Suc n) {i. i ≤ n ∧ Qw_cmpser G f i ≅ E}")
apply simp
apply fastforce
done
lemma length_wcmpser0_6:"⟦Group G; w_cmpser G (Suc (Suc n)) f⟧ ⟹
0 < card (f ` {i. i ≤ (Suc n)})"
apply (insert finite_Collect_le_nat [of "Suc n"])
apply (frule finite_imageI [of "{i. i ≤ (Suc n)}" "f"])
apply (subgoal_tac "{f 0} ⊆ f ` {i. i ≤ (Suc n)}")
apply (frule card_mono [of "f ` {i. i ≤ (Suc n)}" "{f 0}"], assumption+)
apply (simp add:card1 [of "f 0"])
apply (rule subsetI, simp add:image_def)
apply (subgoal_tac "0 ∈ {i. i ≤ (Suc n)}", blast)
apply simp
done
lemma length_wcmpser0_7:"⟦Group G; w_cmpser G (Suc (Suc n)) f⟧ ⟹
card {i. i ≤ n ∧ Qw_cmpser G f i ≅ E} ≤ Suc n"
apply (insert finite_Collect_le_nat [of "n"])
apply (subgoal_tac "{i. i ≤ n ∧ Qw_cmpser G f i ≅ E} ⊆ {i. i ≤ n}")
apply (frule card_mono [of "{i. i ≤ n}" "{i. i ≤ n ∧ Qw_cmpser G f i ≅ E}"])
apply (assumption, simp)
apply (rule subsetI, simp add:CollectI)
done
lemma length_wcmpser0:"⟦Group G; Ugp E⟧ ⟹∀f. w_cmpser G (Suc n) f ⟶
card (f ` {i. i ≤ (Suc n)}) - 1 = (Suc n) - (card {i. i ≤ n ∧
((Qw_cmpser G f) i ≅ E)})"
apply (induct_tac n)
apply (rule allI) apply (rule impI)
apply (frule_tac f = f in length_wcmpser0_4[of G E], assumption+, simp)
apply (rule allI) apply (rule impI)
apply (frule_tac n = "Suc n" and f = f in Group.w_cmpser_pre [of "G"], assumption+)
apply (subgoal_tac "card (f ` {i. i ≤ (Suc n)}) - 1 =
Suc n - card {i. i ≤ n ∧ Qw_cmpser G f i ≅ E}")
prefer 2 apply simp
apply (thin_tac " ∀f. w_cmpser G (Suc n) f ⟶
card (f ` {i. i ≤ (Suc n)}) - 1 =
Suc n - card {i. i ≤ n ∧ Qw_cmpser G f i ≅ E}")
apply (case_tac "Qw_cmpser G f (Suc n) ≅ E")
apply (rule length_wcmpser0_5, assumption+)
apply (frule_tac n = "Suc n" and f = f and i = "Suc n" in
length_wcmpser0_2 [of "G" "E"], assumption+)
apply simp apply assumption
apply (subgoal_tac "f ` {i. i ≤ (Suc (Suc n))} =
insert (f (Suc (Suc n))) (f ` {i. i ≤ (Suc n)})")
apply simp apply (thin_tac "f ` {i. i ≤ (Suc (Suc n))} =
insert (f (Suc (Suc n))) (f ` {i. i ≤ (Suc n)})")
apply (subgoal_tac "finite (f ` {i. i ≤ (Suc n)})")
apply (subgoal_tac "f (Suc (Suc n)) ∉ f ` {i. i ≤ (Suc n)}")
apply (subst card_insert_disjoint, assumption)
apply assumption
prefer 2 apply (rule length_wcmpser0_3, assumption+)
prefer 2
apply (subgoal_tac "finite {i. i ≤ (Suc n)}")
apply (rule finite_imageI, assumption+, simp)
prefer 2
apply (thin_tac " ¬ Qw_cmpser G f (Suc n) ≅ E",
thin_tac " w_cmpser G (Suc n) f",
thin_tac "f (Suc n) ≠ f (Suc (Suc n))")
apply (subgoal_tac "{i. i ≤ (Suc (Suc n))} = {i. i≤(Suc n)} ∪ {Suc (Suc n)}")
prefer 2 apply (rule_tac n = "Suc n" in Nset_un, simp)
apply (subgoal_tac "card {i. i ≤ (Suc n) ∧ Qw_cmpser G f i ≅ E} =
card {i. i ≤ n ∧ Qw_cmpser G f i ≅ E}")
apply simp
apply (thin_tac " card {i. i ≤ (Suc n) ∧ Qw_cmpser G f i ≅ E} =
card {i. i ≤ n ∧ Qw_cmpser G f i ≅ E}",
thin_tac "¬ Qw_cmpser G f (Suc n) ≅ E",
thin_tac "f (Suc n) ≠ f (Suc (Suc n))",
thin_tac "f (Suc (Suc n)) ∉ f ` {i. i ≤ (Suc n)}")
