Theory Randomised_Social_Choice.Preference_Profile_Cmd
section ‹Automatic definition of Preference Profiles›
theory Preference_Profile_Cmd
imports
Complex_Main
"../Elections"
keywords
"preference_profile" :: thy_goal
begin
ML_file ‹preference_profiles.ML›
context election
begin
lemma preferred_alts_prefs_from_table:
assumes "prefs_from_table_wf agents alts xs" "i ∈ set (map fst xs)"
shows "preferred_alts (prefs_from_table xs i) x =
of_weak_ranking_Collect_ge (rev (the (map_of xs i))) x"
proof -
interpret pref_profile_wf agents alts "prefs_from_table xs"
by (intro pref_profile_from_tableI assms)
from assms have [simp]: "i ∈ agents" by (auto simp: prefs_from_table_wf_def)
have "of_weak_ranking_Collect_ge (rev (the (map_of xs i))) x =
Collect (of_weak_ranking (the (map_of xs i)) x)"
by (rule eval_Collect_of_weak_ranking [symmetric])
also from assms(2) have "the (map_of xs i) ∈ set (map snd xs)"
by (cases "map_of xs i") (force simp: map_of_eq_None_iff dest: map_of_SomeD)+
from prefs_from_table_wfD(5)[OF assms(1) this]
have "Collect (of_weak_ranking (the (map_of xs i)) x) =
{y∈alts. of_weak_ranking (the (map_of xs i)) x y}"
by safe (force elim!: of_weak_ranking.cases)
also from assms
have "of_weak_ranking (the (map_of xs i)) = prefs_from_table xs i"
by (subst prefs_from_table_map_of[OF assms(1)])
(auto simp: prefs_from_table_wf_def)
finally show ?thesis by (simp add: of_weak_ranking_Collect_ge_def preferred_alts_altdef)
qed
lemma favorites_prefs_from_table:
assumes wf: "prefs_from_table_wf agents alts xs" and i: "i ∈ agents"
shows "favorites (prefs_from_table xs) i = hd (the (map_of xs i))"
proof (cases "map_of xs i")
case None
with assms show ?thesis
by (auto simp: map_of_eq_None_iff prefs_from_table_wf_def)
next
case (Some y)
with assms have "is_finite_weak_ranking y" "y ≠ []"
by (auto simp: prefs_from_table_wf_def)
with Some show ?thesis
unfolding favorites_def using assms
by (simp add: prefs_from_table_def is_finite_weak_ranking_def
Max_wrt_of_weak_ranking prefs_from_table_wfD)
qed
lemma has_unique_favorites_prefs_from_table:
assumes wf: "prefs_from_table_wf agents alts xs"
shows "has_unique_favorites (prefs_from_table xs) =
list_all (λz. is_singleton (hd (snd z))) xs"
proof -
interpret pref_profile_wf agents alts "prefs_from_table xs"
by (intro pref_profile_from_tableI assms)
from wf have "agents = set (map fst xs)" "distinct (map fst xs)"
by (auto simp: prefs_from_table_wf_def)
thus ?thesis
unfolding has_unique_favorites_altdef using assms
by (auto simp: favorites_prefs_from_table list_all_iff)
qed
end
subsection ‹Automatic definition of preference profiles from tables›
function favorites_prefs_from_table where
"i = j ⟹ favorites_prefs_from_table ((j,x)#xs) i = hd x"
| "i ≠ j ⟹ favorites_prefs_from_table ((j,x)#xs) i =
favorites_prefs_from_table xs i"
| "favorites_prefs_from_table [] i = {}"
by (metis list.exhaust old.prod.exhaust) auto
termination by lexicographic_order
lemma (in election) eval_favorites_prefs_from_table:
assumes "prefs_from_table_wf agents alts xs"
shows "favorites_prefs_from_table xs i =
favorites (prefs_from_table xs) i"
proof (cases "i ∈ agents")
assume i: "i ∈ agents"
with assms have "favorites (prefs_from_table xs) i = hd (the (map_of xs i))"
by (simp add: favorites_prefs_from_table)
also from assms i have "i ∈ set (map fst xs)"
by (auto simp: prefs_from_table_wf_def)
hence "hd (the (map_of xs i)) = favorites_prefs_from_table xs i"
by (induction xs i rule: favorites_prefs_from_table.induct) simp_all
finally show ?thesis ..