apply (frule_tac n = n and f = f in length_wcmpser0_6 [of "G"], assumption+,
frule_tac n = n and f = f in length_wcmpser0_7 [of "G"], assumption+)
apply (rule abc_SucTr0, assumption+)
apply (rule card_eq)
apply (thin_tac "card (f ` {i. i ≤ (Suc n)}) - Suc 0 =
Suc n - card {i. i ≤ n ∧ Qw_cmpser G f i ≅ E}",
thin_tac "f (Suc n) ≠ f (Suc (Suc n))",
thin_tac "f (Suc (Suc n)) ∉ f ` {i. i ≤ (Suc n)}")
apply (rule equalityI)
apply (rule subsetI, simp add:CollectI, erule conjE)
apply (case_tac "x = Suc n", simp, simp)
apply (rule subsetI, simp add:CollectI)
done
lemma length_of_twcmpser:"⟦Group G; Ugp E; tw_cmpser G (Suc n) f ⟧ ⟹
length_twcmpser G (Suc n) f =
(Suc n) - (card {i. i ≤ n ∧ ((Qw_cmpser G f) i ≅ E)})"
apply (unfold length_twcmpser_def)
apply (insert length_wcmpser0 [of "G" "E" "n"])
apply (subgoal_tac "w_cmpser G (Suc n) f", rotate_tac -1,
simp, simp,
thin_tac "∀f. w_cmpser G (Suc n) f ⟶
card (f ` {i. i ≤ (Suc n)}) - Suc 0 =
Suc n - card {i. i ≤ n ∧ Qw_cmpser G f i ≅ E}")
apply (simp add:tw_cmpser_def w_cmpser_def, erule conjE)
apply (thin_tac "∀i≤ n. Gp G (f i) ▹ f (Suc i)")
apply (simp add:td_gchain_def)
done
lemma JHS_1:"⟦Group G; Ugp E; compseries G r f; compseries G s g; 0<r; 0 < s⟧
⟹ r = r * s - card {i. i ≤ (r * s - Suc 0) ∧
Qw_cmpser G (cmp_rfn G r f s g) i ≅ E}"
apply (frule_tac r = r and s = s and G = G and f = f and g = g in
Group.JHS_Tr0, assumption+)
apply (simp add:wcsr_rfns_def, erule conjE)
apply (frule_tac length_of_twcmpser [of "G" "E" "r * s - Suc 0"
"cmp_rfn G r f s g"], assumption+, simp add:mult.commute)
apply (simp add:length_twcmpser_def)
apply (frule Group.rfn_compseries_iM [of "G" "r" "s" "f" "cmp_rfn G r f s g"], assumption+, rule Group.JHS_Tr0 [of "G" "r" "s" "f" "g"], assumption+)
apply (simp add:mult.commute [of "s" "r"])
done
lemma J_H_S:"⟦Group G; Ugp E; compseries G r f; compseries G s g; 0<r;
(0::nat)<s ⟧ ⟹ r = s"
apply (frule JHS_1 [of "G" "E" "r" "f" "s" "g"], assumption+,
frule JHS_1 [of "G" "E" "s" "g" "r" "f"], assumption+,
frule JHS_Tr1 [of "G" "r" "s" "f" "g"], assumption+,
frule Group.JHS_Tr0 [of "G" "r" "s" "f" "g"], assumption+,
frule Group.JHS_Tr0 [of "G" "s" "r" "g" "f"], assumption+)
apply (simp add:wcsr_rfns_def, (erule conjE)+,
frule Group.tw_cmpser_is_w_cmpser [of "G" "s * r" "cmp_rfn G r f s g"],
assumption+,
frule Qw_cmpser [of "G" "s * r - Suc 0" "cmp_rfn G r f s g"],
simp add:pos_mult_pos [of "s" "r"])
apply (frule Group.tw_cmpser_is_w_cmpser [of "G" "r * s" "cmp_rfn G s g r f"],
assumption+,
frule Qw_cmpser [of "G" "r * s - Suc 0" "cmp_rfn G s g r f"],
simp add:pos_mult_pos [of "r" "s"],
simp add:mult.commute [of "s" "r"])
apply (frule isom_gch_units [of "E" "r * s - Suc 0"
"Qw_cmpser G (cmp_rfn G r f s g)" "Qw_cmpser G (cmp_rfn G s g r f)"
"rtos r s"], assumption+)
prefer 2 apply simp
apply (simp add:Gch_bridge_def)
apply (rule conjI) apply (rule allI, rule impI)
apply (frule_tac l = l in rtos_hom1 [of "r" "s"], assumption+,
simp add:mult.commute [of "s" "r"])
apply (rule rtos_inj, assumption+)
done
end