next
assume i: "i ∉ agents"
with assms have i': "i ∉ set (map fst xs)"
by (simp add: prefs_from_table_wf_def)
hence "map_of xs i = None"
by (simp add: map_of_eq_None_iff)
hence "prefs_from_table xs i = (λ_ _. False)"
by (intro ext) (auto simp: prefs_from_table_def)
hence "favorites (prefs_from_table xs) i = {}"
by (simp add: favorites_def Max_wrt_altdef)
also from i' have "… = favorites_prefs_from_table xs i"
by (induction xs i rule: favorites_prefs_from_table.induct) simp_all
finally show ?thesis ..
qed
function weak_ranking_prefs_from_table where
"i ≠ j ⟹ weak_ranking_prefs_from_table ((i,x)#xs) j = weak_ranking_prefs_from_table xs j"
| "i = j ⟹ weak_ranking_prefs_from_table ((i,x)#xs) j = x"
| "weak_ranking_prefs_from_table [] j = []"
by (metis list.exhaust old.prod.exhaust) auto
termination by lexicographic_order
lemma eval_weak_ranking_prefs_from_table:
assumes "prefs_from_table_wf agents alts xs"
shows "weak_ranking_prefs_from_table xs i = weak_ranking (prefs_from_table xs i)"
proof (cases "i ∈ agents")
assume i: "i ∈ agents"
with assms have "weak_ranking (prefs_from_table xs i) = the (map_of xs i)"
by (auto simp: prefs_from_table_def prefs_from_table_wf_def weak_ranking_of_weak_ranking
split: option.splits)
also from assms i have "i ∈ set (map fst xs)"
by (auto simp: prefs_from_table_wf_def)
hence "the (map_of xs i) = weak_ranking_prefs_from_table xs i"
by (induction xs i rule: weak_ranking_prefs_from_table.induct) simp_all
finally show ?thesis ..
next
assume i: "i ∉ agents"
with assms have i': "i ∉ set (map fst xs)"
by (simp add: prefs_from_table_wf_def)
hence "map_of xs i = None"
by (simp add: map_of_eq_None_iff)
hence "prefs_from_table xs i = (λ_ _. False)"
by (intro ext) (auto simp: prefs_from_table_def)
hence "weak_ranking (prefs_from_table xs i) = []" by simp
also from i' have "… = weak_ranking_prefs_from_table xs i"
by (induction xs i rule: weak_ranking_prefs_from_table.induct) simp_all
finally show ?thesis ..
qed
lemma eval_prefs_from_table_aux:
assumes "R ≡ prefs_from_table xs" "prefs_from_table_wf agents alts xs"
shows "R i a b ⟷ prefs_from_table xs i a b"
"a ≺[R i] b ⟷ prefs_from_table xs i a b ∧ ¬prefs_from_table xs i b a"
"anonymous_profile R = mset (map snd xs)"
"election agents alts ⟹ i ∈ set (map fst xs) ⟹
preferred_alts (R i) x =
of_weak_ranking_Collect_ge (rev (the (map_of xs i))) x"
"election agents alts ⟹ i ∈ set (map fst xs) ⟹
favorites R i = favorites_prefs_from_table xs i"
"election agents alts ⟹ i ∈ set (map fst xs) ⟹
weak_ranking (R i) = weak_ranking_prefs_from_table xs i"
"election agents alts ⟹ i ∈ set (map fst xs) ⟹
favorite R i = the_elem (favorites_prefs_from_table xs i)"
"election agents alts ⟹
has_unique_favorites R ⟷ list_all (λz. is_singleton (hd (snd z))) xs"
using assms prefs_from_table_wfD[OF assms(2)]
by (simp_all add: strongly_preferred_def favorite_def anonymise_prefs_from_table
election.preferred_alts_prefs_from_table election.eval_favorites_prefs_from_table
election.has_unique_favorites_prefs_from_table eval_weak_ranking_prefs_from_table)
lemma pref_profile_from_tableI':
assumes "R1 ≡ prefs_from_table xss" "prefs_from_table_wf agents alts xss"
shows "pref_profile_wf agents alts R1"
using assms by (simp add: pref_profile_from_tableI)
ML ‹
signature PREFERENCE_PROFILES_CMD =
sig
type info
val preference_profile :
(term * term) * ((binding * (term * term list list) list) list) -> Proof.context -> Proof.state
val preference_profile_cmd :
(string * string) * ((binding * (string * string list list) list) list) ->
Proof.context -> Proof.state
val get_info : term -> Proof.context -> info
val add_info : term -> info -> Context.generic -> Context.generic
val transform_info : info -> morphism -> info
end
structure Preference_Profiles_Cmd : PREFERENCE_PROFILES_CMD =
struct
open Preference_Profiles
type info =
{ term : term, def_thm : thm, wf_thm : thm, wf_raw_thm : thm, binding : binding,
raw : (term * term list list) list, eval_thms : thm list }
fun transform_info ({term = t, binding, def_thm, wf_thm, wf_raw_thm, raw, eval_thms} : info) phi =
let
val thm = Morphism.thm phi
val fact = Morphism.fact phi
val term = Morphism.term phi
val bdg = Morphism.binding phi
in
{ term = term t, binding = bdg binding, def_thm = thm def_thm, wf_thm = thm wf_thm,
wf_raw_thm = thm wf_raw_thm, raw = map (fn (a, bss) => (term a, map (map term) bss)) raw,
eval_thms = fact eval_thms }
end
structure Data = Generic_Data
(
type T = (term * info) Item_Net.T
val empty = Item_Net.init (op aconv o apply2 fst) (single o fst)
val merge = Item_Net.merge
);
fun get_info term lthy =
Item_Net.retrieve (Data.get (Context.Proof lthy)) term |> the_single |> snd
fun add_info term info lthy =
Data.map (Item_Net.update (term, info)) lthy
fun add_infos infos lthy =
Data.map (fold Item_Net.update infos) lthy
fun preference_profile_aux agents alts (binding, args) lthy =
let
val dest_Type' = Term.dest_Type #> snd #> hd
val (agentT, altT) = apply2 (dest_Type' o fastype_of) (agents, alts)
val alt_setT = HOLogic.mk_setT altT
fun define t =
Local_Theory.define ((binding, NoSyn),
((Binding.suffix_name "_def" binding, @{attributes [code]}), t)) lthy
val ty = HOLogic.mk_prodT (agentT, HOLogic.listT (HOLogic.mk_setT altT))
val args' =
args |> map (fn x => x ||> map (HOLogic.mk_set altT) ||> HOLogic.mk_list alt_setT)
val t_raw =
args'
|> map HOLogic.mk_prod
|> HOLogic.mk_list ty
val t = Const (@{const_name prefs_from_table},
HOLogic.listT ty --> pref_profileT agentT altT) $ t_raw
val ((prefs, prefs_def), lthy) = define t
val prefs_from_table_wf_const =
Const (@{const_name prefs_from_table_wf}, HOLogic.mk_setT agentT --> HOLogic.mk_setT altT -->
HOLogic.listT (HOLogic.mk_prodT (agentT, HOLogic.listT (HOLogic.mk_setT altT))) -->
HOLogic.boolT)
val wf_prop = (prefs_from_table_wf_const $ agents $ alts $ t_raw) |> HOLogic.mk_Trueprop
in
((prefs, wf_prop, prefs_def), lthy)
end
fun fold_accum f xs s =
let
fun fold_accum_aux _ [] s acc = (rev acc, s)
| fold_accum_aux f (x::xs) s acc =
case f x s of (y, s') => fold_accum_aux f xs s' (y::acc)
in
fold_accum_aux f xs s []
end
fun preference_profile ((agents, alts), args) lthy =
let
fun qualify pref suff = Binding.qualify true (Binding.name_of pref) (Binding.name suff)
val (results, lthy) = fold_accum (preference_profile_aux agents alts) args lthy
val prefs_terms = map #1 results
val wf_props = map #2 results
val defs = map (snd o #3) results
val raws = map snd args
val bindings = map fst args
fun tac lthy =
let
val lthy' = put_simpset HOL_ss lthy addsimps
@{thms list.set Union_insert Un_insert_left insert_not_empty Int_empty_left Int_empty_right
insert_commute Un_empty_left Un_empty_right insert_absorb2 Union_empty
is_weak_ranking_Cons is_weak_ranking_Nil finite_insert finite.emptyI
Set.singleton_iff Set.empty_iff Set.ball_simps}
in
Local_Defs.unfold_tac lthy defs
THEN ALLGOALS (resolve_tac lthy [@{thm prefs_from_table_wfI}])
THEN Local_Defs.unfold_tac lthy @{thms is_finite_weak_ranking_def list.set insert_iff
empty_iff simp_thms list.map snd_conv fst_conv}
THEN ALLGOALS (TRY o REPEAT_ALL_NEW (eresolve_tac lthy @{thms disjE}))
THEN ALLGOALS (TRY o Hypsubst.hyp_subst_tac lthy)
THEN ALLGOALS (Simplifier.asm_full_simp_tac lthy')
THEN ALLGOALS (TRY o REPEAT_ALL_NEW (resolve_tac lthy @{thms conjI}))
THEN distinct_subgoals_tac
end
fun after_qed [wf_thms_raw] lthy =
let
fun prep_thms attrs suffix (thms : thm list) binding =
(((qualify binding suffix, attrs), [(thms,[])]))
fun prep_thmss simp suffix thmss = map2 (prep_thms simp suffix) thmss bindings
fun notes thmss suffix attrs lthy =
Local_Theory.notes (prep_thmss attrs suffix thmss) lthy |> snd
fun note thms suffix attrs lthy = notes (map single thms) suffix attrs lthy
val eval_thmss = map2 (fn def => fn wf =>
map (fn thm => thm OF [def, wf]) @{thms eval_prefs_from_table_aux})
defs wf_thms_raw
val wf_thms = map2 (fn def => fn wf =>
@{thm pref_profile_from_tableI'} OF [def, wf]) defs wf_thms_raw
val mk_infos =
let
fun aux acc (bdg::bdgs) (t::ts) (r::raws) (def::def_thms) (wf::wf_thms)
(wf_raw::wf_raw_thms) (evals::eval_thmss) =
aux ((t, {binding = bdg, term = t, raw = r, def_thm = def, wf_thm = wf,
wf_raw_thm = wf_raw, eval_thms = evals}) :: acc)
bdgs ts raws def_thms wf_thms wf_raw_thms eval_thmss
| aux acc [] _ _ _ _ _ _ = (acc : (term * info) list)
| aux _ _ _ _ _ _ _ _ = raise Match
in
aux []
end
val infos = mk_infos bindings prefs_terms raws defs wf_thms wf_thms_raw eval_thmss
in
lthy
|> note wf_thms_raw "wf_raw" []
|> note wf_thms "wf" @{attributes [simp]}
|> notes eval_thmss "eval" []
|> Local_Theory.declaration {syntax = false, pervasive = false, pos = ⌂}
(fn m => add_infos (map (fn (t,i) => (Morphism.term m t, transform_info i m)) infos))
end
| after_qed _ _ = raise Match
in
Proof.theorem NONE after_qed [map (fn prop => (prop, [])) wf_props] lthy
|> Proof.refine_singleton (Method.Basic (SIMPLE_METHOD o tac))
end
fun preference_profile_cmd ((agents, alts), argss) lthy =
let
val read = Syntax.read_term lthy
fun read' ty t = Syntax.parse_term lthy t |> Type.constraint ty |> Syntax.check_term lthy
val agents' = read agents
val alts' = read alts
val agentT = agents' |> fastype_of |> dest_Type |> snd |> hd
val altT = alts' |> fastype_of |> dest_Type |> snd |> hd
fun read_pref_elem ts = map (read' altT) ts
fun read_prefs prefs = map read_pref_elem prefs
fun prep (binding, args) =
(binding, map (fn (agent, prefs) => (read' agentT agent, read_prefs prefs)) args)
in
preference_profile ((agents', alts'), map prep argss) lthy
end
val parse_prefs =
let
val parse_pref_elem =
(Args.bracks (Parse.list1 Parse.term)) ||
Parse.term >> single
in
Parse.list1 parse_pref_elem
end
val parse_pref_profile =
Parse.binding --| Args.$$$ "=" -- Scan.repeat1 (Parse.term --| Args.colon -- parse_prefs)
val _ =
Outer_Syntax.local_theory_to_proof @{command_keyword preference_profile}
"construct preference profiles from a table"
(Args.$$$ "agents" |-- Args.colon |-- Parse.term --| Args.$$$ "alts" --| Args.colon
-- Parse.term --| Args.$$$ "where" --
Parse.and_list1 parse_pref_profile >> preference_profile_cmd);
end
›
end